
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 11
Dynamic Programming I

Announcements

1. Midterm 1 is done. Yay!
→We will aim to grade the exams by early next week.
→While waiting, Pls don’t ask questions about the exam until then.
→We will have TA-student 1-1 chats in the next couple week: discuss micterm

performance, career advice, etc.

2. Mid-semester Feedback form will be released with midterm grades
→Extra HW drop opportunity if you fill it out!

Today
Finish up greedy!

Start a new topic:
→ Dynamic Programming!

Recap: The Set Cover Problem

Input:

→Universe of 𝑛 elements 𝑈 = {1, … , 𝑛}, and

→Subsets 𝑆1, 𝑆2, … , 𝑆𝑚 ⊆ 𝑈, s.t.,

Output:

A collection of subsets covering 𝑈 of minimal size.

i.e., 𝐽 ⊆ 1,2, … , 𝑚 s.t., ራ

𝑖∈𝐽

𝑆𝑖 = 𝑈

ራ

𝑖=1

𝑚

𝑆𝑖 = 𝑈

Greedy is Not Optimal

A suggested greedy algorithm:

Repeat until all elements of 𝑼 are covered: Pick the set with the largest number of
uncovered elements.

𝑆1

𝑆2

𝑆3 𝑆4 𝑆5
𝑂𝑃𝑇 = 𝑆1, 𝑆2

𝐺𝑟𝑒𝑒𝑑𝑦 = 𝑆3, 𝑆4, 𝑆5

Greedy is Approximately Optimal
Claim: For any instance of the Set Cover problem. If the optimal solution uses 𝑘 sets,
the Greedy algorithm uses at most 𝑘 ln(𝑛) sets.

Proof: Let 𝑛𝑡 be the number of elements not covered after 𝑡 step of the Greedy
algorithm. (E.g., 𝑛0 = 𝑛).

Our goal: Show that for 𝑡 = 𝑘 ln(𝑛), 𝑛𝑡 < 1.
→ If we achieve this goal; then we have 𝑛𝑡 = 0. i.e., all elements of the set are covered by
Greedy after 𝑘 ln(𝑛) rounds.

Greedy is Approximately Optimal

Subclaim 1: 𝑛1 ≤ 𝑛0 −
𝑛0

𝑘

Let 𝑛𝑡 be the number of elements not covered after 𝑡 step of the Greedy algorithm.

Our goal: Show that for 𝑡 = 𝑘 ln(𝑛), 𝑛𝑡 < 1.

Greedy is Approximately Optimal

Subclaim 2: For any 𝑡, 𝑛𝑡+1 ≤ 𝑛𝑡(1 − 1/𝑘)

Let 𝑛𝑡 be the number of elements not covered after 𝑡 step of the Greedy algorithm.

Our goal: Show that for 𝑡 = 𝑘 ln(𝑛), 𝑛𝑡 < 1.

Very similar proof
as before.

Greedy is Approximately Optimal

Repeatedly applying subclaim 2, we have that for any 𝑡

𝑛𝑡 ≤ 𝑛𝑡−1 1 −
1

𝑘
≤ 𝑛𝑡−2 1 −

1

𝑘

2

≤ ⋯ ≤ 𝑛0 1 −
1

𝑘

𝑡

= 𝑛 1 −
1

𝑘

𝑡

Final subclaim: 𝑛 1 −
1

𝑘

𝑘 ln(𝑛)
< 1.

Proof: We use a mathematical fact that for any 𝑥 ≠ 0, 1 − 𝑥 < 𝑒−𝑥.

Let 𝑛𝑡 be the number of elements not covered after 𝑡 step of the Greedy algorithm.

Our goal: Show that for 𝑡 = 𝑘 ln(𝑛), 𝑛𝑡 < 1.

𝑛 1 −
1

𝑘

𝑘 ln(𝑛)

< 𝑛𝑒
−1
𝑘

× 𝑘 ln 𝑛 = 𝑛 𝑒− ln(𝑛) =
𝑛

𝑛
= 1

Approximation Factor
We showed that Greedy does not find the optimal set cover.

We also showed that Greedy outputs ≤ 𝑘 ln 𝑛 sets, where 𝑘 = OPT is the number of
sets used in the optimal solution.

“Greedy has an approximation factor of ln 𝑛 for Set Cover”

Formally, approximation factor of an algorithm (for minimizing cost) is
Cost Alg(input x)

Cost(optimal solution for input x)

What is the best polynomial time approximation algorithm for Set Cover?
Greedy! Meaning, approximation factor < ln 𝑛 is not achievable in polynomial time.

