Minimum Spanning Trees (short answer)

(a) Given an undirected graph $G = (V, E)$ and a set $E' \subset E$ briefly describe how to update Kruskal’s algorithm to find the minimum spanning tree that includes all edges from E'.

(b) Assume you are given a graph $G = (V, E)$ with positive and negative edge weights and an algorithm that can return a minimum spanning tree when given a graph with only positive edges. Describe a way to transform G into a new graph G' containing only positive edge weights so that the minimum spanning tree of G can be easily found from the minimum spanning tree of G'.

(c) Describe an algorithm to find a maximum spanning tree of a given graph.

Picking a Favorite MST

Consider an undirected, weighted graph for which multiple MSTs are possible (we know this means the edge weights cannot be unique). You have a favorite MST, F. Are you guaranteed that F is a possible output of Kruskal’s algorithm on this graph? How about Prim’s? In other words, is it always possible to “force” the MST algorithms to output F? Justify your answer.

MST Variant

Give an undirected graph $G = (V, E \cup S)$ with edge weight $c(e)$. Note that S is disjoint with E. Design an algorithm to find a minimum one among all spanning trees having at most one edge from S and others from E.

Input: A graph $G = (V, E)$, set of potential superhighways S, and a cost function $c(e)$ defined for every $e \in E \cup S$.

Output: A tree $T = (V, E')$ such that T is connected (there is a path in T between any two vertices in V), $E' \subseteq E \cup S$, $\sum_{e \in E'} c(e)$ is minimized, and $|E' \cap S| \leq 1$.

Service scheduling

A server has n customers waiting to be served. Customer i requires t_i minutes to be served. If, for example, the customers were served in the order t_1, t_2, t_3, \ldots, then the ith customer would wait for $t_1 + t_2 + \cdots + t_i$ minutes.

We want to minimize the total waiting time

$$T = \sum_{i=1}^{n} \text{(time spent waiting by customer } i)$$

Given the list of t_i, give an efficient algorithm for computing the optimal order in which to process the customers.