1 Job Assignment

There are I people available to work J jobs. The value of person i working 1 day at job j is a_{ij} for $i = 1, \ldots, I$ and $j = 1, \ldots, J$. Each job is completed after the sum of the time of all workers spend on it add up to be 1 day, though partial completion still has value (i.e. person i working c portion of a day on job j is worth $a_{ij}c$). The problem is to find an optimal assignment of jobs for each person for one day.

(a) What variables should we optimize over? I.e. in the canonical linear programming definition, what is x?

(b) What are the constraints we need to consider? Hint: there are three major types.

(c) What is the maximization function we are seeking?

2 Understanding convex polytopes

So far in this class we have seen linear programming defined as

$$(P) = \left\{ \begin{array}{l}
\max \quad c^T x \\
\text{s.t.} \quad Ax \leq b.
\end{array} \right.$$
Today, we explore the different properties of the region $\Omega = \{x : Ax \leq b\}$ – i.e. the region that our linear program maximizes over.

![Figure 1: An example of a convex polytope. We can consider each face of the polytope as an affine inequality and then the polytope is all the points that satisfy each inequality. Notice that an affine inequality defines a half-plane and therefore is also the intersection of the half-planes.](image)

(a) The first property that we will be interested in is **convexity**. We say that a space X is convex if for any $x, y \in X$ and $\lambda \in [0, 1]$,

$$\lambda x + (1 - \lambda)y \in X.$$

That is, the entire line segment \overline{xy} is contained in X. Prove that Ω is indeed convex.

(b) The second property that we will be interested in is showing that linear objective functions over convex polytopes achieve their maxima at the vertices. A vertex is any point $v \in \Omega$ such that v cannot be expressed as a point on the line \overline{yz} for $v \neq y, v \neq z$, and $y, z \in \Omega$.

Prove the following statement: Let Ω be a convex space and f a linear function $f(x) = c^Tx$. Show that for a line \overline{yz} for $y, z \in \Omega$ that $f(x)$ is maximized on the line at either y or z. I.e. show that

$$\max_{\lambda \in [0,1]} f(\lambda y + (1 - \lambda)z)$$
achieves the maximum at either $\lambda = 0$ or $\lambda = 1$.

(c) Now, prove that global maxima will be achieved at vertices. For simplicity, you can assume there is a unique global maximum. Hint: Use the definition of a vertex presented above. (Side note: This argument is the basis of the Simplex algorithm by Dantzig to solve linear programs.)

3 Residual in graphs

Consider the following graph with edge capacities as shown:

![Graph Diagram](image)

(a) Consider pushing 4 units of flow through $S \rightarrow A \rightarrow C \rightarrow T$. Draw the residual graph after this push.

(b) Compute a maximum flow of the above graph. Find a minimum cut. Draw the residual
4 Verifying a max-flow

Suppose someone presents you with a solution to a max-flow problem on some network. Give a linear time algorithm to determine whether the solution does indeed give a maximum flow.