CS170 - Lecture 6
Sanjam Garg
UC Berkeley
Today

1. Graphs
2. Depth First Search
3. Reachability
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

Exam Slot 1.

Exam Slot 2.

Exam Slot 3.
Scheduling: coloring.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.
Scheduling: coloring.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

Exam Slot 1.
Exam Slot 2.
Exam Slot 3.
Scheduling: coloring.

61B

61C

61A

170

70

Exam Slot 1.

Exam Slot 2.

Exam Slot 3.
Directed acyclic graphs.

Heritage of Unix.

Object Oriented Graphs
Stephen North, 3/19/93

From http://www.graphviz.org/content/crazy.
Graph $G = (V, E)$.

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0,1), (0,2), (0,5), (1,3) \ldots\}$
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
$$

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0,1), (0,2), (0,5), (1,3) \ldots\}$
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
$$

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0, 1), (0, 2), (0, 5), (1, 3), \ldots \}$

Adjacency List

- **0**: 1, 2, 5
- **1**: 0, 2, 3, 4, 5
- **2**: 0, 1, 3, 5
- **3**: 1, 2, 4
- **4**: 1, 3, 5
- **5**: 0, 1, 2, 4
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0
\end{pmatrix}
$$

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0, 1), (0, 2), (0, 5), (1, 3) \ldots \}$

Adjacency List

- $0: 1, 2, 5$
- $1: 0, 2, 3, 4, 5$
- $2: 0, 1, 3, 5$
- $3: 1, 2, 4$
- $4: 1, 3, 5$
- $5: 0, 1, 2, 4$

Edge (u, v)?
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
$$

$V = \{0,1,2,3,4,5\}$

$E = \{(0,1),(0,2),(0,5),(1,3)\}$

Adjacency List

- $0: 1, 2, 5$
- $1: 0, 2, 3, 4, 5$
- $2: 0, 1, 3, 5$
- $3: 1, 2, 4$
- $4: 1, 3, 5$
- $5: 0, 1, 2, 4$

Edge (u, v)? $O(1)$
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0
\end{pmatrix}
$$

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0, 1), (0, 2), (0, 5), (1, 3) \ldots\}$

Adjacency List

- 0: 1, 2, 5
- 1: 0, 2, 3, 4, 5
- 2: 0, 1, 3, 5
- 3: 1, 2, 4
- 4: 1, 3, 5
- 5: 0, 1, 2, 4

Edge (u, v)? $O(1)$
Neighbors of u $O(d)$
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
$$

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0, 1), (0, 2), (0, 5), (1, 3) \ldots \}$

Adjacency List

- $0: 1, 2, 5$
- $1: 0, 2, 3, 4, 5$
- $2: 0, 1, 3, 5$
- $3: 1, 2, 4$
- $4: 1, 3, 5$
- $5: 0, 1, 2, 4$

Edge (u, v)? $O(1)$ $O(d)$

Neighbors of u $O(|V|)$
Graph $G = (V, E)$.

Matrix Representation.

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0, 1), (0, 2), (0, 5), (1, 3) \ldots\}$

Adjacency List

<table>
<thead>
<tr>
<th>Node</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 2, 5</td>
</tr>
<tr>
<td>1</td>
<td>0, 2, 3, 4, 5</td>
</tr>
<tr>
<td>2</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>4</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>5</td>
<td>0, 1, 2, 4</td>
</tr>
</tbody>
</table>

Edge (u, v)? $O(1)$

Neighbors of u $O(|V|)$

Space $O(d)$
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
$$

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0, 1), (0, 2), (0, 5), (1, 3) \ldots\}$

Adjacency List

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 2, 5</td>
</tr>
<tr>
<td>1</td>
<td>0, 2, 3, 4, 5</td>
</tr>
<tr>
<td>2</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>4</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>5</td>
<td>0, 1, 2, 4</td>
</tr>
</tbody>
</table>

Edge (u, v)? \(O(1)\) \(O(d)\)

Neighbors of u \(O(|V|)\) \(O(d)\)

Space \(O(|V|^2)\)
Graph $G = (V, E)$.

Matrix Representation.

$$
\begin{pmatrix}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
$$

$V = \{0, 1, 2, 3, 4, 5\}$

$E = \{(0, 1), (0, 2), (0, 5), (1, 3) \ldots\}$

Adjacency List

<table>
<thead>
<tr>
<th>Node</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1, 2, 5</td>
</tr>
<tr>
<td>1</td>
<td>0, 2, 3, 4, 5</td>
</tr>
<tr>
<td>2</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 4</td>
</tr>
<tr>
<td>4</td>
<td>1, 3, 5</td>
</tr>
<tr>
<td>5</td>
<td>0, 1, 2, 4</td>
</tr>
</tbody>
</table>

Edge (u, v)? $O(1)$ $O(d)$

Neighbors of u $O(|V|)$ $O(d)$

Space $O(|V|^2)$ $O(|E|)$
Test your understanding..

Adjacency list of node 0?

- (A) 0: 1
- (B) 0: 1, 2
- (C) 0: 2

- (C) 2 entries for each edge!

How many edges?
- (A) 2
- (B) 3
- (C) 4

Total length of adjacency lists?
- (A) 2
- (B) 3
- (C) 4
Test your understanding..

Adjacency list of node 0?

(A) 0 : 1
(B) 0 : 1, 2
(C) 0 : 2
Test your understanding..

Adjacency list of node 0?

(A) 0 : 1
(B) 0 : 1, 2
(C) 0 : 2
(C)
Test your understanding..

Adjacency list of node 0?
(A) 0 : 1
(B) 0 : 1, 2
(C) 0 : 2

How many edges?
(A) 2
Test your understanding..

Adjacency list of node 0?
(A) 0 : 1
(B) 0 : 1, 2
(C) 0 : 2

How many edges?
(A) 2

Total length of adjacency lists?

Test your understanding.

Adjacency list of node 0?
(A) 0 : 1
(B) 0 : 1, 2
(C) 0 : 2
(C)

How many edges?
(A) 2

Total length of adjacency lists?
(A) 2
(B) 3
(C) 4
Test your understanding..

Adjacency list of node 0?
(A) 0 : 1
(B) 0 : 1, 2
(C) 0 : 2
(C)

How many edges?
(A) 2

Total length of adjacency lists?
(A) 2
(B) 3
(C) 4
(C)
Test your understanding..