Show at home: Greedy’s approximation factor is no better than ln 𝑛 .
→ Generalize our first “bad” example showing Greedy is not optimal.

Done with Greedy!!!

How (not) to compute Fibonacci Numbers
In 61A, you learned to compute Fibonacci number using this code.

How fast/slow is this?
→ In discussion 6, you’ll show that this algorithm runs in time

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 ,
which you will show means that 𝑇 𝑛 ≥ 2𝑛/2.

This is way too big!

What went wrong?
The recursion tree repeats a lot of the subproblems.

→ For every node, it recomputes the problem from scratch.

Fib(8)

Fib(7)Fib(6)

Fib(6)Fib(5)Fib(5)Fib(4)

Fib(4)Fib(4) Fib(5)Fib(4)Fib(3)Fib(3)Fib(3)Fib(2)

How to fix this?
Remember the computations we did elsewhere.

This is called memo-ization!

Fib(8)

Fib(7)

Fib(6)

Fib(4)

Fib(5)

Fib(3)

Fib(2)

Fib(1)

Fib(0)

→ keep an array of Fibonacci values memo. Whenever a

value is computed, store it in there.

memo = [0, 1, None, None, …, None]

def Fib-memo-TopDown(n):

if memo[n] != None return memo[n]

else

memo[n] = Fib-memo-TopDown(n-1)

 + Fib-memo-TopDown(n-2)

return memo[n]

The number of recursive calls to Fib-memo-TopDown is 𝑂 𝑛 .
→we only recurse when the corresponding memo is not yet stored.

Elements of dynamic programming?

1. Subproblems (aka “optimal substructure”):
→ The fact that large problems break up into sub-problems.
→ So, optimal solution of some big problem (or its computation) can be expressed in
terms of the optimal solutions to smaller sub-problems.

E.g., In Fibonacci
𝐹𝑖𝑏(𝑖 + 1) = 𝐹𝑖𝑏(𝑖) + 𝐹𝑖𝑏(𝑖 − 1)

So far, this seems just like the
Divide and Conquer paradigm!

Elements of dynamic programming?

2. Overlapping subproblems:
→ A lot of the subproblems overlap. This means that we can save resources by solving a
subproblem once and storing its value, and then use that subproblem many times over.

E.g., In Fibonacci 𝐹𝑖𝑏(𝑖 + 1) and 𝐹𝑖𝑏(𝑖 + 2) both directly use 𝐹𝑖𝑏(𝑖). Also 𝐹𝑖𝑏(
)

𝑖 +
3 , 𝐹𝑖𝑏 𝑖 + 4 , … . All use 𝐹𝑖𝑏(𝑖) indirectly. So, we memo-ize 𝐹𝑖𝑏(𝑖) .

This looks new!

In Dynamic Programming:
We keep a memo (table of solutions) to the smaller
problems and use these solutions to solve bigger problems.

Two ways to do DP:
1. Top-Down: We saw this in Fib-memo-TopDown.

→Start from the biggest problem and recurse to smaller problems.

→ Looks just like recursion/divide and conquer, with one exception:

Memo-ization: keeping track of what smaller problems we have
solved already

Fib(8)

Fib(7)

Fib(6)

Fib(3)

Fib(2)

Fib(1)

Fib(0)

memo = [0, 1, None, None, …, None]

def Fib-memo-TopDown(n):

if memo[n] != None return memo[n]

else

memo[n] = Fib-memo-TopDown(n-1)

 + Fib-memo-TopDown(n-2)

return memo[n]

Fib(4)

Fib(5)

Two ways to do DP:
2. Bottom-Up:

→ Start from the smallest problems first and then bigger problems,

→Still memo-ize: Fill in a table of values from small to largest problems.

→Doesn’t usually have a recursive call.

Fib(8)

Fib(7)

Fib(6)

Fib(3)

Fib(2)

Fib(1)

Fib(0)

def Fib-memo-BottomUp(n):

memo= [0, 1, None, None, …, None]

for i = 2, …, n:

memo[i] = memo[i-1] + memo[i-2]

return memo[n]

Fib(4)

Fib(5)

Order of Computation and DAGs
There is an implicit DAG in dynamic programming!

Let’s view each subproblem as a node in a graph.

→There is an implicit directed edge (𝑖, 𝑗) if the solution to subproblem 𝑗
directly depends on/uses the solution to subproblem 𝑖.

