
CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs
Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs
Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs
Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs
Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:

Christian Borgs
Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs

Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs
Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs
Prasad Raghavendra

Today: Satish Rao

CS 170: Algorithms

Logistics:
Course website: https://cs170.org/ (lots of information)

Course communications: Edstem

Weekly homeworks + 2 midterms + 1 final exam.

Midterm 1: M 2/26/24 from 7pm-9pm.
Midterm 2: Tu 4/2/24 from 7pm-9pm

Instructors:
Christian Borgs
Prasad Raghavendra

Today: Satish Rao

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.

While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no.

“Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?

Construct example.

A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs:

Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice,

advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.

If ever at the same place, report cycle.
· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:

If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.

If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.

d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle

n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up.

O(n)
Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)

Additional storage: two pointers. O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers.

O(1).

Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).

Puzzles ..

Solutions

..are Algorithms...

which...

..are correct...and (in this class) efficient.

Is this a useful process?

Puzzles ..

Solutions

..are Algorithms...

which...

..are correct...and (in this class) efficient.

Is this a useful process?

Puzzles ..

Solutions

..are Algorithms...

which...

..are correct...and (in this class) efficient.

Is this a useful process?

Puzzles ..

Solutions

..are Algorithms...

which...

..are correct...

and (in this class) efficient.

Is this a useful process?

Puzzles ..

Solutions

..are Algorithms...

which...

..are correct...and (in this class) efficient.

Is this a useful process?

Puzzles ..

Solutions

..are Algorithms...

which...

..are correct...and (in this class) efficient.

Is this a useful process?

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA

AAACTG
TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT

AGTAG
AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA

ACTGAAACTGAGTAGATA

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most?

Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page):

Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,

.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.

Algorithms...

Driving Directions

Airline Scheduling
Compiling
Compression
Cryptography
Optimization
Search
Targeted Advertising
.
.

Algorithms...

Driving Directions
Airline Scheduling

Compiling
Compression
Cryptography
Optimization
Search
Targeted Advertising
.
.

Algorithms...

Driving Directions
Airline Scheduling
Compiling

Compression
Cryptography
Optimization
Search
Targeted Advertising
.
.

Algorithms...

Driving Directions
Airline Scheduling
Compiling
Compression

Cryptography
Optimization
Search
Targeted Advertising
.
.

Algorithms...

Driving Directions
Airline Scheduling
Compiling
Compression
Cryptography

Optimization
Search
Targeted Advertising
.
.

Algorithms...

Driving Directions
Airline Scheduling
Compiling
Compression
Cryptography
Optimization

Search
Targeted Advertising
.
.

Algorithms...

Driving Directions
Airline Scheduling
Compiling
Compression
Cryptography
Optimization
Search

Targeted Advertising
.
.

Algorithms...

Driving Directions
Airline Scheduling
Compiling
Compression
Cryptography
Optimization
Search
Targeted Advertising

.

.

Algorithms...

Driving Directions
Airline Scheduling
Compiling
Compression
Cryptography
Optimization
Search
Targeted Advertising
.
.

Calculating: 300 BC through Middle Ages in Europe.

I – one

V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five

X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten

C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred

D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred

M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 =

2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.

Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing!

For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Calculating: 300 BC through Middle Ages in Europe.

I – one
V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20):

dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).

13 is “· · ·”
Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60):

clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus

successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows,

successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0!

... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.

Writing to propagating..

Al Khwarizmi:

Go west! Young decimal system!

Al Khwarizmi used to be transliterated as Algoritmi or Algaurizin
Persian mathematician, astronomer, geographer (780-850)

..but Fibonacci popularized its use.

Italian mathematician (1170-1250) who traveled to learn the
Hindu-Arab math.

Writing to propagating..

Al Khwarizmi: Go west! Young decimal system!

Al Khwarizmi used to be transliterated as Algoritmi or Algaurizin
Persian mathematician, astronomer, geographer (780-850)

..but Fibonacci popularized its use.

Italian mathematician (1170-1250) who traveled to learn the
Hindu-Arab math.

Writing to propagating..

Al Khwarizmi: Go west! Young decimal system!

Al Khwarizmi used to be transliterated as Algoritmi or Algaurizin
Persian mathematician, astronomer, geographer (780-850)

..but Fibonacci popularized its use.

Italian mathematician (1170-1250) who traveled to learn the
Hindu-Arab math.

Writing to propagating..

Al Khwarizmi: Go west! Young decimal system!

Al Khwarizmi used to be transliterated as Algoritmi or Algaurizin
Persian mathematician, astronomer, geographer (780-850)

..but Fibonacci popularized its use.

Italian mathematician (1170-1250) who traveled to learn the
Hindu-Arab math.

Writing to propagating..

Al Khwarizmi: Go west! Young decimal system!

Al Khwarizmi used to be transliterated as Algoritmi or Algaurizin
Persian mathematician, astronomer, geographer (780-850)

..but Fibonacci popularized its use.

Italian mathematician (1170-1250) who traveled to learn the
Hindu-Arab math.

Writing to propagating..

Al Khwarizmi: Go west! Young decimal system!

Al Khwarizmi used to be transliterated as Algoritmi or Algaurizin
Persian mathematician, astronomer, geographer (780-850)

..but Fibonacci popularized its use.

Italian mathematician (1170-1250) who traveled to learn the
Hindu-Arab math.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic.

Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money.

Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean?

9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean?

7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean?

5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7.

6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes

⌈log10 N⌉ digits.

Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct?

Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2

= Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2

≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.

From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad.

Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2 = Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?

Better Algorithm.

def fib(n):
if n <= 1:

return n
else:
a = [0,1]
for i in range(2,n+1):

O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations! Maybe.

Let’s try it!