Adjacency list of node 0?
(A) 0 : 1
(B) 0 : 1, 2
(C) 0 : 2
(C)

How many edges?
(A) 2

Total length of adjacency lists?
(A) 2
(B) 3
(C) 4
(C) 2 entries for each edge!
Exploring a maze.

Theseus: Wants to find the minatour in the maze.
Exploring a maze.

Theseus: Wants to find the minotaur in the maze.
Exploring a maze.

Theseus: Wants to find the minatour in the maze.
Theseus has access to a Ball of Thread and a Chalk!
Exploring a maze.

Theseus: Wants to find the minatour in the maze.
Theseus has access to a Ball of Thread and a Chalk!

Explore a room: Mark room with chalk.
For each exit.
 Look through exit. If marked, next exit.
 Otherwise go in room unwind thread.
 Explore that room.
Wind thread to go back to “previous” room.
Where is the minatour?
Reachability problem in a Graph.

Problem: Find out which nodes are reachable from A. Need digital analogues of the chalk and ball of thread. We will use array (visited) for chalk and stack for thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk Stack is Thread.

Explore builds tree.
Tree and back edges.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set \text{visited}[v] := \text{true}
2. for each edge \((v,w)\) in \(E\)
3. if not \text{visited}[w]: Explore(w).

Explore builds tree.
Tree and back edges.

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set \text{visited}[v] := \text{true}
2. for each edge \((v,w)\) in \(E\)
3. if not \text{visited}[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set $visited[v] := true$
2. for each edge (v,w) in E
3. if not $visited[w]$: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set \text{visited}[v] := \text{true}
2. for each edge \((v,w)\) in \(E\)
3. if not \text{visited}[w]: \text{Explore}(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set ${\text{visited}}[v] := \text{true}$
2. for each edge (v,w) in E
3. if not ${\text{visited}}[w]$: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set $\text{visited}[v] := \text{true}$
2. for each edge (v,w) in E
3. if not $\text{visited}[w]$: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(\(v\)):
1. Set \(\text{visited}[v] := \text{true} \)
2. for each edge \((v, w)\) in \(E\)
3. if not \(\text{visited}[w]\): Explore(\(w\)).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.
Explore.

Explore(v):
1. Set $visited[v] := \text{true}$
2. for each edge (v,w) in E
3. if not $visited[w]$: Explore(w).

Chalk.
Stack is Thread.

Explore builds tree.

Tree and *back* edges.
Correctness.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.
Correctness.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.
Only: when u visited.
Correctness.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Only: when u visited.
 stack contains nodes in a path from a to u.
Correctness.

Explore(v):
2. For each edge (v,w) in E
 3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Only: when u visited.
 stack contains nodes in a path from a to u.

All: if a node u is reachable.
 there is a path to it. Assume: u not found.
Correctness.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Only: when u visited.
 stack contains nodes in a path from a to u.

All: if a node u is reachable.
 there is a path to it. Assume: u not found.
Correctness.

Explore(v):
2. For each edge (v,w) in E
 3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Only: when u visited.
 stack contains nodes in a path from a to u.

All: if a node u is reachable.
 there is a path to it. Assume: u not found.

z is explored.
Correctness.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Only: when u visited.
- stack contains nodes in a path from a to u.

All: if a node u is reachable.
- there is a path to it. Assume: u not found.

z is explored. w is not!
Correctness.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Only: when u visited.
 stack contains nodes in a path from a to u.

All: if a node u is reachable.
 there is a path to it. **Assume: u not found.**

z is explored. w is not!
Explore (z) would explore(w), or it was already explored!
Correctness.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Only: when \(u \) visited.
 stack contains nodes in a path from \(a \) to \(u \).

All: if a node \(u \) is reachable.
 there is a path to it. Assume: \(u \) not found.

\[a \rightarrow z \rightarrow w \rightarrow u \]

\(z \) is explored. \(w \) is not!
Explore (z) would explore(w), or it was already explored!
Contradiction.
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?
Let $n = |V|$, and $m = |E|$.

$T(n,m) \leq (d)T(n-1,m) + O(d)$

Exponential?!?!?!
Don't use recurrence!
Running Time.

Explore(v):
1. Set visited[v] := **true**.
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?

Exponential

Don't use recurrence!
Running Time.

Explore(v):
2. For each edge (v,w) in E
 3. if not visited[w]: Explore(w).

How to analyse?
Let $n = |V|$, and $m = |E|$.
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?

Let \(n = |V| \), and \(m = |E| \).

\[
T(n, m) \leq (d) T(n - 1, m) + O(d)
\]
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?

Let \(n = |V| \), and \(m = |E| \).

\[
T(n, m) \leq (d) T(n - 1, m) + O(d) \quad \text{Exponential}
\]

?!?!?!
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?

Let \(n = |V| \), and \(m = |E| \).

\[
T(n, m) \leq (d) T(n - 1, m) + O(d) \quad \text{Exponential}
\]

?!?!?!?

Don’t use recurrence!
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?
Let $n = |V|$, and $m = |E|$.

"Charge work to something."
For node x:
Explore once!
Process each incident edge.
Each edge processed twice.
$O(n)$ - call explore on n nodes.
$O(m)$ - process each edge twice.
Total: $O(n + m)$.
Running Time.

Explore(v):
1. Set \(\text{visited}[v] := \text{true} \).
2. For each edge \((v,w)\) in \(E\)
3. if not visited[w]: Explore(w).

How to analyse?
Running Time.

Explore(v):
2. For each edge (v,w) in E
 3. if not visited[w]: Explore(w).

How to analyse?
Let $n = |V|$, and $m = |E|$.
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?

Let \(n = |V| \), and \(m = |E| \).

“Charge work to something.”
Running Time.

Explore(v):
1. Set visited[v] := **true**.
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?
Let $n = |V|$, and $m = |E|$.

“Charge work to something.”

For node x:
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?
Let $n = |V|$, and $m = |E|$.

“Charge work to something.”

For node x:
Explore once!
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?
Let \(n = |V| \), and \(m = |E| \).

“Charge work to something.”

For node \(x \):
 Explore once!
 Process each incident edge.
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?
Let \(n = |V| \), and \(m = |E| \).

“Charge work to something.”

For node \(x \):
 - Explore once!
 - Process each incident edge.

Each edge processed twice.
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?

Let $n = |V|$, and $m = |E|$.

“Charge work to something.”

For node x:
 Explore once!
 Process each incident edge.

Each edge processed twice.

$O(n)$ - call explore on n nodes.
Running Time.

