CS 170 DIS 10

Released on 2018-11-05

1 NP Basics

Assume A reduces to B in polynomial time. In each part you will be given a fact about one of the problems. What will you know about the other problem from each fact? (You can answer each part in one sentence.)

1. A is in \(\mathbf{P} \).
2. B is in \(\mathbf{P} \).
3. A is \(\mathbf{NP} \)-hard.
4. B is \(\mathbf{NP} \)-hard.

2 Hitting Set

In the Hitting Set Problem, we are given a family of finite integer sets \(\{S_1, S_2, \ldots, S_n\} \) and a budget \(b \), and we wish to find an integer set \(H \) of size \(\leq b \) which intersects every \(S_i \), if such an \(H \) exists. In other words, we want \(H \cap S_i \neq \emptyset \) for all \(i \).

Show that the Hitting Set Problem is \(\mathbf{NP} \)-complete.
3 Reliable Network

Reliable Network is the following problem: We are given two \(n \times n \) matrices (a cost matrix \(d_{ij} \) and a connectivity requirement matrix \(r_{ij} \)) and also a budget \(b \). We want to find a graph \(G = (\{1, ..., n\}, E) \) such that the total cost of all edges (i.e. \(\sum_{(i,j) \in E} d_{ij} \)) is at most \(b \) and there are exactly \(r_{ij} \) vertex-disjoint paths between any two distinct vertices \(i \) and \(j \).

Show that Reliable Network is NP-Complete.

4 Dominating Set

A dominating set of a graph \(G = (V, E) \) is a subset \(D \) of \(V \), such that every vertex not in \(D \) is a neighbor of at least one vertex in \(D \).

Let the Minimum Dominating Set problem be the task of determining whether there is a dominating set of size \(\leq k \).

Show that the Minimum Dominating Set problem is NP-Hard. You may assume for this question that all graphs are connected.