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A puzzle.

Does a list have a cyle?

Access to list is a pointer to the “first element.”

Mark first node.
While next cell not marked, go to next cell.

Claim: either there is no next cell, or detects cycle.

Intuition: if on cycle, must return.

Quiz: Does this work?

a) Yes. b) No.

First node not in cycle!

Answer is no. “Oracle” gave us example.

Problem: starting point is not on cycle?
Construct example.
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Does a list have a cyle?

Two ptrs: Step: advance ptr 1 twice, advance ptr 2 once.
If ever at the same place, report cycle.

· · ·

.

.

.

d

d −1

Correctness:
If no cycle, slow pointer never catches fast one.
If cycle, both pointers will enter cycle at some time.
d - distance from fast ptr to slow ptr.

d decreases every step.

Runtime: n steps to cycle n steps to catch up. O(n)
Additional storage: two pointers. O(1).
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Algorithms for the Human Genome Project

Reconstruct DNA...

ACTGAAACTGAGTAGATA....

Read first, then next, then next, ...3.1 billion times...
.. slow... error prone...

Parallel sequencing yields chunks of overlapping DNA.

AGTAG, AGATA, TGAGT , ACTGAA , CTGAA , AAACTG

Assemble into a consistent string?

ACTGAA
AAACTG

TGAGT
AGTAG

AGATA
-------------------
ACTGAAACTGAGTAGATA
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Page Rank.

Problem: What is good on the web?

Website that pays search engine most? Goto.com.

Random Surfer Model (Brin-Page): Follow link, follow link,
.. occasionally jump to random page (with prob. ε).

Popular pages are desirable pages.

PageRank = popularity for random surfer.

Sort search results by PageRank!

Made us happier then.

Google.

Issues: make a bunch of webpages that point to each other.

New Model for user: google.
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Calculating: 300 BC through Middle Ages in Europe.

I – one

V – five
X – ten
C – one hundred
D – five hundred
M – a thousand

VIII – eight

DCLXXVI – five hundred plus a hundred plus fifty plus ten plus ten..

MCDLXVIII – one thousand five hundred minus one hundred ....

Add them?

1448 + 676 = 2024

676 years since the Gutenberg printing press.
Reading and writing! For everyone.

Multiply roman numbers?
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Modern system.

From India, via Al Khwarizmi.

He also described recipes for adding, multiplying, solving quadratics,
computing digits of π..

Algorithms!

Note:

Mayans (base 20): dots (ones) and underlines (fives).
13 is “· · ·”

Babylonions (base 60): clusters of 10 instead of digits.

Abacus successive rows, successive places..

India: “invented” 0! ... and decimal symbols.

20th century. Base 2!

The input representation for modern computers and communication.
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Writing to propagating..

Al Khwarizmi:

Go west! Young decimal system!

Al Khwarizmi used to be transliterated as Algoritmi or Algaurizin
Persian mathematician, astronomer, geographer (780-850)

..but Fibonacci popularized its use.

Italian mathematician (1170-1250) who traveled to learn the
Hindu-Arab math.
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Place value.

I love place value!!

Democratizes arithmetic. Money. Helps end feudal system?

54879

What does the 9 mean? 9
What does the 8 mean? 7 hundreds.
What does the 5 mean? 5×105.

This is amazing.

How many decimal digits in a number between a million and two
million?

7.

Nice!!!

A million is 106. One more is 7. 6 = log10 (million)

N in decimal takes ⌈log10 N⌉ digits.
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Fibonacci numbers.

F0 = 0, F1 = 1.

Fn = Fn−1 +Fn−2.

def fib(n):
if n <= 1:

return n
else:

return fib(n-1) + fib(n-2)

Correct? Implements definition!

Run time.

T (n) = T (n−1)+T (n−2)+2

T (n)≥ Fn
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Fibonacci algorithm and numbers!

Fn = Fn−1 +Fn−2

= Fn−2 +Fn−3 +Fn−2 ≥ 2Fn−2

By induction, we get Fn ≥ 2n/2.
From book.. Fn ≈ 20.694n.