Explore(v):
1. Set $\text{visited}[v] := \text{true}$.
2. For each edge (v,w) in E
 3. if not $\text{visited}[w]$: Explore(w).

How to analyse?
Let $n = |V|$, and $m = |E|$.

“Charge work to something.”

For node x:
 Explore once!
 Process each incident edge.

Each edge processed twice.

$O(n)$ - call explore on n nodes.
$O(m)$ - process each edge twice.
Running Time.

Explore(v):
2. For each edge (v,w) in E
3. if not visited[w]: Explore(w).

How to analyse?

Let $n = |V|$, and $m = |E|$.

“Charge work to something.”

For node x:
 - Explore once!
 - Process each incident edge.

Each edge processed twice.

$O(n)$ - call explore on n nodes.
$O(m)$ - process each edge twice.

Total: $O(n + m)$.
Depth first search.

Process whole graph.
Depth first search.

Process whole graph.

DFS(G)

1: For each node $u,$
Depth first search.

Process whole graph.

DFS(G)

1: For each node u,
2: $\text{visited}[u] = \text{false}$.
Depth first search.

Process whole graph.

DFS(G)

1: For each node u,
2: \[
\text{visited}[u] = \text{false}.
\]
3: For each node u,
Depth first search.

Process whole graph.

DFS(G)
1: For each node u,
2: visited[u] = false.
3: For each node u,
4: if not visited[u] explore(u)

RUNNING TIME:
$O(|V| + |E|)$.

Intuitively: tree for each “connected component”.

Several trees or Forest!
Output connected components?
Depth first search.

Process whole graph.

DFS(G)
1: For each node \(u \),
2: \(\text{visited}[u] = \text{false} \).
3: For each node \(u \),
4: if not visited\([u]\) **explore**(\(u\))

Running time: \(O(|V| + |E|) \).
Depth first search.

Process whole graph.

\textbf{DFS(G)}
\begin{align*}
1: & \text{ For each node } u, \\
2: & \quad \text{visited}[u] = \text{false}. \\
3: & \text{ For each node } u, \\
4: & \quad \text{if not visited}[u] \text{ explore}(u)
\end{align*}

Running time: $O(|V| + |E|)$.

Intuitively: tree for each “connected component”.
Depth first search.

Process whole graph.

DFS(G)
1: For each node \(u \),
2: \(\text{visited}[u] = \text{false} \).
3: For each node \(u \),
4: if not visited\([u]\) **explore**\((u) \)

Running time: \(O(|V| + |E|) \).

Intuitively: tree for each “connected component”.
Several trees
Depth first search.

Process whole graph.

DFS(G)
1: For each node \(u \),
2: \(\text{visited}[u] = \text{false} \).
3: For each node \(u \),
4: if not visited\([u]\) \text{explore}(u)

Running time: \(O(|V| + |E|) \).

Intuitively: tree for each “connected component”.
Several trees or Forest!
Process whole graph.

DFS(G)
1: For each node u,
2: visited[u] = **false**.
3: For each node u,
4: if not visited[u] **explore**(u)

Running time: $O(|V| + |E|)$.

Intuitively: tree for each “connected component”.
Several trees or Forest! Output connected components?
DFS and connected components.

DFS(G):
0. Set ccnum := 0.
1. for each v in V:
 2. if not visited[v]:
 3. explore(v)
 4. ccnum = ccnum+1

Each node will be labelled with connected component number.

Runtime: $O(|V| + |E|)$.
DFS and connected components.

