
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 12
Dynamic Programming II

Announcements

Midterm 1 grade are out!
→Midterm regrade requests are open on Monday

Midsemester feedback form is open
→Fill out by Monday and you’ll get a free homework drop.

Discussions and OH resume as usual this week
→ As usual, my OH is after class today. Meet outside of the lecture hall.

Recap of the Last Lecture
Dynamic Programming!

The recipe!
Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
→ Fibonacci
→ Shortest Paths with negative edge-weights (in DAGs, Reliable Shortest path,

Bellman-Ford)

This lecture
See more dynamic programming examples!
→ Shortest Path between all pairs
→ Longest increasing subsequence
→ Edit distance
→ And even more next lecture

Best way to learn dynamic programming is by doing a lot of examples!

By doing more examples today, we will also develop intuition about how to
choose subproblems (Recipe’s step 1).

Recap: Shortest Path with Negative Weights
• Input: A 𝐺 = (𝑉, 𝐸), “source” 𝑆 ∈ 𝑉, edge costs ℓ 𝑢, 𝑣 ∈ ℝ. No negative cycles.
• Output: For all 𝑢 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢 = cost of shortest path from 𝑠 to 𝑢.

If there are no negative cycles, the shortest path from 𝑆 to any node should use at most
𝑛 − 1 edges.
→ This is the same problem statement as “reliable” Shortest Path when the number of
edges (𝑘) on the path can be as large as you want!

Just run reliable shortest path with 𝑘 = 𝑛 − 1

This is called the Bellman-Ford algorithm.
Runtime of 𝑂 𝑛𝑚 .

Bellman-Ford Algorithm
Bellman-Ford1(𝐺 = (𝑉, 𝐸), 𝑠)
𝑑𝑖𝑠𝑡 𝑠 = 0 and 𝑑𝑖𝑠𝑡 𝑢 = ∞ for all other 𝑢 ∈ 𝑉.
 For 𝑖 = 1, … , 𝑛 − 1:

For 𝑢 ∈ 𝑉:
𝑑𝑖𝑠𝑡[𝑢] ← min{𝑑𝑖𝑠𝑡[𝑢] ,
 min

𝑣,𝑢 ∈𝐸
𝑑𝑖𝑠𝑡[𝑣] + ℓ(𝑣, 𝑢) }

Bellman-Ford2(𝐺 = (𝑉, 𝐸), 𝑠)

𝑑𝑖𝑠𝑡 𝑠 = 0 and 𝑑𝑖𝑠𝑡 𝑢 = ∞ for all other 𝑢 ∈ 𝑉.

 For 𝑖 = 1, … , 𝑛 − 1:
For (𝑣, 𝑢) ∈ 𝐸:

 𝑑𝑖𝑠𝑡 𝑢 ← min 𝑑𝑖𝑠𝑡 𝑢 , 𝑑𝑖𝑠𝑡 𝑣 + ℓ(𝑣, 𝑢)

Same as Dijkstra’s
“Update” Function

Summary of shortest path algs.

• Breadth First Search
→ Not for weighted graphs.
→ 𝑂 𝑛 + 𝑚

• Dijkstra
→ Positive edge weights.
→ 𝑂 𝑚 + 𝑛 log 𝑛

• Bellman-Ford
→ Positive or negative edge weights,
as long as no negative cycles.
→ 𝑂 𝑛𝑚

The same implementation as “reliable”
shortest path from last lecture

All-Pair Shortest Path Problem

All-Pair Shortest Path (APSP)
We want to know the shortest distance between any pair of nodes in a graph.
→ Not just from a special single source.
→ Another example of DP!

Input: Graph 𝐺 = (𝑉, 𝐸), edge costs ℓ 𝑢, 𝑣 for (𝑢, 𝑣) ∈ 𝐸 (not necessarily positive)
Output: For all 𝑢, 𝑣 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢, 𝑣 = cost of shortest path from 𝑢 to 𝑣

Naïve algorithm:
→ Run Bellman-Ford starting from every 𝑠 ∈ 𝑉 as a source.
→Bellman-Ford runs in time 𝑂 𝑚𝑛
→ Total runtime for APSP would be 𝑂 𝑛2𝑚 . Could be as large as 𝑂(𝑛4) for dense

graphs. We are aiming for 𝑂 𝑛3 .

