CS 170: Algorithms

Logistics

Course website: https://cs170.org/ (lots of information)
Course communications: Edstem
Weekly homeworks +2 midterms +1 final exam.
Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm
Instructors:
Christian Borgs
Prasad Raghavendra
Today: Satish Rao

Puzzles ..

Solutions

..are Algorithms...
which..
are correct...and (in this class) efficient
s this a useful process?

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the "first element."
Mark first node
While next cell not marked, go to next cell.
Claim: either there is no next cell, or detects cycle.
Intuition: if on cycle, must return
Quiz: Does this work?
a) Yes. b) No.

First node not in cycle
Answer is no. "Oracle" gave us example.
Problem: starting point is not on cycle? Construct example.

Algorithms for the Human Genome Project

Reconstruct DNA...
ACTGAAACTGAGTAGATA...
Read first, then next, then next, ...3.1 billion times.
.. slow... error prone...
Parallel sequencing yields chunks of overlapping DNA.
AGTAG, AGATA, TGAGT, ACTGAA , CTGAA , AAACTG
Assemble into a consistent string?
ACTGAA
AAACTG
TGAGT
AGTAG
AGATA
ACTGAAACTGAGTAGATA

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once. If ever at the same place, report cycle.

Correctness:
If no cycle, slow pointer never catches fast one.
fycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.
d decreases every step.
Runtime: n steps to cycle n steps to catch up. $O(n)$ Additional storage: two pointers. $O(1)$.

Page Rank

Problem: What is good on the web? Website that pays search engine most? Goto.com

Random Surfer Model (Brin-Page): Follow link, follow link,
occasionally jump to random page (with prob. ε)

Popular pages are desirable pages.

PageRank = popularity for random surfer.
Sort search results by PageRank!

Made us happier then

Google.
ssues: make a bunch of webpages that point to each other
New Model for user: google

Algorithms...

Driving Directions
Airline Scheduling
Compiling
Compression
Cryptography
Optimiz
Search
Targeted Advertising

Calculating: 300 BC through Middle Ages in Europe.
I- one
V - five
X - ten
C - one hundred
D - five hundred
M - a thousand
VIII - eight
DCLXXVI - five hundred plus a hundred plus fifty plus ten plus ten..
MCDLXVIII - one thousand five hundred minus one hundred
Add them?
$1448+676=2024$
676 years since the Gutenberg printing press.
Reading and writing! For everyone.
Multiply roman numbers?

Place value.

I love place value!
Democratizes arithmetic. Money. Helps end feudal system?
54879
What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×10^{5}
This is amazing.
How many decimal digits in a number between a million and two million?
7.

Nice!!!
A million is 10^{6}. One more is $7.6=\log _{10}$ (million)
N in decimal takes $\left\lceil\log _{10} N\right\rceil$ digits

Modern system.

From India, via Al Khwarizm

He also described recipes for adding, multiplying, solving quadratics, computing digits of π..
Algorithms!
Note:
Mayans (base 20): dots (ones) and underlines (fives) 13 is "..."
Babylonions (base 60): clusters of 10 instead of digits.
Abacus successive rows, successive places
India: "invented" 0! ... and decimal symbols.
20th century. Base 2!
The input representation for modern computers and communication

Fibonacci numbers

$$
F_{0}=0, F_{1}=1 .
$$

$F_{n}=F_{n-1}+F_{n-2}$.
def fib(n):
if $\mathrm{n}<=1$:
else:
return fib(n-1) + fib(n-2)
Correct? Implements definition!
Run time.
$T(n)=T(n-1)+T(n-2)+2$
$T(n) \geq F_{n}$

Fibonacci algorithm and numbers!
$F_{n}=F_{n-1}+F_{n-2}=F_{n-2}+F_{n-3}+F_{n-2} \geq 2 F_{n-2}$
By induction, we get $F_{n} \geq 2^{n / 2}$.
From book.. $F_{n} \approx 2^{0.694 n}$.
$T(n) \geq 2^{n / 2}$
From book $T(n) \geq 2^{0.694 n}$
For $n=100$, this is around 2^{64} operations, (more than a thousand years or so on a fast computer.)
Exponential algorithm. Bad. Grows very fast.
Can we do better?