Change explore a bit:

```python
def explore(v):
    2. previsit(v).
    3. For each edge (v,w) in E:
        4. if not visited[w]: explore(w).
    5. postvisit(v).

def previsit(v):

def DFS(G):
    0. Set ccnum := 0.
    1. for each v in V:
        2. if not visited[v]:
            3. explore(v)
            4. ccnum = ccnum+1

Each node will be labelled with connected component number.
Runtime: $O(|V| + |E|)$.
DFS and connected components.

Change explore a bit:

\textbf{explore}(v):
\begin{itemize}
  \item 1. Set visited[v] := \textbf{true}.
  \item 2. \textbf{previsit}(v)
  \item 3. For each edge (v,w) in E
  \item 4. if not visited[w]: explore(w).
  \item 5. \textbf{postvisit}(v)
\end{itemize}
DFS and connected components.

Change explore a bit:

explore(v):
2. previsit(v)
3. For each edge (v,w) in E
4. if not visited[w]: explore(w).
5. postvisit(v)

previsit(v):
DFS and connected components.

Change explore a bit:

**explore(v):**
2. previsit(v)
3. For each edge (v,w) in E
4. if not visited[w]: explore(w).
5. postvisit(v)

**previsit(v):**

**DFS(G):**
0. Set ccnum := 0.
1. for each v in V:
2. if not visited[v]:
3. explore(v)
4. ccnum = ccnum+1
DFS and connected components.

Change explore a bit:

explore(v):
2. previsit(v)
3. For each edge (v,w) in E
4. if not visited[w]: explore(w).
5. postvisit(v)

previsit(v):

DFS(G):
0. Set ccnum := 0.
1. for each v in V:
2. if not visited[v]:
3. explore(v)
4. ccnum = ccnum+1

Each node will be labelled with connected component number.
DFS and connected components.

Change explore a bit:

**explore(v):**
2. previsit(v)
3. For each edge (v,w) in E
4. if not visited[w]: explore(w).
5. postvisit(v)

**previsit(v):**

**DFS(G):**
0. Set ccnum := 0.
1. for each v in V:
2. if not visited[v]:
3. explore(v)
4. ccnum = ccnum+1

Each node will be labelled with connected component number.

Runtime: $O(|V| + |E|)$. 
Connected Components.
Introspection: pre/post.

previsit(v):
2. clock := clock+1

postvisit(v):
2. clock := clock+1

DFS(G):
0. Set clock := 0.
...

Clock: goes up to 2 times number of vertices.

First pre: 0

Property: For any two nodes, u and v, [pre(u), post(u)] and [pre(v), post(v)] are either disjoint or one is contained in the other.

Interval is "clock interval on stack." Either both on stack at some point (contained) or not (disjoint.)

Let's just watch it work!
Introspection: pre/post.

previsit(v):
2. clock := clock+1

postvisit(v):
2. clock := clock+1

DFS(G):
0. Set clock := 0.
...

Clock: goes up to 2 times number of vertices.

First pre:

Property:
For any two nodes, u and v, [pre(u), post(u)] and [pre(v), post(v)] are either disjoint or one is contained in other.

Interval is "clock interval on stack."
Either both on stack at some point (contained) or not (disjoint.)

Let's just watch it work!
Introspection: pre/post.

**previsit(v):**
2. clock := clock+1
Introspection: pre/post.

**previsit(v):**
2. clock := clock+1

**postvisit(v):**
2. clock := clock+1

**DFS(G):**
0. Set clock := 0.
   :
   :

Clock: goes up to 2 times number of vertices.
First pre:

Property:
For any two nodes, u and v, [pre(u), post(u)] and [pre(v), post(v)] are either disjoint or one is contained in other. Interval is “clock interval on stack.” Either both on stack at some point (contained) or not (disjoint.) Let’s just watch it work!
Introspection: pre/post.

**previsit(v):**
2. clock := clock+1

**postvisit(v):**
2. clock := clock+1

**DFS(G):**
0. Set clock := 0.

Clock: goes up to
Introspection: pre/post.

previsit(v):
2. clock := clock+1

postvisit(v):
2. clock := clock+1

DFS(G):
0. Set clock := 0.

Clock: goes up to 2 times number of vertices.
Introspection: pre/post.

previsit(v):
  1. Set $\text{pre}[v] := \text{clock}$.
  2. $\text{clock} := \text{clock} + 1$

postvisit(v):
  1. Set $\text{post}[v] := \text{clock}$.
  2. $\text{clock} := \text{clock} + 1$

DFS(G):
  0. Set $\text{clock} := 0$.

Clock: goes up to 2 times number of vertices.
First pre:
Introspection: pre/post.

previsit(v):
2. clock := clock+1

postvisit(v):
2. clock := clock+1

DFS(G):
0. Set clock := 0.
   :

Clock: goes up to 2 times number of vertices.
First pre: 0
Introspection: pre/post.

previsit(v):
  2. clock := clock+1

postvisit(v):
  2. clock := clock+1

DFS(G):
  0. Set clock := 0.

Clock: goes up to 2 times number of vertices.
First pre: 0
Introspection: pre/post.

previsit(v):
  2. clock := clock+1

postvisit(v):
  2. clock := clock+1

DFS(G):
  0. Set clock := 0.

Clock: goes up to 2 times number of vertices.
First pre: 0

Property:
For any two nodes, u and v, [pre(u), post(u)] and [pre(v), post(v)]
are either disjoint or one is contained in other.
Introspection: pre/post.

**previsit(v):**
2. clock := clock+1

**postvisit(v):**
2. clock := clock+1

**DFS(G):**
0. Set clock := 0.

Clock: goes up to 2 times number of vertices.
First pre: 0

**Property:**
For any two nodes, $u$ and $v$, $[pre(u), post(u)]$ and $[pre(v), post(v)]$ are either disjoint or one is contained in other.

Interval is “clock interval on stack.”
Introspection: pre/post.

previsit(v):
2. clock := clock+1

postvisit(v):
2. clock := clock+1

DFS(G):
0. Set clock := 0.

Clock: goes up to 2 times number of vertices.
First pre: 0

Property:
For any two nodes, u and v, \([pre(u), post(u)]\) and \([pre(v), post(v)]\)
are either disjoint or one is contained in other.

Interval is “clock interval on stack.”

Either both on stack at some point (contained) or not (disjoint.)
Introspection: pre/post.

previsit(v):
2. clock := clock+1

postvisit(v):
2. clock := clock+1

DFS(G):
0. Set clock := 0.

Clock: goes up to 2 times number of vertices.
First pre: 0

Property:
For any two nodes, \( u \) and \( v \), \([\text{pre}(u), \text{post}(u)]\) and \([\text{pre}(v), \text{post}(v)]\) are either disjoint or one is contained in other.

Interval is “clock interval on stack.”

Either both on stack at some point (contained) or not (disjoint.)

Let’s just watch it work!
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}[v], \text{post}[v]] \subseteq [\text{pre}[u], \text{post}[u]]\).