Implicitly, consider a topological sort on this DAG.

→BottomUp: Solve problems in the order of the topological sort!

In Top-Down: We start recursing at the top, but the memo-ization
table is still filled according to the topological sort!

Fib(6)

Fib(3)

Fib(2)

Fib(1)

Fib(0)

Fib(4)

Fib(5)

Recap What’s Dynamic Programming?
It’s a paradigm in algorithm design.

• Uses subproblems/optimal substructure

• Uses overlapping subproblems

• Can be implemented bottom-up or top-down.

Where does the name come from?

Richard Bellman made up the name in 1950s when he was working at RAND
corporation --- a think tank funded mostly by the US government and Air Force at the
time. Here is what Bellman said of the name:

“It’s impossible to use the word, dynamic, in the pejorative
sense…I thought dynamic programming was a good name. It
was something not even a Congressman could object to.”

Revisiting Shortest Path problems

This time with negative weights!

Negative Weights on Shortest Paths
We saw Dijkstra for computing Single Source Shortest Paths on directed graphs with
positive edge lengths.

Sometimes there are negative weights on graphs:

• Instead of total cost, recording cost saved/spent

AS

1

-2

-1

A

S

B

10

-99

100

Shortest path is well-defined if no cycle has negative length.

Shortest Paths on DAGs
Input: A DAG 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 , positive or negative.
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢 = cost of shortest path from 𝑠 to 𝑢.

We want to aim for a 𝑂 𝑛 + 𝑚 algorithm.

→ Even with just positive weight, Dijkstra works but it’s 𝑂 𝑛 + 𝑚 log(𝑛) .

Recall, we can always do topological sort on a DAG in 𝑂 𝑛 + 𝑚 .

S

A

C

1

2

4

B

D

2

3

−1 S AC

1

2 4
B D

2

3

−1

Shortest Paths on DAGs: Subproblems
Input: A DAG 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 , positive or negative.
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢 = cost of shortest path from 𝑠 to 𝑢.

S AC

1

2 4
B D

2 −1

What are the subproblems?
→ One subproblem per node, 𝑑𝑖𝑠𝑡 𝑢 for all 𝑢 ∈ 𝑉.
→ A natural order to them: smaller subproblem for nodes that appear earlier in the
topological sort.

The Dynamic Programming’s implicit DAG is the same as this DAG!

3

Shortest Paths on DAGs: Recurrence
Input: A DAG 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 , positive or negative.
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢 = cost of shortest path from 𝑠 to 𝑢.

S AC

1

2 4
B D

2

3

−1Solved
subproblems

Unsolved
subproblems

Write the recurrence relation for 𝑑𝑖𝑠𝑡[𝑢]:

Discuss

Shortest Paths on DAGs: Algorithm
Input: A DAG 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 , positive or negative.
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢 = cost of shortest path from 𝑠 to 𝑢.

SSSP-DAG(𝐺 = (𝑉, 𝐸), 𝑠)

 array 𝑑𝑖𝑠𝑡 of length 𝑛

 𝑑𝑖𝑠𝑡 = 0 and 𝑑𝑖𝑠𝑡 𝑢 = ∞ for all other 𝑢 ∈ 𝑉.

 For 𝑢 ∈ 𝑉 in topological sort order

 𝑑𝑖𝑠𝑡[𝑢]← min
𝑣,𝑢 ∈𝐸

𝑑𝑖𝑠𝑡[𝑣] + ℓ(𝑣, 𝑢)

 return 𝑑𝑖𝑠𝑡

Runtime:
• Topological Sort: 𝑂(𝑚 + 𝑛).
• Number of subproblems: 𝑂(𝑛).
• For each vertex 𝑢 ∈ 𝑉, the update step

considers all of its incoming edges.
 → 𝑂 indeg 𝑢 for node 𝑢
 → So, overall 𝑂(𝑚) for updates

Total time: 𝑂(𝑚 + 𝑛).

Dynamic Programming Recipe

• Step 1: Identify the subproblems (optimal substructure)

• Step 2: Find a recursive formulation for the subproblems

• Step 3: Design the dynamic programming algorithm

→ Fill in a table, starting with the smallest sub-problems and building up.

More Shortest Paths:

Reliable Shortest Paths and Bellman-Fod

“Reliable” Shortest Path
Input: Graph 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 for (𝑢, 𝑣) ∈ 𝐸, parameter 𝑘
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡𝑘 𝑢 = cost of shortest path from 𝑠 to 𝑢, that uses ≤ 𝑘 edges.

