Today.

...Complex numbers, polynomials today. FFT.

Multiplying polynomials.
Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d}$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$ $b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i} .
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$

Runtime?
(A) $O(d)$
(B) $O(d \log d)$
(C) $O\left(n^{2}\right)$
(D) $O\left(d^{2}\right)$

Time: $O(k)$ multiplications for each k up to $k=2 d$.
$\Longrightarrow O\left(d^{2}\right)$.
or (D) ...will use n as parameter shortly. so (C) also.

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Coefficient of x^{4} in result?
(A) 6
(B) 5
(A) 6 of course!

Coeefficient of x^{2} in result?
Uh oh...

Hmmm...

$O\left(d^{2}\right)$ time!
Quadratic Time!
Can we do better?
Yes? No
Use different representation.

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$

$$
\begin{array}{lll}
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & =13
\end{array}
$$

$$
x^{4} \quad((3)(2))
$$

$4+11 x+20 x^{2}+13 x^{3}+6 x$
Given:
$a_{d} x^{d} \quad$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$
$+a_{1} x+\cdots a_{d} x^{d} \quad$ In example: $b_{0}=4 b_{1}=3, b_{2}=$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i} .
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$

Another representation.

Represent a line?
Sope and intercept! a a
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?
plug in x-values...and evaluate.
How to find "line" from points?
Solve two variable system of equations!
How to find polynomial from points?
Solve $d+1$ variable system of equations!

Point-value representation.
$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$
$C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)$
O (d) multiplications!
Given: a_{0}, \ldots, a_{d} and b_{0}, \ldots, b_{d}.
Evaluate: $A(x), B(x)$ on $2 d+1$ points: $x_{0}, \cdots, x_{2 d}$.
Evaluale: $A(x), B(x)$ on $2 d+1$ points: $x_{0}, \cdots, x_{2 d}$.
Multiply: $A(x) B(x)$ on points to get points for $C(x)$.
Interpolate: find $c_{0}+c_{1} x+c_{2} x^{2}+\cdots c_{2 d} x^{2 d}$

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2 .
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.
In general: $a_{0}+x\left(a_{1}+x\left(a_{2}+x(\ldots)\right)\right)$.
n multiplications/additions to evaluate one point.
Evaluate on n points . We get $O\left(n^{2}\right)$ time
Could have just multiplied polynomials!

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$
Lagrange:

$$
\Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

$P(x)=\sum_{i} y_{i} \Delta_{i}(x)$.
Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$.
Linear system:

$$
\begin{aligned}
& c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
& c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} .
\end{aligned}
$$

$$
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d} .
$$

Has solution? Lagrange

Unique?
At most d roots in any degree d polynomial
Not unique $\Longrightarrow P(x)$ and $Q(x)$ where $P\left(x_{i}\right)=Q\left(x_{i}\right)$.
$P(x)-Q(x)$ has $d+1$ roots. Contradicts not unique.
Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.
$A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots$.
Odd coefficient polynomial.
$A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots$
Example:
$A(x)=4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5}$
$=\left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right)$

$$
=\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right)
$$

$A_{e}(x)=4+20 x+6 x^{2}$
$A_{e}(x)=4+20 x+6 x^{2}$
$A_{e}(x)=12+13 x+7 x^{2}$
$A_{o}(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
$A(x)=A_{0}$
Plug in x^{2} into A_{e} and A_{o} use results to find $A(x)$

What is it good for?

What is the point-value representation good for (from CS70)? Error tolerance.
Any d points suffices
"Encode" polynomial with $d+k$ point values
Can lose any k points and reconstruct.
The original "message/file/polynomial" is recoverable.

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

wher

Even coefficient polynomial.
$A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots$
Odd coefficient polynomial.
$A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots$
Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$
$T(n)=2 T(n / 2)+1=O(n)$.
$O(n)$ for 1 point!
n points - $O\left(n^{2}\right)$ time to evaluate on n points.
No better than polynomial multiplication! Bummer.