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff \([\text{pre}[u], \text{post}[u]] \subseteq [\text{pre}[v], \text{post}[v]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\) \text{ is Cycle!}

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}\[v\], \text{post}\[v\]] \subset [\text{pre}\[u\], \text{post}\[u\]]\).

Edge \((u, v)\) is back edge iff \([\text{pre}\[u\], \text{post}\[u\]] \subset [\text{pre}\[v\], \text{post}\[v\]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\)！Cycle！No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is a tree edge iff \([\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]\).

\(v\) on stack before \(u\) on stack.

Edge \((u, v)\) is a back edge iff \([\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]\).

\(u\) on stack before \(v\) on stack. Path from \(v\) to \(u\) is a cycle.

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge $(u, v)$ is tree edge iff $[\text{pre}(v), \text{post}(v)] \subset [\text{pre}(u), \text{post}(u)]$.

$v$ on stack before $u$ on stack. Path from $v$ to $u$! Cycle! No edge between $u$ and $v$ if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]\).

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff \([\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\) is Cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]\).

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff \([\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\) is a cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}\[v], \text{post}\[v]\] \subset [\text{pre}\[u], \text{post}\[u]\])

u on stack before v.

Edge \((u, v)\) is back edge iff \([\text{pre}\[u], \text{post}\[u]\] \subset [\text{pre}\[v], \text{post}\[v]\])

v on stack before u on stack. Path from v to u! Cycle! No edge between u and v if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff 
\[
[\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]].
\]

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff 
\[
[\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]].
\]

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\) is Cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge $(u, v)$ is a tree edge iff $[\text{pre}\[v], \text{post}\[v]] \subset [\text{pre}\[u], \text{post}\[u]]$.

Edge $(u, v)$ is a back edge iff $[\text{pre}\[u], \text{post}\[u]] \subset [\text{pre}\[v], \text{post}\[v]]$.

$v$ on stack before $u$ on stack. Path from $v$ to $u$! Cycle! No edge between $u$ and $v$ if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]\).

Edge \((u, v)\) is back edge iff \([\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\) is a cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge $(u, v)$ is a tree edge iff $[\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]$.

$u$ on stack before $v$.

Edge $(u, v)$ is a back edge iff $[\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]$.

$v$ on stack before $u$ on stack. Path from $v$ to $u$! Cycle!

No edge between $u$ and $v$ if disjoint intervals.
Example: Pre/Post numbering.

Edge $(u, v)$ is tree edge iff $[\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]$. $u$ on stack before $v$.

Edge $(u, v)$ is back edge iff $[\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]$. $v$ on stack before $u$ on stack. Path from $v$ to $u$! Cycle!

No edge between $u$ and $v$ if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]\).

Edge \((u, v)\) is back edge iff \([\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]\).

\(u\) on stack before \(v\) on stack. Path from \(v\) to \(u\) is a cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge $(u, v)$ is tree edge iff $[\text{pre}(v), \text{post}(v)] \subset [\text{pre}(u), \text{post}(u)]$.

$u$ on stack before $v$.

Edge $(u, v)$ is back edge iff $[\text{pre}(u), \text{post}(u)] \subset [\text{pre}(v), \text{post}(v)]$.

$v$ on stack before $u$ on stack. Path from $v$ to $u$! Cycle! No edge between $u$ and $v$ if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]\).

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff \([\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\)! Cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}(v), \text{post}(v)] \subseteq [\text{pre}(u), \text{post}(u)]\).

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff \([\text{pre}(u), \text{post}(u)] \subseteq [\text{pre}(v), \text{post}(v)]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\)! Cycle! No edge between \(u\) and \(v\) if disjoint intervals.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([pre[v], post[v]] \subset [pre[u], post[u]]\). u on stack before v.
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([\text{pre}[v], \text{post}[v]] \subset [\text{pre}[u], \text{post}[u]]\).

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff \([\text{pre}[u], \text{post}[u]] \subset [\text{pre}[v], \text{post}[v]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\)! Cycle!
Example: Pre/Post numbering.

Edge \((u, v)\) is tree edge iff \([pre[v], post[v]] \subset [pre[u], post[u]]\).

\(u\) on stack before \(v\).

Edge \((u, v)\) is back edge iff \([pre[u], post[u]] \subset [pre[v], post[v]]\).

\(v\) on stack before \(u\) on stack. Path from \(v\) to \(u\)! Cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Directed graphs.

\[ G = (V, E) \]
Directed graphs.

\[ G = (V, E) \]
vertices \( V \).
Directed graphs.

\[ G = (V, E) \]

- vertices \( V \).
- edges \( E \subseteq V \times V \).
Directed graphs.

\[ G = (V, E) \]

vertices \( V \).

edges \( E \subseteq V \times V \).

Edge: \((u, v)\)
Directed graphs.

\[ G = (V, E) \]

- vertices \( V \).
- edges \( E \subseteq V \times V \).

Edge: \((u, v)\)
- From \( u \) to \( v \).
Directed graphs.

\[ G = (V, E) \]

vertices \( V \).

edges \( E \subseteq V \times V \).

Edge: \((u, v)\)

From \( u \) to \( v \).

Tail – \( u \)
Directed graphs.

\[ G = (V, E) \]
- vertices \( V \).
- edges \( E \subseteq V \times V \).

Edge: \((u, v)\)
- From \( u \) to \( v \).
  - Tail – \( u \)
  - Head – \( v \)
Directed graphs.

\[ G = (V, E) \]
vertices \( V \).
edges \( E \subseteq V \times V \).

Edge: \((u, v)\)
From \(u\) to \(v\).

\( \text{Tail} – u \)