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.
Example: $c n^{2}$ runtime.
Calculation: $c(2 n)^{2}=4 c n^{2}$.
Polynomial time algorithm has runtime $O\left(n^{k}\right)$ for a constant k. Calculation: $(\alpha n)^{k}=\alpha^{k} n^{k}$.
Scaling input by α grows runtime bound by α^{k}.
Doubling size, scales runtime by a constant for polynomial time algorithm.
Not true for exponential algorithms. Squares runtime! Calculation: $2^{2 n}=\left(2^{n}\right)^{2}$. From: $2^{a b}=\left(2^{a}\right)^{b}=\left(2^{\dot{b}}\right)^{a}$.

Better Algorithm.

def $f i b(n)$:
n <= 1:
else
$a=[0,1]$
for i in range $(2, \mathrm{n}+1)$: \qquad
a. append
$O(n)$ operations! Maybe.
Let's try it!
Oops:
doubling the size more than doubled the runtime!

Asymptotic Analysis.

Used $O(n)$ for number of additions, rather than $n-2$
Why?
61a, 61b.
Recursive fib has faster inner loop than iterative fib
Does it matter?
$2^{.694 n}$ versus $O\left(n^{2}\right)$.
For $2^{.694 n}$, doubling n, squares run time.
Calculation: $2^{6994(2 n)}=\left(2^{.694 n}\right)^{2}$.
From: $2^{a b}=\left(2^{b}\right)^{a}$
For $O\left(n^{2}\right)$, doubling n, multiplies run time by four. Calculation: $c(2 n)^{2}=4 \times c n^{2}$

From demo: Size matters.

How many bits in the representation of F_{n}

Remember $F_{n} \approx 2^{0.694 n}$.
About how many bits in F_{n} ?
$\log _{2} F_{n} \approx 0.6294 n$
How long does it take to compute $F_{n-1}+F_{n-2}$? $O(n)$.
How long does Fib take?
n additions.
At most $O\left(n^{2}\right)$

Refreshing Asymptotic Notation.

Ignore constant factors.
$2 n^{2}$ asymptotically same as $4 n^{2}$ both are $O\left(n^{2}\right)$
$4 \log n$ asymptotically same as $100 \log n$ both are $O(\log n)$
Example? Binary search.
Ignore smaller order terms.
$2 n^{2}+100$ is $O\left(n^{2}\right)$
$2 n^{2}+1000 \log n$ is $O\left(n^{2}\right)$
Upper bound.
n^{2} is $O\left(n^{3}\right)$.
$\log n$ is $O(n)$.
Formally, for positive functions g, f from integers to reals,
$g(n)=O(f(n))$, if there is a constant c where $g(n) \leq c f(n)$.

More asymptotic notation.

Ω notation.

A "lower bound".
$2 n^{2}$ is $\Omega\left(n^{2}\right) \ldots$ and $\Omega(n) \ldots$
Formally, for positive functions g, f from integers to reals, $g(n)=\Omega(f(n))$, if there is a constant c where $g(n) \geq c f(n)$
$g(n)=\Theta(f(n))$ if $g(n)=O(f(n))$ and $g(n)=\Omega(f(n))$.

Multiplication

Multiplication: $O\left(n^{2}\right)$.
Is the best possible?
Every digit in x must multiply every digit in y at least once $\Theta\left(n^{2}\right)$ such pairs.
Is this the best possible?
(a) Yes.
(b) No.

No. We can do better
What ?!?
Really!
What does python do? Let's see
Runtime:
2 times as large increases by a factor of 3
Note: $2^{\log _{2} 3}=3$.
Runtime: $O\left(n^{\log _{2} 3}\right)$
How? Next time (read ahead!!!)

Al Khwarizmi: Arithmetic.

Addition: $O(n)$
Place value. Algorithm: add places.
$\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{rrrrrrrrr}1 & 2 & 4 & 6 & 8 \\ & 2 & 1 & 2 & 7 & 9 & 1\end{array}$

| + | 2 | 2 | 3 | 7 | 6 | 1 | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0 | 4 | 4 | 6 | 4 | 4 | 8 |

Correctness:
See how many ones, if more than 10 , add to 10 's And so on.
Time: $O(n)$
Can we do better?
Need to look at the numbers to add them... must be optimal

Quick Thoughts.

Big (historic) idea: representation as digits or bits
Algorithms for addition/multiplication/fibonacci numbers.
Complexity or runtimes in terms of size of representation
Asymptotic analysis.

More Al Khwarizmi's: algorithms.

Addition: $O(n)$

Multiplication:

Time: $O\left(n^{2}\right)$

