Algorithms so Far

Divide and Conquer:

- Integer Multiplication: \(O(n \log^2 3) = O(n^{1.58})\)
- Matrix Multiplication: \(O(n \log^2 7) = O(n^{2.81})\)
- Merge Sort: \(O(n \log n)\)
- FFT: \(O(n \log n)\)

Simple Graph Algorithms

- DFS, connected components: \(O(n+m)\) \(n=111, m=1E1\)
- Topological search, SCC

Single Source Shortest Paths

- DFS: \(O(n+m)\)
- Dijkstra: \(O((n+m) \log n)\)
- Bellman-Ford: \(O(nm)\)
- DAG-SSSP: \(O(n+m)\)

Greedy

- Scheduling: \(O(n)\)
- Huffman Coding: \(O(n \log n)\)
- Kruskal and Prim (DST): \(O((n+m) \log n)\)
- Horn Formulae: \(O(1F1)\)
- Greedy Set Cover (later, only finds approx. min)

- Important basic algorithms, fast
- Not a very general tool

Dynamic Programming

- A versatile, powerful algorithm design principle
1) Longest path in a DAG

Input: DAG $G = (V, E)$

Goal: Find length of longest path in G

Recursive Algorithm

$L = \text{length of longest path in } G$

$$\max_{v \in V} L(v)$$

$L(v) = \text{length of longest path ending in } v$

$L(v) = \max_{(w, v) \in E} L(w) + 1$

Recursive Relation

$L(v) = \max \left\{ L(u)+1, L(w)+1 \right\}$
\[L(v) = \max_{(u,v) \in E} \left(L(u) + 1 \right) \]

0 \hspace{1cm} \text{if no incom. edge}

\underline{Algorithm}

\[L(v) \]

"Returns length of longest path ending in \textit{v}"

\begin{align*}
\text{IF no incom. edge} & \quad \text{L}(v) = 0 \\
\text{ELSE:} & \quad \text{L}(v) = \max_{w \in E} \left(\text{L}(w) + 1 \right)
\end{align*}

\underline{Implementation:}

\begin{align*}
\text{current} & = 0 \\
\text{For all w} & \in E \\
\text{if } & \quad \text{L}(w) + 1 > \text{current} \\
\text{current} & = \text{L}(w) + 1
\end{align*}

\text{Return current}

Does it terminate? Yes. Each iterative call explores edges pointing backwards in the DAG, so eventually will end at the sources.

How long does it take?
Calls: \[L(5) \]
\[L(4) \quad L(3) \]
\[L(3) \quad L(2) \quad L(1) \quad L(1) \]
\[L(2) \quad L(1) \quad L(1) \quad L(1) \]
\[L(1) \quad \text{grows exp } \]

\[T(i) = T(i-1) + T(i-2) \]
-> Fibonacci # s

Solution: Recursion with memorization

(\text{Remember } L(i) \text{ if calculated once})

Non recursive Implementation

Subproblems:
\[L(1), \ldots, L(19) \]
Dependence:

$L(i)$ depends on $L(j)$, $j < i$

Compute in order:

$L(1), L(2), \ldots, L(9)$

General Graph:

Subproblem: $L(v)$ for all $v \in V$

Dependency: $L(v)$ depends on all incoming edges $uv \in E$

Order to compute:

topological sorted order of G

Pseudo Code:

*Topologically sort G

Let i be the i^{th} vertex in topol. sort order

• For all i, $L[i] = 0$

• For $i = 1, \ldots, n$,

\[L[i] = \max_{j \in E} L[j] \]

```
current = 0
for all $wv \in E$
    if $L(w) + 1 > current$
        current = $L(w) + 1$
return current
```

Run time:
2) Longest Increasing Subsequence

Reduce to previous problem:

Sequence \(a_1, a_2, \ldots, a_n \)

Make it into DAG

\[\forall i < j \in E \ \text{and} \ a_i < a_j \]

Running time \(O(n^2) \) (we need to check \(a_i < a_j \) \(\forall \binom{n}{2} \) pairs \(i, j \))

3) Edit Distance

Input: two strings \(x[1, \ldots, n] \) \(y[1, \ldots, m] \)

Task: Find the minimum \# of keystrokes to edit \(x \) into \(y \)

\[\text{[insert a char, delete a char, substitute a char]} \]

\[x = \text{SUNNY} \]
\[y = \text{SOWNY} \]

\[\text{CAT} \rightarrow \text{HAT} \quad \text{cost} = 1 \]

\[\text{ABABABA} \quad \text{BABABA} \quad \text{cost} = 2 \] (place first A, insert A at end)
Why is this interesting?

• spell checker
• DNA

How can we represent a sequence of edits?

• Complicated deleting, inserting, shifting things
• Better visualization needed

\[\text{S U N N Y} \]
\[\downarrow \]
\[\text{S N O W Y} \]

where do these letters come from?

\[\text{S} \quad \text{S} \quad \text{S} \quad \text{O} \]

where do these letters go to?

\[\text{S} \quad \text{U} \quad \text{N} \quad \text{N} \quad \text{Y} \]

Tiles:
\[\text{delete } \quad \text{insert} \quad \text{keep} \quad \text{substitute} \]

\[
\begin{align*}
\text{S} & \quad \text{U} \quad \text{N} \quad \text{N} \quad \text{Y} \\
\text{K} & \quad \text{D} \quad \text{K} \quad \text{S} \quad \text{I} \quad \text{K} \\
\text{S} & \quad \text{N} \quad \text{O} \quad \text{W} \quad \text{Y}
\end{align*}
\]

Can do this in arb. order.

Dynamic Programming strategy

3 steps:
1) Define subproblem
2) Write down recurrence
3) Determine order of calculations

Step 1:

\[E[i,j] = \text{Edit dist. between } x[1, \cdots, i] \text{ and } y[1, \cdots, j] \]

\[x = \text{SUNNY} \]
\[y = \text{SNOWY} \]

\[\text{e.g. } E[5,5] \quad E[SU, SNOW] \]

\[\cdots \]

\[(m+1)(n+1) \text{ subproblems (include empty string)} \]

Step 2: Recurrence relation

Write down cases
Look at optimal solution

\[
\begin{bmatrix}
- & S & U & N & N & - \\
S & N & O & W & - & W
\end{bmatrix} + \begin{cases}
\text{keep Case 1} & 0 \\
\text{insert Case 2} & 1 \\
\text{delete Case 3} & 1
\end{cases}
\]

These are the possibilities
Actual answer → minimum

\[
E[\text{SUNNY, SNOWY}] = \min \left\{ E[\text{SUNN, SNOW}] + 1, E[\text{SUNNY, SNOW}] + 1, E[\text{SUNN, SNOWY}] + 1 \right\}
\]

In general
\[E[i,j] = \min \left\{ \begin{array}{ll} E[i-1,j] + 1 & \text{Insert} \\ E[i,j-1] + 1 & \text{Delete} \\ E[i-1,j-1] + \text{DIFF}(x_i, y_j) & \text{Keep} \\ \end{array} \right. \]

Step 3: Pick an order:

Next lecture!