\( \text{Head} – v \)
Depth first search: directed.

Tree/forward edge $(u, v)$: $\text{int}(v) \subset \text{int}(u)$.

Forward $(A, F)$: $[10, 11]$ in $[0, 13]$ or $[0, [10, 11], 13]$

Back edge $(u, v)$: $\text{int}(u) \subset \text{int}(v)$.

$(C, B)$: $[3, 4]$ in $[1, 8]$ or $[1, [3, 4], 8]$

Cross edge $(u, v)$: $\text{int}(v) < \text{int}(u)$.

$(F, D)$: $[2, 5]$ before $[10, 11]$
Depth first search: directed.

Tree/forward edge \((u, v)\):
\[\text{int}(v) \subset \text{int}(u)\].

Forward \((A, F)\): \([10,11]\) in \([0,13]\) or \([0, [10,11], 13]\).

Back edge \((u, v)\):
\[\text{int}(u) \subset \text{int}(v)\].

Back edge \((C, B)\): \([3,4]\) in \([1,8]\) or \([1, [3, 4], 8]\).

Cross edge \((u, v)\):
\[\text{int}(v) < \text{int}(u)\].

Cross edge \((F, D)\): \([2,5]\) before \([10,11]\).
Depth first search: directed.

**Forward edge** 
\((u, v)\): \(\text{int}(v) \subseteq \text{int}(u)\).

**Back edge** 
\((u, v)\): \(\text{int}(u) \subseteq \text{int}(v)\).

**Cross edge** 
\((u, v)\): \(\text{int}(v) < \text{int}(u)\).
Depth first search: directed.

Tree/forward edge \((u, v)\): \(\text{int}(v) \subset \text{int}(u)\).

Forward \((A, F)\): \([10, 11]\) in \([0, 13]\) or \([0, [10, 11], 13]\)

Back edge \((u, v)\): \(\text{int}(u) \subset \text{int}(v)\).

\((C, B)\): \([3, 4]\) in \([1, 8]\) or \([1, [3, 4], 8]\)

Cross edge \((u, v)\): \(\text{int}(v) < \text{int}(u)\).

\((F, D)\): \([2, 5]\) before \([10, 11]\)
Depth first search: directed.

Tree/forward edge $(u, v)$: $\text{int}(v) \subset \text{int}(u)$.

Forward $(A, F)$: $[10, 11]$ in $[0, 13]$ or $[0, [10, 11], 13]$.

Back edge $(u, v)$: $\text{int}(u) \subset \text{int}(v)$.

$(C, B)$: $[3, 4]$ in $[1, 8]$ or $[1, [3, 4], 8]$.

Cross edge $(u, v)$: $\text{int}(v) < \text{int}(u)$.

Depth first search: directed.

Tree/forward edge $(u, v)$: $\text{int}(v) \subseteq \text{int}(u)$.

Forward $(A, F)$: $[10, 11]$ in $[0, 13]$ or $[0, [10, 11], 13]$

Back edge $(u, v)$: $\text{int}(u) \subseteq \text{int}(v)$.

$(C, B)$: $[3, 4]$ in $[1, 8]$ or $[1, [3, 4], 8]$

Cross edge $(u, v)$: $\text{int}(v) < \text{int}(u)$.

$(F, D)$: $[2, 5]$ before $[10, 11]$
Depth first search: directed.

Tree/forward edge \((u, v)\): 
\[ \text{int}(v) \subset \text{int}(u). \]

Forward \((A, F)\): \([10, 11]\) in \([0, 13]\) or \([0, [10, 11], 13]\)

Back edge \((u, v)\): 
\[ \text{int}(u) \subset \text{int}(v). \]

\((C, B)\): \([3, 4]\) in \([1, 8]\) or \([1, [3, 4], 8]\)

Cross edge \((u, v)\): 
\[ \text{int}(v) < \text{int}(u). \]

\((F, D)\): \([2, 5]\) before \([10, 11]\)
Depth first search: directed.

**Tree/forward edge** \((u, v)\):
- int \((v)\) ⊂ int \((u)\).
- inv \((v)\) = \([pre(v), post(v)]\).

**Forward** \((A, F)\): \([10, 11]\) in \([0, 13]\) or \([0, [10, 11], 13]\).

**Back edge** \((u, v)\):
- int \((u)\) ⊂ int \((v)\).

**Cross edge** \((u, v)\):
- int \((v)\) < int \((u)\).

**Example:**
- \((C, B)\): \([3, 4]\) in \([1, 8]\) or \([1, [3, 4], 8]\).
Depth first search: directed.
 Depth first search: directed.

Tree/forward edge \((u, v)\) :
\[
\text{int}(v) \subset \text{int}(u).
\]

Forward \((A, F)\) : \([10,11]\) in \([0,13]\) or \([0, [10,11], 13]\)

Back edge \((u, v)\) :
\[
\text{int}(u) \subset \text{int}(v).
\]

\((C, B)\) : \([3,4]\) in \([1,8]\) or \([1, [3, 4], 8]\)

Cross edge \((u, v)\) :
\[
\text{int}(v) < \text{int}(u).
\]

\((F, D)\) : \([2,5]\) before \([10,11]\)
Depth first search: directed.

Tree/forward edge \((u,v)\):
\[ \text{int}(v) \subset \text{int}(u) \].

Forward \((A,F)\): \([10,11]\) in \([0,13]\) or \([0, [10,11], 13]\).

Back edge \((u,v)\):
\[ \text{int}(u) \subset \text{int}(v) \].

Back \((C,B)\): \([3,4]\) in \([1,8]\) or \([1, [3, 4], 8]\).

Cross edge \((u,v)\):
\[ \text{int}(v) < \text{int}(u) \].

Cross \((F,D)\): \([2,5]\) before \([10,11]\).
Depth first search: directed.

**Tree/forward edge** $(u, v)$: $\text{int}(v) \subset \text{int}(u)$.

**Forward** $(A, F)$: $[10, 11]$ in $[0, 13]$ or $[0, [10, 11], 13]$.

**Back edge** $(u, v)$: $\text{int}(u) \subset \text{int}(v)$.

**Cross edge** $(u, v)$: $\text{int}(v) < \text{int}(u)$.

**Example Edges**:
- $(C, B)$: $[3, 4]$ in $[1, 8]$ or $[1, [3, 4], 8]$.
Depth first search: directed.

Tree/forward edge \((u, v)\):
\[\text{int}(v) \subset \text{int}(u)\]

Forward \(\text{F,A} \): \([10,11]\) in \([0,13]\) or \([0, [10,11], 13]\)

Back edge \((u, v)\):
\[\text{int}(u) \subset \text{int}(v)\]

\(\text{C,B} \): \([3,4]\) in \([1,8]\) or \([1, [3, 4], 8]\)

Cross edge \((u, v)\):
\[\text{int}(v) < \text{int}(u)\]

\(\text{F,D} \): \([2,5]\) before \([10,11]\)
Depth first search: directed.

Tree/forward edge \((u, v)\): \(\text{int}(v) \subset \text{int}(u)\)\

Forward \((A, F)\): \([10, 11]\) in \([0, 13]\) or \([0, [10, 11], 13]\)

Back edge \((u, v)\): \(\text{int}(u) \subset \text{int}(v)\)\

\((C, B)\): \([3, 4]\) in \([1, 8]\) or \([1, [3, 4], 8]\)

Cross edge \((u, v)\): \(\text{int}(v) < \text{int}(u)\)\

\((F, D)\): \([2, 5]\) before \([10, 11]\)
Depth first search: directed.

Tree/forward edge \((u, v)\): \(\text{int}(v) \subset \text{int}(u)\).

Forward \((A, F)\): \([10, 11]\) in \([0, 13]\) or \([0, [10, 11], 13]\).

Back edge \((u, v)\): \(\text{int}(u) \subset \text{int}(v)\).

\((C, B)\): \([3, 4]\) in \([1, 8]\) or \([1, [3, 4], 8]\).

Cross edge \((u, v)\): \(\text{int}(v) < \text{int}(u)\).

\((F, D)\): \([2, 5]\) before \([10, 11]\).
Depth first search: directed.

Tree/forward edge \((u, v)\):
\[\text{int}(v) \subset \text{int}(u)\]

Forward \((A, F)\): \([10,11]\) in \([0,13]\) or \([0,[10,11],13]\)

Back edge \((u, v)\):
\[\text{int}(u) \subset \text{int}(v)\]

\((C, B)\): \([3,4]\) in \([1,8]\) or \([1, [3, 4], 8]\)

Cross edge \((u, v)\):
\[\text{int}(v) < \text{int}(u)\]

\((F, D)\): \([2,5]\) before \([10,11]\)
Depth first search: directed.

Tree/forward edge \((u, v)\): \(\int(v) \subset \int(u)\).

Forward \((A, F)\): 
\([10, 11]\) in \([0, 13]\) or \([0, [10, 11], 13]\).

Back edge \((u, v)\): \(\int(u) \subset \int(v)\).

\((C, B)\): 
\([3, 4]\) in \([1, 8]\) or \([1, [3, 4], 8]\).

Cross edge \((u, v)\): \(\int(v) < \int(u)\).