T (n)≥ 2n/2

From book T (n)≥ 20.694n

For n = 100, this is around 264 operations, (more than a thousand
years or so on a fast computer.)

Exponential algorithm. Bad. Grows very fast.

Can we do better?
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Better Algorithm.

def fib(n):
if n <= 1:

return n
else:
a = [0,1]
for i in range(2,n+1):

O(n)

a.append(a[i-1]+a[i-2])
return a[n]

O(n) operations! Maybe.

Let’s try it!

Oops:
doubling the size more than doubled the runtime!
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From demo: Size matters.

How many bits in the representation of Fn?

Remember Fn ≈ 20.694n.

About how many bits in Fn?

log2 Fn ≈ 0.6294n

How long does it take to compute Fn−1 +Fn−2?

O(n).

How long does Fib take?

n additions.

At most O(n2).
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Demo: polynomial.

Doubling size, made fast fib grow by factor of roughly four.

Example: cn2 runtime.

Calculation: c(2n)2 = 4cn2.

Polynomial time algorithm has runtime O(nk ) for a constant k .
Calculation: (αn)k = αk nk .

Scaling input by α grows runtime bound by αk .

Doubling size, scales runtime by a constant for polynomial time
algorithm.

Not true for exponential algorithms. Squares runtime!
Calculation: 22n = (2n)2.
From: 2ab = (2a)b = (2b)a.
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Asymptotic Analysis.

Used O(n) for number of additions, rather than n−2.

Why?

61a, 61b..

Recursive fib has faster inner loop than iterative fib.

Does it matter?

2.694n versus O(n2).

For 2.694n, doubling n, squares run time.
Calculation: 2.694(2n) = (2.694n)2.
From: 2ab = (2b)a.

For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2
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For O(n2), doubling n, multiplies run time by four.
Calculation: c(2n)2 = 4×cn2
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Refreshing Asymptotic Notation.

Ignore constant factors.

2n2 asymptotically same as 4n2

both are O(n2)

4 logn asymptotically same as 100 logn
both are O(logn)

Example? Binary search.

Ignore smaller order terms.

2n2 +100 is O(n2)
2n2 +1000 logn is O(n2)

Upper bound.
n2 is O(n3).
logn is O(n).

Formally, for positive functions g, f from integers to reals,
g(n) = O(f (n)) , if there is a constant c where g(n)≤ cf (n).
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A “lower bound”.

2n2 is Ω(n2) ...and Ω(n)...
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g(n) = Ω(f (n)) , if there is a constant c where g(n)≥ cf (n)

g(n) = Θ(f (n)) if g(n) = O(f (n)) and g(n) = Ω(f (n)).
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Al Khwarizmi: Arithmetic.

Addition: O(n)

Place value. Algorithm: add places.

1 0 0 0 0 1 1 1 1

1 2 3 4 5 6 7 8 9
+ 9 2 1 2 3 7 6 9 1

1 0 4 4 6 9 4 4 8 0

Correctness:
See how many ones, if more than 10, add to 10’s.
And so on.

Time: O(n)

Can we do better?

Need to look at the numbers to add them... must be optimal.
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Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!

Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No.

We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!

What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!

Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do?

Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3

Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).

How? Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How?

Next time (read ahead!!!)



Multiplication
Multiplication: O(n2).

Is the best possible?

Every digit in x must multiply every digit in y at least once!
Θ(n2) such pairs.

Is this the best possible?

(a) Yes.

(b) No.

No. We can do better!
What ?!?!
Really!

What does python do? Let’s see.

Runtime:
2 times as large increases by a factor of 3
Note: 2log2 3 = 3.

Runtime: O(nlog2 3).
How? Next time (read ahead!!!)



Quick Thoughts.

Big (historic) idea: representation as digits or bits.

Algorithms for addition/multiplication/fibonacci numbers.

Complexity or runtimes in terms of size of representation.
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