Dynamic Programming Recipe
• Step 1: Identify the subproblems (optimal substructure)

• Step 2: Find a recursive formulation for the subproblems

• Step 3: Design the dynamic programming algorithm
→ Fill in a table, starting with the smallest sub-problems and building up.

Identify the subproblems (optimal substructure)

Sub-problem(k): For all pairs 𝑢, 𝑣 ∈ 𝑉, find the shortest 𝑢-𝑣 path whose internal
vertices only use nodes {1, … , 𝑘}.
→ Sub-problem (𝑛) is the APSP we want to solve.
→This may look unintuitive, but let’s see why it’s helpful!

𝑘

2

…

1

3

𝑘 + 1

𝑢
𝑣

𝑛

Let 𝑑𝑖𝑠𝑡𝑘[𝑢, 𝑣] be the
solution to sub-problem(k)

This is an overview picture, not all edges are shown.

nodes {1, … , 𝑘}

Dynamic Programming Recipe
• Step 1: Identify the subproblems (optimal substructure)

• Step 2: Find a recursive formulation for the subproblems

• Step 3: Design the dynamic programming algorithm
→ Fill in a table, starting with the smallest sub-problems and building up.

Recursive Formulation
How do I solve sub-problem(k+1) knowing all the solutions 𝑑𝑖𝑠𝑡𝑘(𝑢, 𝑣) to Sub-
problem(k)?

𝑘

2

…

1

3𝑢
𝑣

𝑛

nodes {1, … , 𝑘}

nodes {1, … , 𝑘 + 1}

Shortest 𝒖-𝒗 path
through nodes {𝟏, … , 𝒌}

𝑘 + 1

Recursive Formulation
How do I solve sub-problem(k+1) knowing all the solutions 𝑑𝑖𝑠𝑡𝑘(𝑢, 𝑣) to Sub-
problem(k)?

Case 1: Shortest 𝑢-𝑣 path with internal
nodes 1, … , 𝑘 + 1 doesn’t use node 𝑘 + 1:
→Shortest 𝑢-𝑣 path with internal nodes
{1, … , 𝑘} is still the shortest path!
𝑑𝑖𝑠𝑡𝑘+1 𝑢, 𝑣 = 𝑑𝑖𝑠𝑡𝑘(𝑢, 𝑣)!

𝑘

2

…

1

3

𝑘 + 1

𝑢
𝑣

𝑛

nodes {1, … , 𝑘}

nodes {1, … , 𝑘 + 1}

Shortest 𝒖-𝒗 path with
internal nodes {𝟏, … , 𝒌}

Recursive Formulation
How do I solve sub-problem(k+1) knowing all the solutions 𝑑𝑖𝑠𝑡𝑘(𝑢, 𝑣) to Sub-
problem(k)?

𝑘

2

…

1

3𝑢
𝑣

𝑛

nodes {1, … , 𝑘}

nodes {1, … , 𝑘 + 1}
Case 2: Shortest 𝑢-𝑣 path with internal
nodes 1, … , 𝑘 + 1 uses node 𝑘 + 1:

This path can be broken to two parts!
• Shortest 𝑢-(𝑘 + 1) path
• Shortest (𝑘 + 1)-𝑣 path
• Both using internal nodes

1, … , 𝑘 only.

Shortest 𝒖-𝒗 path with
internal nodes {𝟏, … , 𝒌 + 𝟏}𝑑𝑖𝑠𝑡𝑘+1 𝑢, 𝑣 = 𝑑𝑖𝑠𝑡𝑘 𝑢, 𝑘 + 1 + dist𝑘(𝑘 + 1, 𝑣)

𝑘 + 1

Putting the two cases together

𝑑𝑖𝑠𝑡𝑘+1 𝑢, 𝑣 = min 𝑑𝑖𝑠𝑡𝑘 𝑢, 𝑣 , 𝑑𝑖𝑠𝑡𝑘 𝑢, 𝑘 + 1 + dist𝑘(𝑘 + 1, 𝑣)

�

2

…

1

3

� + 1

�

�

�

�

2

…

1

3

� + 1

�

�

�

Case 2: Shortest 𝑢-𝑣 path with internal
nodes 1, … , 𝑘 + 1 uses node 𝑘 + 1:

Case 1: Shortest 𝑢-𝑣 path with internal
nodes 1, … , 𝑘 + 1 doesn’t use node 𝑘 + 1:

The recursive solution for All-Pair Shortest Path

Dynamic Programming Recipe
• Step 1: Identify the subproblems (optimal substructure)

• Step 2: Find a recursive formulation for the subproblems

• Step 3: Design the dynamic programming algorithm
→ Fill in a table, starting with the smallest sub-problems and building up.