S

A

B

3

1

1
Shortest 𝑆-𝐴 path Shortest 𝑆-𝐴

path for 𝑘 = 1.

Cost can be negative, but no negative cycles

Dynamic Programming Recipe

• Step 1: Identify the subproblems (optimal substructure)

• Step 2: Find a recursive formulation for the subproblems

• Step 3: Design the dynamic programming algorithm

→ Fill in a table, starting with the smallest sub-problems and building up.

Sub-Problems
Input: Graph 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 for (𝑢, 𝑣) ∈ 𝐸, parameter 𝑘
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡𝑘 𝑢 = cost of shortest path from 𝑠 to 𝑢, that uses ≤ 𝑘 edges.

What are the subproblems?
• 𝑑𝑖𝑠𝑡𝑖 𝑢 for all 𝑢 ∈ 𝑉.
• Every subproblem tracks the cost of the shortest 𝒔-𝒖 path using ≤ 𝑖 edges.

The Recurrence Relation
Input: Graph 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 for (𝑢, 𝑣) ∈ 𝐸, parameter 𝑘
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡𝑘 𝑢 = cost of shortest path from 𝑠 to 𝑢, that uses ≤ 𝑘 edges.

S 𝑢

𝑏 𝑎

𝑑𝑖𝑠𝑡𝑖(𝑢)

𝑑𝑖𝑠𝑡𝑖(𝑎)

ℓ 𝑎, 𝑢
𝑑𝑖𝑠𝑡𝑖(𝑏)

ℓ 𝑏, 𝑢

Case 1: The shortest path
uses < 𝑖 + 1 edges

Case 2: The shortest path
uses = 𝑖 + 1 edges

Say, we have compute 𝑑𝑖𝑠𝑡1 𝑢 , 𝑑𝑖𝑠𝑡2 𝑢 , … , 𝑑𝑖𝑠𝑡𝑖 𝑢 for all 𝑢 ∈ 𝑉.

Discuss

What is the recurrence relation for

𝑑𝑖𝑠𝑡𝑖+1 𝑢 =

Design the Algorithm
Input: Graph 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 for (𝑢, 𝑣) ∈ 𝐸, parameter 𝑘
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡𝑘 𝑢 = cost of shortest path from 𝑠 to 𝑢, that uses ≤ 𝑘 edges.

Given recurrence relation, how to memo-ize?

𝑑𝑖𝑠𝑡𝑖+1 𝑢 = min{𝑑𝑖𝑠𝑡𝑖 𝑢 , min
𝑣,𝑢 ∈𝐸

𝑑𝑖𝑠𝑡𝑖 𝑣 + ℓ(𝑣, 𝑢) }

𝑠 a b ⋯ 𝑢

𝑑𝑖𝑠𝑡0 0 ∞ ∞ ∞

⋮

𝑑𝑖𝑠𝑡𝑖

𝑑𝑖𝑠𝑡𝑖+1

⋮

𝑑𝑖𝑠𝑡𝑘

DP DAG:
Arrows where

𝑣, 𝑢 ∈ 𝐸

Runtime of this algorithm
Input: Graph 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 for (𝑢, 𝑣) ∈ 𝐸, parameter 𝑘
Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡𝑘 𝑢 = cost of shortest path from 𝑠 to 𝑢, that uses ≤ 𝑘 edges.

Reliable-SSSP(𝐺 = (𝑉, 𝐸), 𝑠, 𝑘)

 arrays 𝑑𝑖𝑠𝑡0, 𝑑𝑖𝑠𝑡1,…, 𝑑𝑖𝑠𝑡𝑘 of length 𝑛

 𝑑𝑖𝑠𝑡0 𝑠 = 0 and 𝑑𝑖𝑠𝑡0 𝑢 = ∞ for all other 𝑢 ∈ 𝑉.

 For 𝑖 = 1, … , 𝑘:

For 𝑢 ∈ 𝑉:

𝑑𝑖𝑠𝑡𝑖[𝑢] ← min{𝑑𝑖𝑠𝑡𝑖−1[𝑢] ,

 min
𝑣,𝑢 ∈𝐸

𝑑𝑖𝑠𝑡𝑖−1[𝑣] + ℓ(𝑣, 𝑢) }

Computation for each table row:
→Goes through every edge
→Total computation: 𝑂 𝑘𝑚 .

