
CS170 - Lecture 6
Sanjam Garg
UC Berkeley



Today

1. Graphs
2. Depth First Search
3. Reachability
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Directed acyclic graphs.
Heritage of Unix.

From http://www.graphviz.org/content/crazy.



Graph G = (V ,E).
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Matrix Representation.
0 1 1 0 0 1
1 0 1 1 1 1
1 1 0 1 0 1
0 1 1 0 1 0
0 1 0 1 0 1
1 1 1 0 1 0



0 : 1,2,5
1 : 0,2,3,4,5
2 : 0,1,3,5
3 : 1,2,4
4 : 1,3,5
5 : 0,1,2,4

Adjacency List

Matrix Adj. List
Edge (u,v)? O(1) O(d)

Neighbors of u O(|V |) O(d)
Space O(|V |2) O(|E |)
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Test your understanding..

0 1 2

Adjacency list of node 0?

(A) 0 : 1
(B) 0 : 1,2
(C) 0 : 2
(C)
How many edges?
(A) 2
Total length of adacency lists?
(A) 2
(B) 3
(C) 4
(C) 2 entries for each edge!
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Exploring a maze.

Theseus: Wants to find the minatour in the maze.

Theseus has access to a Ball of Thread and a Chalk!

Explore a room: Mark room with chalk.
For each exit.

Look through exit. If marked, next exit.
Otherwise go in room unwind thread.

Explore that room.
Wind thread to go back to “previous” room.
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Reachability problem in a Graph.

Problem: Find out which nodes are reachable from A.
Need digital analogues of the chalk and ball of thread.
We will use array (visited) for chalk and stack for thread.
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Explore(v):
1. Set visited[v] := true
2. for each edge (v,w) in E
3. if not visited[w]: Explore(w).

Chalk.
Stack is Thread.

A

F

C

DD

C

GG

F

B

EE

BA

Explore builds tree.

Tree and back edges.
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Only: when u visited.
stack contains nodes in a path from a to u.

All: if a node u is reachable.
there is a path to it. Assume: u not found.
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z is explored. w is not!
Explore (z) would explore(w), or it was already explored!
Contradiction.
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2. For each edge (v,w) in E
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How to analyse?

Let n = |V |, and m = |E |.
T (n,m)≤ (d)T (n−1,m)+O(d) Exponential
?!?!?!

Don’t use recurrence!
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DFS and connected components.

Change explore a bit:

explore(v):
1. Set visited[v] := true.
2. previsit(v)
3. For each edge (v,w) in E
4. if not visited[w]: explore(w).
5. postvisit(v)

previsit(v):
1. Set cc[v] := ccnum.

DFS(G):
0. Set ccnum := 0.
1. for each v in V:
2. if not visited[v]:
3. explore(v)
4. ccnum = ccnum+1

Each node will be labelled with connected component number.
Runtime: O(|V |+ |E |).
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Introspection: pre/post.

previsit(v):
1. Set pre[v] := clock.
2. clock := clock+1

postvisit(v):
1. Set post[v] := clock.
2. clock := clock+1

DFS(G):
0. Set clock := 0.

...

Clock: goes up to 2 times number of vertices.
First pre: 0

Property:
For any two nodes, u and v , [pre(u),post(u)] and [pre(v),post(v)]
are either disjoint or one is contained in other.

Interval is “clock interval on stack.”

Either both on stack at some point (contained) or not (disjoint.)

Let’s just watch it work!
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Example: Pre/Post numbering.
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Edge (u,v) is tree edge iff [pre[v ],post [v ]]⊂ [pre[u],post [u]].
u on stack before v .

Edge (u,v) is back edge iff [pre[u],post [u]]⊂ [pre[v ],post [v ]].
v on stack before u on stack. Path from v to u! Cycle!

No edge between u and v if disjoint intervals.
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Directed graphs.
G = (V ,E)

vertices V .
edges E ⊆ V ×V .

Edge: (u,v)
From u to v .