The Floyd-Washall Algorithm for APSP
Input: Graph 𝐺 = (𝑉, 𝐸), edge costs ℓ 𝑢, 𝑣 for (𝑢, 𝑣) ∈ 𝐸 (not necessarily positive)
Output: For all 𝑢, 𝑣 ∈ 𝑉, 𝑑𝑖𝑠𝑡 𝑢, 𝑣 = cost of shortest path from 𝑢 to 𝑣

Floyd-Warshall (𝐺 = (𝑉, 𝐸))
 𝑛 × 𝑛 matrices 𝑑𝑖𝑠𝑡0, 𝑑𝑖𝑠𝑡1,…, 𝑑𝑖𝑠𝑡𝑛 initialized to ∞
 For (𝑢, 𝑣) ∈ 𝐸, 𝑑𝑖𝑠𝑡0 𝑢, 𝑣 ← ℓ 𝑢, 𝑣
 // 𝑑𝑖𝑠𝑡0 paths have no internal nodes.
 For 𝑘 = 1, … , 𝑛:

For 𝑢, 𝑣 ∈ 𝑉:
𝑑𝑖𝑠𝑡𝑘[𝑢, 𝑣] ← min{𝑑𝑖𝑠𝑡𝑘−1[𝑢, 𝑣] ,
 𝑑𝑖𝑠𝑡𝑘−1[𝑢, 𝑘] + 𝑑𝑖𝑠𝑡𝑘−1[𝑘, 𝑣]}

Each update is just 𝑂(1).

The loop over 𝑘 and 𝑢, 𝑣
repeats 𝑂(𝑛3) times.

Overall, 𝑂(𝑛3) runtime.

Longest Increasing Subsequences

Longest Increasing Subsequences (LIS)
• Input: An array of 𝑛 integers 𝑎 = [𝑎1, … , 𝑎𝑛]
• Output: The length of the longest increasing subsequence of the input.

“Subsequences” can be non-
contiguous by definition.

𝑎 = 5 2 8 6 3 6 9 7

To be consistent with the book, we
aren’t using 0-indexing for the input.

Longest Increasing Subsequence

Why care about this problem?
• An important algorithmic preprocessing step.
• Useful for understanding random processes.
→Shuffle cards and play the game of Solitaire (aka Patience Sorting), how

many piles you need?
→Computations over random graphs, networks, social media.

The recipe!
Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→Memo-ize computation starting from smallest subproblems and building up.

Step 1: Subproblems of LIS
• Input: An array of 𝑛 integers 𝑎 = [𝑎1, … , 𝑎𝑛]
• Output: The length of the longest increasing subsequence (LIS) of the input.

What makes for good subproblems?
• Not too many of them (the more subproblems the slower the DP algorithm)
• Must have enough information in it to compute subproblems recursively (needed

for step 2).

Which of these two subproblems is more appropriate for designing a dynamic
programming algorithm?

Discuss

1. 𝐿 𝑗 = 𝑙𝑒𝑛. 𝑜𝑓 𝐿𝐼𝑆 𝑖𝑛 𝑎𝑟𝑟𝑎𝑦 [𝑎1, … , 𝑎𝑗], for 𝑗 = 1, … , 𝑛

2. 𝐿 𝑗 = 𝑙𝑒𝑛. 𝑜𝑓 𝐿𝐼𝑆 𝑖𝑛 𝑎𝑟𝑟𝑎𝑦 [𝑎1, … , 𝑎𝑗] that ends in 𝑎𝑗 , for 𝑗 = 1, … , 𝑛

Subproblems: 𝐿 𝑗 = 𝑙𝑒𝑛. 𝑜𝑓 𝐿𝐼𝑆 𝑖𝑛 𝑎𝑟𝑟𝑎𝑦 [𝑎1, … , 𝑎𝑗] that ends in 𝑎𝑗 , for 𝑗 = 1, … , 𝑛
→Because, if we don’t keep track of the last (largest) element of the LIS we don’t

know whether we can add a new element to the subsequence, recursively.
→Think of the subproblem’s stored info as the only thing you observe about smaller

instances!