Oops:
doubling the size more than doubled the runtime!

Better Algorithm.

def fib(n):
if n <= 1:

return n
else:

a = [0,1]
for i in range(2,n+1):

O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations! Maybe.

Let’s try it!

Oops:
doubling the size more than doubled the runtime!

Better Algorithm.

def fib(n):
if n <= 1:

return n
else:

a = [0,1]
for i in range(2,n+1): O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations!

Maybe.

Let’s try it!

Oops:
doubling the size more than doubled the runtime!

Better Algorithm.

def fib(n):
if n <= 1:

return n
else:

a = [0,1]
for i in range(2,n+1): O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations! Maybe.

Let’s try it!

Oops:
doubling the size more than doubled the runtime!

Better Algorithm.

def fib(n):
if n <= 1:

return n
else:

a = [0,1]
for i in range(2,n+1): O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations! Maybe.

Let’s try it!

Oops:
doubling the size more than doubled the runtime!

Better Algorithm.

def fib(n):
if n <= 1:

return n
else:

a = [0,1]
for i in range(2,n+1): O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations! Maybe.

Let’s try it!

Oops:

doubling the size more than doubled the runtime!

Better Algorithm.

def fib(n):
if n <= 1:

return n
else:

a = [0,1]
for i in range(2,n+1): O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations! Maybe.

Let’s try it!

Oops:
doubling the size more than doubled the runtime!

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn

≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2

= 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .

Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms.

Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!

Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.

From: 2ab = (2a)b = (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b

= (2b)a.

Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.

Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.

Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn

both are O(logn)
Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example?

Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100

is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)

2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn

is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2

is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).

logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn

is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).

More asymptotic notation.

Ω notation.

A “lower bound”.

2n2 is Ω(n2) ...and Ω(n)...

Formally, for positive functions g, f from integers to reals,
g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).

More asymptotic notation.

Ω notation.

A “lower bound”.

2n2 is Ω(n2) ...and Ω(n)...

Formally, for positive functions g, f from integers to reals,
g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).

More asymptotic notation.

Ω notation.

A “lower bound”.

2n2 is Ω(n2) ...

and Ω(n)...

Formally, for positive functions g, f from integers to reals,
g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).

More asymptotic notation.

Ω notation.

A “lower bound”.

2n2 is Ω(n2) ...and Ω(n)...

Formally, for positive functions g, f from integers to reals,
g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).

More asymptotic notation.

Ω notation.

A “lower bound”.

2n2 is Ω(n2) ...and Ω(n)...

Formally, for positive functions g, f from integers to reals,
g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).

More asymptotic notation.

Ω notation.

A “lower bound”.

2n2 is Ω(n2) ...and Ω(n)...

Formally, for positive functions g, f from integers to reals,
g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).

More asymptotic notation.

Ω notation.

A “lower bound”.

2n2 is Ω(n2) ...and Ω(n)...

Formally, for positive functions g, f from integers to reals,
g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1

1 2 3 4 5 6 7 8 9
+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1

1 2 3 4 5 6 7 8 9
+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value.

Algorithm: add places.

1 0 0 0 0 1 1 1

1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6 9 4 4 8

0
Correctness:

See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1

1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6 9 4 4

8 0
Correctness:

See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1

1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6 9 4

4 8 0
Correctness:

See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0

1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6 9

4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0

0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6

9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0

0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1 0 4

4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1

0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1 0

4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1

1

0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:

See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.

And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them...

must be optimal.

Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1
1 2 3 4 5 6 7 8 9

+ 9 2 1 2 3 7 6 9 1
1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9
9 2 2 2 2 2 2 2 2 1
· · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · · ·

n

Time: O(n2)

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9
9 2 2 2 2 2 2 2 2 1
· · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · · ·

n

Time: O(n2)

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9

9 2 2 2 2 2 2 2 2 1
· · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · · ·

n

Time: O(n2)

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9
9 2 2 2 2 2 2 2 2 1

· · · · · · · · · · ·
· · · · · · · · · · · ·

· · · · · · · · · · · · ·
n

Time: O(n2)

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9
9 2 2 2 2 2 2 2 2 1
· · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · · ·

n

Time: O(n2)

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9
9 2 2 2 2 2 2 2 2 1
· · · · · · · · · · ·

· · · · · · · · · · · ·

· · · · · · · · · · · · ·
n

Time: O(n2)

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9
9 2 2 2 2 2 2 2 2 1
· · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · · ·

n

Time: O(n2)

More Al Khwarizmi’s: algorithms.

Addition: O(n)

Multiplication:

1 2 3 4 5 6 7 8 9
× 9 2 1 2 3 7 6 9 1

1 2 3 4 5 6 7 8 9
9 2 2 2 2 2 2 2 2 1
· · · · · · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · · ·

n

Time: O(n2)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!

Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No.

We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!

What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!

Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do?

Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3

Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).

How? Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How?

Next time (read ahead!!!)

Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)

Quick Thoughts.

Big (historic) idea: representation as digits or bits.

Algorithms for addition/multiplication/fibonacci numbers.

Complexity or runtimes in terms of size of representation.

Asymptotic analysis.

Quick Thoughts.

Big (historic) idea: representation as digits or bits.

Algorithms for addition/multiplication/fibonacci numbers.

Complexity or runtimes in terms of size of representation.

Asymptotic analysis.

Quick Thoughts.

Big (historic) idea: representation as digits or bits.

Algorithms for addition/multiplication/fibonacci numbers.

Complexity or runtimes in terms of size of representation.

Asymptotic analysis.

Quick Thoughts.

Big (historic) idea: representation as digits or bits.

Algorithms for addition/multiplication/fibonacci numbers.

Complexity or runtimes in terms of size of representation.

Asymptotic analysis.