Tail – u
Head – v
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Depth first search: directed.
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Tree/forward edge (u,v): int(v)⊂ int(u). inv(v) = [pre(v),post(v)]
Forward (A,F ): [10,11] in [0,13] or [0,[10,11],13]

Back edge (u,v): int(u)⊂ int(v).
(C,B): [3,4] in [1,8] or [1, [3, 4], 8]

Cross edge (u,v): int(v)< int(u).
(F ,D): [2,5] before [10,11]
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Cycle in a directed graph?

Fast algorithm for finding out whether directed graph has cycle?

For each edge (u,v) remove, check if v is connected to u
O(|E |(|E |+ |V |)).
Linear Time (i.e. O(|V |+ |E |))?
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Testing for cycle.

Thm: A graph has a cycle if and only if there is a back edge in
any DFS.

Proof:
We just saw: Back edge =⇒ cycle!

In the other direction: Assume there is a cycle

v0 → v1 → v2 · · · → vk → v0

Assume that v0 is the first node explored in the cycle
(without loss of generality since can renumber vertices.)

When explore(v0) returns all nodes on cycle explored.

All int[vi ] in int[v0]!

=⇒ (vk ,v0) is a back edge.

Cycle =⇒ back edge!
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Fast checking algorithm.

Thm: A graph has a cycle if and only if there is back edge.

Algorithm ??

Run DFS.
O(|V |+ |E |) time.

For each edge (u,v): is int(u) in int(v)?
O(|E |) time.

O(|V |+ |E |) time algorithm for checking if graph is acyclic!
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Proof: No back edges in DAG.
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int(u) contains int(v): pre(u),pre[v ],post [v ],post [u]

Cross edge (u,v): int(u)> int(v) =⇒ post [u]> post [v ]



Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Proof: No back edges in DAG.
Tree and Forward edge (u,v):

int(u) contains int(v): pre(u),pre[v ],post [v ],post [u]

Cross edge (u,v): int(u)> int(v) =⇒ post [u]> post [v ]



Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Proof: No back edges in DAG.
Tree and Forward edge (u,v):

int(u) contains int(v): pre(u),pre[v ],post [v ],post [u]

Cross edge (u,v): int(u)> int(v) =⇒ post [u]> post [v ]



Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Proof: No back edges in DAG.

Tree and Forward edge (u,v):
int(u) contains int(v): pre(u),pre[v ],post [v ],post [u]

Cross edge (u,v): int(u)> int(v) =⇒ post [u]> post [v ]



Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Proof: No back edges in DAG.
Tree and Forward edge (u,v):

int(u) contains int(v): pre(u),pre[v ],post [v ],post [u]

Cross edge (u,v): int(u)> int(v) =⇒ post [u]> post [v ]



Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Proof: No back edges in DAG.
Tree and Forward edge (u,v):

int(u) contains int(v): pre(u),pre[v ],post [v ],post [u]

Cross edge (u,v): int(u)> int(v)

=⇒ post [u]> post [v ]



Topological Sort: DFS

Last post order should..
(A) be first in linearization!
(B) be last in linearization!

(A). First!

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Proof: No back edges in DAG.
Tree and Forward edge (u,v):

int(u) contains int(v): pre(u),pre[v ],post [v ],post [u]

Cross edge (u,v): int(u)> int(v) =⇒ post [u]> post [v ]



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).
..procedure postvisit outputs during DFS

def postvisit(u): result.append(u).
..reverse result.



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).
..procedure postvisit outputs during DFS

def postvisit(u): result.append(u).
..reverse result.



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).

..procedure postvisit outputs during DFS
def postvisit(u): result.append(u).

..reverse result.



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).

..procedure postvisit outputs during DFS
def postvisit(u): result.append(u).

..reverse result.



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).
..procedure postvisit outputs during DFS

def postvisit(u): result.append(u).
..reverse result.



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).
..procedure postvisit outputs during DFS

def postvisit(u): result.append(u).

..reverse result.



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).
..procedure postvisit outputs during DFS

def postvisit(u): result.append(u).
..reverse

result.



Topological Sort: linearize.

Property: Every edge in a DAG (u,v) has post(u)> post(v).

Top Sort: output in reverse post order number.

Runtime: O(|V |+ |E |).
..procedure postvisit outputs during DFS

def postvisit(u): result.append(u).
..reverse result.