Step 1: Subproblems of LIS
• Input: An array of 𝑛 integers 𝑎 = [𝑎1, … , 𝑎𝑛]
• Output: The length of the longest increasing subsequence (LIS) of the input.

𝑎 = 5 2 8 6 3 6 9 7

len. of LIS = 4

Knowing only Len of LIS, we
wouldn’t know if we can add 7

Step 1: Subproblems of LIS
• Input: An array of 𝑛 integers 𝑎 = [𝑎1, … , 𝑎𝑛]
• Output: The length of the longest increasing subsequence (LIS) of the input.

𝑎 = 5 2 8 6 3 6 9 7

len. of LIS = 4

Subproblems: 𝐿 𝑗 = 𝑙𝑒𝑛. 𝑜𝑓 𝐿𝐼𝑆 𝑖𝑛 𝑎𝑟𝑟𝑎𝑦 [𝑎1, … , 𝑎𝑗] that ends in 𝑎𝑗 , for 𝑗 = 1, … , 𝑛
→Because, if we don’t keep track of the last (largest) element of the LIS we don’t

know whether we can add a new element to the subsequence, recursively.
→Think of the subproblem’s stored info as the only thing you observe about smaller

instances!
Knowing only Len of LIS, we
wouldn’t know if we can add 7

len. of LIS
ending in 9 = 4 We know for sure, we can’t add 7

Step 2: Recurrence of LIS subproblems
• Input: An array of 𝑛 integers 𝑎 = [𝑎1, … , 𝑎𝑛]
• Output: The length of the longest increasing subsequence (LIS) of the input.

Step 2: Compute the recurrence: 𝐿 𝑗 in terms of 𝐿[𝑖] for 𝑖 < 𝑗.

𝑎 = … 6 3 6 9 … 7 2 5

Step 1: 𝐿 𝑗 = 𝑙𝑒𝑛. 𝑜𝑓 𝐿𝐼𝑆 𝑖𝑛 𝑎𝑟𝑟𝑎𝑦 [𝑎1, … , 𝑎𝑗] that ends in 𝑎𝑗

𝐿 𝑖

𝑎 = … 6 3 6 … 7 2 5

𝐿 𝑖𝑎𝑗𝑎𝑖 𝑎𝑖

Case 1: 𝑎 𝑗 ≤ 𝑎[𝑖] Case 2: 𝑎 𝑗 > 𝑎[𝑖]

𝑎𝑗

Can’t add 𝑎 𝑗 to
lengthen 𝐿 𝑖

𝐿 𝑗 = 𝐿 𝑖 + 1

Step 2: Recurrence of LIS subproblems
• Input: An array of 𝑛 integers 𝑎 = [𝑎1, … , 𝑎𝑛]
• Output: The length of the longest increasing subsequence (LIS) of the input.

Step 2: Compute the recurrence: 𝐿 𝑗 in terms of 𝐿[𝑖] for 𝑖 < 𝑗.

Step 1: 𝐿 𝑗 = 𝑙𝑒𝑛. 𝑜𝑓 𝐿𝐼𝑆 𝑖𝑛 𝑎𝑟𝑟𝑎𝑦 [𝑎1, … , 𝑎𝑗] that ends in 𝑎𝑗

To be consistent with the book, we
aren’t using 0-indexing for the input.

Discuss

Step 3: Design the DP Algorithm
• Input: An array of 𝑛 integers 𝑎 = [𝑎1, … , 𝑎𝑛]
• Output: The length of the longest increasing subsequence (LIS) of the input.

To be consistent with the book, we
aren’t using 0-indexing for the input.