\((F, D)\): \([2, 5]\) before \([10, 11]\).
Depth first search: directed.

- **Tree/forward edge** $\langle u, v \rangle$: $\text{int}(v) \subset \text{int}(u)$.
- **Forward** $\langle A, F \rangle$: $[10,11]$ in $[0,13]$ or $[0, [10,11], 13]$.
- **Back edge** $\langle u, v \rangle$: $\text{int}(u) \subset \text{int}(v)$.
- **Cross edge** $\langle u, v \rangle$: $\text{int}(v) < \text{int}(u)$.
- **Back edge** $\langle C, B \rangle$: $[3,4]$ in $[1,8]$ or $[1, [3, 4], 8]$. 
- **Cross edge** $\langle F, D \rangle$: $[2,5]$ before $[10,11]$. 

The diagram illustrates the relationships between nodes with labeled edges and numbers. The numbers represent the order in which nodes are visited during the search.
Depth first search: directed.

Tree/forward edge $(u, v)$: $int(v) \subset int(u)$. $inv(v) = [pre(v), post(v)]$
Depth first search: directed.

Tree/forward edge $(u, v)$: $\text{int}(v) \subset \text{int}(u)$. $\text{inv}(v) = [\text{pre}(v), \text{post}(v)]$

Forward $(A, F)$: $[10,11]$ in $[0,13]$ or $[0,[10,11],13]$
Depth first search: directed.

Tree/forward edge \((u, v)\): \(\text{int}(v) \subset \text{int}(u)\). \(\text{inv}(v) = [\text{pre}(v), \text{post}(v)]\)

Forward \((A, F)\): \([10,11]\) in \([0,13]\) or \([0, [10,11], 13] \)

Back edge \((u, v)\): \(\text{int}(u) \subset \text{int}(v)\).
Depth first search: directed.

Tree/forward edge \((u, v)\): \(\text{int}(v) \subset \text{int}(u)\). \(\text{inv}(v) = [\text{pre}(v), \text{post}(v)]\)

Forward \((A, F)\): \([10, 11]\) in \([0, 13]\) or \([0, [10, 11], 13]\)

Back edge \((u, v)\): \(\text{int}(u) \subset \text{int}(v)\).

\((C, B)\): \([3, 4]\) in \([1, 8]\) or \([1, [3, 4], 8]\)
Depth first search: directed.

Tree/forward edge \((u, v)\): \(int(v) \subset int(u)\). \(inv(v) = [pre(v), post(v)]\)

Forward \((A, F)\): \([10,11]\) in \([0,13]\) or \([0,[10,11],13]\)

Back edge \((u, v)\): \(int(u) \subset int(v)\).
\((C, B)\): \([3,4]\) in \([1,8]\) or \([1, [3, 4], 8]\)

Cross edge \((u, v)\): \(int(v) < int(u)\).
Tree/forward edge \((u, v)\): \(\text{int}(v) \subset \text{int}(u)\). \(\text{inv}(v) = [\text{pre}(v), \text{post}(v)]\)
Forward \((A, F)\): [10,11] in [0,13] or [0,[10,11],13]

Back edge \((u, v)\): \(\text{int}(u) \subset \text{int}(v)\).
\((C, B)\): [3,4] in [1,8] or [1, [3, 4], 8]

Cross edge \((u, v)\): \(\text{int}(v) \prec \text{int}(u)\).
\((F, D)\): [2,5] before [10,11]
Cycle in a directed graph?

Fast algorithm for finding out whether directed graph has cycle?
Cycle in a directed graph?

Fast algorithm for finding out whether directed graph has cycle?
For each edge \((u, v)\) remove, check if \(v\) is connected to \(u\)

\[O(|E| + |V|)\] Linear Time (i.e. \(O(|V| + |E|)\))
Cycle in a directed graph?

Fast algorithm for finding out whether directed graph has cycle?
For each edge \((u, v)\) remove, check if \(v\) is connected to \(u\):
\[
O(|E|(|E| + |V|)).
\]
Fast algorithm for finding out whether directed graph has cycle?

For each edge \((u, v)\) remove, check if \(v\) is connected to \(u\)

\[O(|E|(|E| + |V|)).\]

Linear Time (i.e. \(O(|V| + |E|)\))?
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
Thm: A graph has a cycle if and only if there is a back edge in any DFS.

Proof:
We just saw: Back edge $\implies$ cycle!
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge $\implies$ cycle!

In the other direction: Assume there is a cycle
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge \( \Rightarrow \) cycle!
In the other direction: Assume there is a cycle
\( v_0 \rightarrow v_1 \)
Thm: A graph has a cycle if and only if there is a back edge in any DFS.

Proof:
We just saw: Back edge $\implies$ cycle!

In the other direction: Assume there is a cycle

$v_0 \rightarrow v_1 \rightarrow v_2$
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge $\implies$ cycle!
In the other direction: Assume there is a cycle

$v_0 \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow v_0$
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge $\implies$ cycle!

In the other direction: Assume there is a cycle

$v_0 \to v_1 \to v_2 \cdots \to v_k \to v_0$

Assume that $v_0$ is the first node explored in the cycle

(without loss of generality since can renumber vertices.)
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge $\implies$ cycle!

In the other direction: Assume there is a cycle

$v_0 \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow v_0$

Assume that $v_0$ is the first node explored in the cycle 
(without loss of generality since can renumber vertices.)

When $\text{explore}(v_0)$ returns all nodes on cycle explored.
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge $\implies$ cycle!

In the other direction: Assume there is a cycle

$v_0 \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow v_0$

Assume that $v_0$ is the first node explored in the cycle

(without loss of generality since can renumber vertices.)

When $\text{explore}(v_0)$ returns all nodes on cycle explored.

All $\text{int}[v_i]$ in $\text{int}[v_0]$!
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge $\implies$ cycle!

In the other direction: Assume there is a cycle

$v_0 \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow v_0$

Assume that $v_0$ is the first node explored in the cycle
(without loss of generality since can renumber vertices.)

When \texttt{explore}(v_0) returns all nodes on cycle explored.

All int[$v_i$] in int[$v_0$]!

$\implies (v_k, v_0)$ is a back edge.
Testing for cycle.

**Thm:** A graph has a cycle if and only if there is a back edge in any DFS.

**Proof:**
We just saw: Back edge $\implies$ cycle!

In the other direction: Assume there is a cycle

$v_0 \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow v_0$

Assume that $v_0$ is the first node explored in the cycle

(without loss of generality since can renumber vertices.)

When **explore**$(v_0)$ returns all nodes on cycle explored.

All $int[v_i]$ in $int[v_0]$!

$\implies (v_k, v_0)$ is a back edge.

Cycle $\implies$ back edge!
Fast checking algorithm.

**Thm:** A graph has a cycle if and only if there is a back edge.
Fast checking algorithm.

