LECTURE PLAN

1) Reductions (RECAP)
2) Reductions Example : IND SET \leqslant INT.PROG
3) NP-Completeneus
4)

$P=$ class of problems for which CAN FIND solution in polynomial time
$N P=$ claus of problems for which CAN VERIFY A GIVEN SOLUTION in polynomial time.

REDUCTIONS

if "An algorithm to solve B (in polyfime) CAN be used 10 SOLVE $A^{\prime \prime}$
\Rightarrow Problem B is at least as hard as PROBLEMA (up to polynomial fac fora)

$$
\Rightarrow \quad B \in P \Rightarrow A \in P \text { " }
$$

How to show $A \leqslant B$

1) Reduction Algorithm (F)

$$
F:\binom{\text { INPUT TO }}{\text { PROBLEM A }} \longrightarrow\binom{\text { INPOT to }}{\text { PROBLEM B B }}
$$

2) Proof: $\quad \Leftrightarrow$
\exists a solution to $\Rightarrow \exists$ a solution to $I \in A \Rightarrow F(I) \in B$
AND
\exists a solution to $\Longrightarrow \exists$ a solution to $E(I) \in B \Rightarrow I \in A$.

IND-SET:
InPut :1) Graph $G=(V, E)$
2) Integer: $K \in \mathbb{N}$

Sol: An independent set of rise $\geqslant k$
A set $S C V$ is ind pendent if there ARE NO eDGES inside S.

Integer programming:
INPUT: I) A linear programming over variables $\left\{x_{1}, x_{n}\right\}$
2) Bound B '

SOL: A feasible INTEGER
solution with value $\geqslant B$

$$
\begin{gathered}
\text { Max } x_{1}+x_{2}+2 x_{3} \\
x_{1}+3 x_{2} \leqslant 5 \\
x_{2}+4 x_{3} \leqslant 7 \\
x_{1}, x_{2} y_{3} \geqslant 0
\end{gathered}
$$

PRooF: a has ind set I of risk
\Rightarrow Il has solution of value k BECAUSE: comider $x_{i}=1$ if $i \in I$
obrevere that $\sum x_{i}=|I|=k$
AND $\forall(i, j) \in E \quad x_{i}+x_{j} \leqslant 1$
If has solution) of value k
$\Rightarrow G$ has ind ret of rise K.
BECAUSE: Each $x_{i} \in \mathbb{Z}$ AND OS $x_{i} \leqslant \mathbb{1}$

$$
\Rightarrow x_{i}=0 \text { or } 1 .
$$

Define $I=\left\{\left.\begin{array}{c}\text { vertex } \\ i\end{array} \right\rvert\, x_{i}=1\right\}$

$$
|I|=\sum_{i=1}^{n} x_{i}=k
$$

And we know \forall edge $(i, j) \in E$

$$
\begin{aligned}
& x_{i}+x_{j} \leqslant 1 \\
\Rightarrow \quad & B_{0} T H \quad x_{i} \text { And } x_{j} \text { are } \neq 1
\end{aligned}
$$

\Rightarrow either $i \in I$ or $j \in I$ but not Or NONE

BOTH.

I is an independent sef

NP-Completenes:
NP -complete problems:
"Problems in NP such that every problem in NP reduce to them"

Problem A is NR-complete
if 1) $A \in N P$
2) $\forall B \in N P$

$$
B \leqslant_{p} A
$$

 are NP -complete.

By now, tens of thousands of NP complete problems

How to show that ' A ' is NR -complete

1) Prove $A \in N P \in$
2) Take ANy known NP-complete problem $B \leqslant p A$

NP-complete probtems

$A \longrightarrow B \Leftrightarrow A \leqslant p$

3SAT: Bodean
INPUT: 1) Variables
2) Clauses

$$
\left.\begin{array}{l}
x_{1} \ldots x_{n} \\
\left(x_{1} \vee \bar{x}_{2} \vee x_{7}\right) \\
\left(x_{5} \vee x_{8} \vee \bar{x}_{9}\right) \\
\left.\hdashline \bar{x}_{100} \vee x_{n} \vee x_{8}\right)
\end{array}\right\} m
$$

Sol: An arsignment satisfying all the clauses
SAT:
INPUT: 3 SAT FORMULA on

$x \quad$| x |
| :--- |
| SOC: A satisfying assignment |\(\left\{\begin{array}{l}IND SET \\

INPUT: Graph G=(V, E), K \\
SOC: An independent set \\
of rise \geqslant K\end{array}\right.\)

REDUCTION ALG:
3SAT Formula \Rightarrow Graph G

1) \forall clause $\left(x V_{y} \cdot \bar{z}^{-}\right) \Rightarrow a d d$ a $\Delta^{l e}$ with vertices labelled with literals
2) \forall variable x pair of nodes labelled $x, x=A D D$ anedge $\left[\begin{array}{l}\text { Set } \\ k=\text { of } \\ \text { clauses }\end{array}\right.$

 $k=\#$ of clauses

BECAUSE: Given $x_{1} \ldots x_{n} \in 20,15$ a satisfying assignment
In every clause $\left(x_{j} \vee \overline{x_{j}} \vee x_{k}\right)=1$ at least one of $x_{i}, \bar{x}_{j}, x_{k}$ is I.
Add one of the vertices for true literals to ind set
\Rightarrow gives an ind ret of sige

$$
=\# c \text { claunes }
$$

Fan independent net of rise K $\Rightarrow 3$ a satisfying assignment
BECAUSE: $\quad K=\#$ of clones $=\#$ of $\Delta^{l s}$
\Rightarrow Ind set picks exactly one vertex in every $\Delta^{l e}$
\Rightarrow Define for each variable x

$$
x=\left\{\begin{array}{ccc}
1 & \text { if } & x \in \text { Indret } \\
0 & \text { if } & (\bar{x} \in \text { Indoet } \\
\text { arbitrarily } & \text { otherwine }
\end{array}\right.
$$

No Contradifión BECAuSE
(x) and $(\underset{x}{)}$ never \in Ind Set Every clause is satisfied because at least one literal is set to true

Since Ind net picks exactly one in surely $\Delta^{l e}$.