Number of subproblems to track in
the table?
→𝑂 𝑘𝑛 , but could reduce to 𝑂 𝑛

Overall runtime: 𝑂 𝑘𝑛 + 𝑘𝑚 .

Bellman-Ford Algorithm

Shortest Path with Negative Weights
• Input: A 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 ∈ ℝ. No negative cycles.

• Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢 = cost of shortest path from 𝑠 to 𝑢.

This is the same problem statement as “reliable” Shortest Path when the number of
edges (𝑘) on the path can be as large as you want!
→ If there are no negative cycles, the shortest path from 𝑆 to any node should use at

most 𝑛 − 1 edges.
Just run reliable shortest path with 𝑘 = 𝑛 − 1

This is called the Bellman-Ford algorithm.
Runtime of 𝑂 𝑛𝑚 .

Bellman-Ford Algorithm
Bellman-Ford1(𝐺 = (𝑉, 𝐸), 𝑠)

𝑑𝑖𝑠𝑡 𝑠 = 0 and 𝑑𝑖𝑠𝑡 𝑢 = ∞ for all other 𝑢 ∈ 𝑉.

 For 𝑖 = 1, … , 𝑛 − 1:

For 𝑢 ∈ 𝑉:

𝑑𝑖𝑠𝑡[𝑢] ← min{𝑑𝑖𝑠𝑡[𝑢] ,
 min

𝑣,𝑢 ∈𝐸
𝑑𝑖𝑠𝑡[𝑣] + ℓ(𝑣, 𝑢) }

Bellman-Ford2(𝐺 = (𝑉, 𝐸), 𝑠)

𝑑𝑖𝑠𝑡 𝑠 = 0 and 𝑑𝑖𝑠𝑡 𝑢 = ∞ for all other 𝑢 ∈ 𝑉.

 For 𝑖 = 1, … , 𝑛 − 1:

For (𝑣, 𝑢) ∈ 𝐸:

 𝑑𝑖𝑠𝑡 𝑢 ← min 𝑑𝑖𝑠𝑡 𝑢 , 𝑑𝑖𝑠𝑡 𝑣 + ℓ(𝑣, 𝑢)

Same as Dijkstra’s
“Update” Function

Summary of shortest path algs.

• Breadth First Search
→ Not for weighted graphs.
→ 𝑂 𝑛 + 𝑚

• Dijkstra
→ Positive edge weights.
→ 𝑂 𝑚 + 𝑛 log 𝑛

• Bellman-Ford
→ Positive or negative edge weights,
as long as no negative cycles.
→ 𝑂 𝑛𝑚

Next time

• More examples of DP

Wrap up

We saw a recipe for dynamic programming:
Step 1: Identify the subproblems
Step 2: Figure out the recursive structure
Step 3: Design the DP algorithm by solving smallest to largest problem and
memo-izing!

We saw some examples:
• Fibonacci
• Shortest Path on DAGs
• Bellman-Ford

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Recap: The Set Cover Problem
	Slide 5: Greedy is Not Optimal
	Slide 6: Greedy is Approximately Optimal
	Slide 7: Greedy is Approximately Optimal
	Slide 8: Greedy is Approximately Optimal
	Slide 9: Greedy is Approximately Optimal
	Slide 10: Approximation Factor
	Slide 11
	Slide 12: How (not) to compute Fibonacci Numbers
	Slide 13: What went wrong?
	Slide 14: How to fix this?
	Slide 15: Elements of dynamic programming?
	Slide 16: Elements of dynamic programming?
	Slide 17: Two ways to do DP:
	Slide 18: Two ways to do DP:
	Slide 19: Order of Computation and DAGs
	Slide 20: Recap What’s Dynamic Programming?
	Slide 21: Revisiting Shortest Path problems This time with negative weights!
	Slide 22: Negative Weights on Shortest Paths
	Slide 23: Shortest Paths on DAGs
	Slide 24: Shortest Paths on DAGs: Subproblems
	Slide 25: Shortest Paths on DAGs: Recurrence
	Slide 26: Shortest Paths on DAGs: Algorithm
	Slide 27: Dynamic Programming Recipe
	Slide 28
	Slide 30: “Reliable” Shortest Path
	Slide 31: Dynamic Programming Recipe
	Slide 32: Sub-Problems
	Slide 33: The Recurrence Relation
	Slide 34: Design the Algorithm
	Slide 35: Runtime of this algorithm
	Slide 36
	Slide 37: Shortest Path with Negative Weights
	Slide 38: Bellman-Ford Algorithm
	Slide 39: Wrap up