**Thm:** A graph has a cycle if and only if there is back edge. Algorithm ??
Thm: A graph has a cycle if and only if there is back edge.
Algorithm ??
Fast checking algorithm.

**Thm:** A graph has a cycle if and only if there is back edge.

Algorithm ??

Run DFS.
Fast checking algorithm.

**Thm:** A graph has a cycle if and only if there is back edge.

Algorithm ??

Run DFS.

\[ O(|V| + |E|) \] time.
**Thm:** A graph has a cycle if and only if there is back edge.

**Algorithm??**

Run DFS.

\[ O(|V| + |E|) \] time.

For each edge \((u, v)\): is \( \text{int}(u) \) in \( \text{int}(v) \)?
Thm: A graph has a cycle if and only if there is a back edge.

Algorithm ??

Run DFS.

\[ O(|V| + |E|) \] time.

For each edge \((u, v)\): is \(\text{int}(u)\) in \(\text{int}(v)\)?

\[ O(|E|) \] time.
Fast checking algorithm.

**Thm:** A graph has a cycle if and only if there is back edge.
Algorithm ??

Run DFS.

\[ O(|V| + |E|) \] time.

For each edge \((u, v)\): is \(\text{int}(u)\) in \(\text{int}(v)\)?

\[ O(|E|) \] time.

\[ O(|V| + |E|) \] time algorithm for checking if graph is acyclic!
Directed Acyclic Graph

Hello

↓

Goodbye

“Hello” before “Goodbye”
Directed Acyclic Graph

Hello

▼

Goodbye

“Hello” before “Goodbye

No cycles!
Directed Acyclic Graph

Hello

▼

Goodbye

“Hello” before “Goodbye"

No cycles! Can tell in linear time!
Directed Acyclic Graph

Hello

▼

Goodbye

“Hello” before “Goodbye”

No cycles! Can tell in linear time!
Really want to find ordering for build!
Linearize.

**Topological Sort:** For $G = (V, E)$, find ordering of all vertices where each edge goes from earlier vertex to later in acyclic graph.
Linearize.

**Topological Sort:** For $G = (V, E)$, find ordering of all vertices where each edge goes from earlier vertex to later in acyclic graph.
**Linearize.**

**Topological Sort:** For $G = (V, E)$, find ordering of all vertices where each edge goes from earlier vertex to later in acyclic graph.
Topological Sort Example.

A linear order: A, E, F, B, G, D, C

In DFS: When is A popped off stack? Last!
When is E popped off? Second to last.
...
Topological Sort Example.

A linear order:
Topological Sort Example.

A linear order:

\[ A, E, F, B, G, D, C \]
Topological Sort Example.

A linear order:

\[ A, E, F, B, G, D, C \]

In DFS: When is A popped off stack?
A linear order:

\[ A, E, F, B, G, D, C \]

In DFS: When is \( A \) popped off stack?

Last!
Topological Sort Example.

A linear order: 
\[ A, E, F, B, G, D, C \]

In DFS: When is \( A \) popped off stack?

Last! When is \( E \) popped off?
Topological Sort Example.

A linear order:

\[ A, E, F, B, G, D, C \]

In DFS: When is A popped off stack?
Last! When is E popped off? second to last.
Topological Sort Example.

A linear order:

\[ A, E, F, B, G, D, C \]

In DFS: When is A popped off stack?

Last! When is E popped off? second to last. ...
Topological Sort: DFS

Last post order should...

(A) be first in linearization!
(B) be last in linearization!
Topological Sort: DFS

Last post order should..

(A) be first in linearization!

(B) be last in linearization!

(A). First!
Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

**Property:** Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).
Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

**Property**: Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).

**Proof**: No back edges in DAG.
Topological Sort: DFS

Last post order should.. 
(A) be first in linearization! 
(B) be last in linearization! 

(A). First! 

**Property:** Every edge in a DAG \((u, v)\) has \(\text{post}(u) > \text{post}(v)\). 

**Proof:** No back edges in DAG. 
Tree and Forward edge \((u, v)\): 
int\((u)\) contains int\((v)\): \(\text{pre}(u), \text{pre}[v], \text{post}[v], \text{post}[u]\)
Topological Sort: DFS

Last post order should..

(A) be first in linearization!

(B) be last in linearization!

(A). First!

**Property:** Every edge in a DAG \((u, v)\) has \(\text{post}(u) > \text{post}(v)\).

**Proof:** No back edges in DAG.
Tree and Forward edge \((u, v)\):
- \(\text{int}(u)\) contains \(\text{int}(v)\): \(\text{pre}(u), \text{pre}[v], \text{post}[v], \text{post}[u]\)

Cross edge \((u, v)\): \(\text{int}(u) > \text{int}(v)\)
Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

**Property:** Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).

**Proof:** No back edges in DAG.
Tree and Forward edge \((u, v)\):
- \(int(u)\) contains \(int(v)\): \(pre(u), pre[v], post[v], post[u]\)

Cross edge \((u, v)\): \(int(u) > int(v) \implies post[u] > post[v] \)
Topological Sort: linearize.

**Property:** Every edge in a DAG \((u, v)\) has \(\text{post}(u) > \text{post}(v)\).
Topological Sort: linearize.

**Property:** Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).

Top Sort: output in reverse post order number.
Property: Every edge in a DAG \((u, v)\) has \(\text{post}(u) > \text{post}(v)\).

Top Sort: output in reverse post order number.
Runtime: \(O(|V| + |E|)\).
**Property:** Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).

Top Sort: output in reverse post order number.
Runtime: \(O(|V| + |E|)\).
Topological Sort: linearize.

**Property:** Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).

Top Sort: output in reverse post order number.
Runtime: \(O(|V| + |E|)\).

..procedure **postvisit** outputs during DFS
Topological Sort: linearize.

**Property:** Every edge in a DAG \((u, v)\) has \(\text{post}(u) > \text{post}(v)\).

Top Sort: output in reverse post order number.

Runtime: \(O(|V| + |E|)\).

..procedure **postvisit** outputs during DFS
   
   ```python
 def postvisit(u):
 result.append(u).
   ```
Property: Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).

Top Sort: output in reverse post order number.
Runtime: \(O(|V| + |E|)\).

..procedure **postvisit** outputs during DFS
   def postvisit(u): result.append(u).
   ..reverse
**Property:** Every edge in a DAG \((u, v)\) has \(\text{post}(u) > \text{post}(v)\).

Top Sort: output in reverse post order number.

Runtime: \(O(|V| + |E|)\).

..procedure **postvisit** outputs during DFS

```python
def postvisit(u):
 result.append(u).
```

..reverse **result**.