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$
Also $n=d+1$: number of coefficients
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{0}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by
Evaluating $2 \frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.
$T(n, n)=2 T\left(\frac{n}{2}, \frac{n}{2}\right)+O(n)=O(n \log n)!!!!$
From $O\left(n^{2}\right)$ to $O(n \log n)!!!$

Complex plane

Polar coordinate: $r(\cos \theta+i \sin \theta)=r e^{i \theta}$ or (r, θ)

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square,
$\pm x_{1}$ both have x_{1}^{2} as square.
Next step:
$\frac{n}{2}$ points: squares should only be $n / 4$ distinct numbers
But all our $\frac{n}{2}$ points are squares ...and positive!
Need the $\frac{n}{2}$ points to come in Positive/Negatives pairs How can squares be negative?
Complex numbers!

Multiplying Complex Numbers

Pairs with common squares.
Want n numbers:
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and
$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}$,
$\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1$.
Each recursive level evaluates:
polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.
Take square roots: $1,-1, i,-i$
Uh oh.
Actually: $\pm 1, \pm i, \pm \frac{1}{\sqrt{2}}(1+i), \pm \frac{1}{\sqrt{2}}(-1+i)$,
Complex numbers!
Uh oh? Can we get a pattern?
The nth complex roots of unity.

$$
\begin{aligned}
\left(e^{\frac{2 i \pi}{n}+\pi}\right)^{2}=\left(e^{\frac{2 i \pi}{n}}\right)^{2} e^{2 \pi}= & \left(e^{\frac{2 i \pi}{n}}\right)^{2} \\
& \text { Solutions to } z^{n}=1
\end{aligned}
$$

Quiz

```
Which are the same as 1?
(A)(1)
(E) (0) (\mp@subsup{e}{}{2\pi}\mp@subsup{)}{}{2}
Which are the same as -1?
M(A)(-1)2
*)
Note: }\mp@subsup{e}{}{\pii}=-1\mathrm{ . (B) (e 3mi/2}\mp@subsup{)}{}{2}=\mp@subsup{e}{}{3\pii}=\mp@subsup{e}{}{\pii}\mathrm{ (D) ( }\mp@subsup{e}{}{\pii/2}\mp@subsup{)}{}{2}=\mp@subsup{e}{}{\pii}\mathrm{ .
Which are 4th roots of unity? (Hint: take the 4th power.)
(A) (A) enil
(C) (D)
(A), (B) and (D)
```


Summary

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{0}\left(x^{2}\right.$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number leas is n.
and the work on each leaf is $O(n)$
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n},\left(\omega_{n}\right)^{n+2}, \ldots\left(\omega_{n}\right)^{2 n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n}\right\}$.
Only $n / 2$ values here
Evaluate $A(x)=A_{e}\left(x^{2}\right)+x A_{0}\left(x^{2}\right)$.
Only need to evaluate A_{e} and A_{o} on $n / 2$ points
$T(n, n)=2 T(n / 2, n / 2)+O(n)$.
Or $T(n)=2(n / 2)+O(n)=O(n \log n)$

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.

Procedure:

Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity: $\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$

For each $j \leq \frac{n}{2}$.
$A\left(\omega^{j}\right)=A_{e}\left(\omega^{2 i}\right)+\omega^{j} A_{o}\left(\omega^{2 j}\right)$
$A\left(\omega^{j+\frac{n}{2}}\right)=A_{e}\left(\omega^{2 j}\right)-\omega^{j} A_{o}\left(\omega^{2 i}\right)$
Runtime Recurrence.
A_{e} and A_{o} are degree $\frac{n}{2}, \frac{n}{2}$ points in recursion. $T(n)=2 T\left(\frac{n}{2}\right)+O(n)=O(n \log n)!$

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.
What is $\left(\omega_{n}^{a+n / 2}\right)^{2} ? \omega_{n}^{2 a}$
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
How many points in the set: $\left\{\left(\omega_{n}\right)^{2},\left(\omega_{n}\right)^{4}, \ldots, \omega_{n}^{2 n}\right\}$?
n/2 points!!!
FFT: Evaluate degree n polynomial on n points
by evaluating two degree $n / 2$ polynomials on $n / 2$ points!