LIS(𝑎1, … 𝑎𝑛)
 array 𝐿 of length 𝑛
 for 𝑗 = 1, … , 𝑛
 If exists 𝑖 < 𝑗, s.t., 𝑎𝑖 < 𝑎𝑗

 𝐿[𝑗]← 1 + max
𝑖<𝑗

𝐿 𝑖 𝑎𝑖 < 𝑎𝑗

 Else 𝐿[𝑗] ← 1
 return 𝑚𝑎𝑥𝑖 𝐿[𝑖]

Runtime:
𝑂(𝑛) subproblems

For each subproblem, we look at at most
𝑛 smaller subproblems.
→𝑂 𝑛 time per subproblem.

Total: 𝑂 𝑛2 runtime.

Subproblems: 𝐿 𝑗 = 𝑙𝑒𝑛. 𝑜𝑓 𝐿𝐼𝑆 𝑖𝑛 𝑎𝑟𝑟𝑎𝑦 [𝑎1, … , 𝑎𝑗] that ends in 𝑎𝑗

Edit Distance

Computing the Edit Distance

Edits allowed:
1. Insert a character into 𝑆
2. Delete character from 𝑆
3. Change one character to another character.

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

Example:
What’s the edit distance between
𝑆 = “𝑆𝑁𝑂𝑊𝑌” and 𝑇 = “𝑆𝑈𝑁𝑁𝑌”?

S N O W Y

S U N N Y

S U N O W Y

S U N N W Y

Add U

Change O to N

Delete W

Applications of Edit Distance
• Auto correct!
• Word suggestions in search engines
• DNA analysis of similarities.

Edit Distance and Cost of Alignment

Edit Distance is the minimal cost of alignment between two strings.
→ An alignment: line up two words. Cost of an alignment = # columns that don’t
match

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

S - N O W Y

S U N N - Y

Add U

Change O to N

Delete W

S N - O W Y

S U N N - Y

An alignment
with cost 3

An alignment
with cost 4

Step 1: Subproblems of Edit Distance

What makes for good subproblems?
• Not too many of them (the more subproblems the slower the DP algorithm)
• Must have enough information in it to compute subproblems recursively (needed

for step 2).

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

Subproblems: for all 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛

𝐸 𝑖, 𝑗 = 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡(𝑆 1 … 𝑖 , 𝑇[1 … 𝑗])

Cost of optimal alignment between 𝑆 1 … 𝑖 , 𝑇[1 … 𝑗]

Step 2: Recurrence Relation of Edit Distance
Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

Step 1: 𝐸 𝑖, 𝑗 = 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡(𝑆 1 … 𝑖 , 𝑇[1 … 𝑗]), for all 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛

𝑆[1 ⋯ 𝑖 − 1] 𝑆[𝑖]

𝑇[1 ⋯ 𝑗] −

𝑆[1 ⋯ 𝑖] −

𝑇[1 ⋯ 𝑗 − 1] 𝑇[𝑗]

𝑆[1 ⋯ 𝑖 − 1] 𝑆[𝑖]

𝑇[1 ⋯ 𝑗 − 1] 𝑇[𝑗]

There are three ways of aligning 𝑆 1 … 𝑖 , and 𝑇[1 … 𝑗]. What are their costs
recursively?

Discuss

𝐸 𝑖, 𝑗 =

Case 1 Case 2 Case 3

Step 2: Recurrence Relation of Edit Distance
Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

Step 1: 𝐸 𝑖, 𝑗 = 𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡(𝑆 1 … 𝑖 , 𝑇[1 … 𝑗]), for all 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛

𝐸 𝑖, 𝑗 = min 𝐸 𝑖 − 1, 𝑗 + 1, 𝐸 𝑖, 𝑗 − 1 + 1 , 𝐸 𝑖 − 1, 𝑗 − 1 + 1(𝑆 𝑖 ≠ 𝑇 𝑗)

Step 2: The recurrence relation

Base case: 𝐸 𝑖, 0 = 𝑖 and 𝐸 0, 𝑗 = 𝑗

Step 3: Design the Algorithm

0 ⋯ 𝑗 − 1 𝑗 ⋯
0

⋮

𝑖 − 1
𝐸(𝑖 − 1, 𝑗 − 1) 𝐸(𝑖 − 1, 𝑗)

𝑖 𝐸 𝑖, 𝑗 − 1 𝐸(𝑖, 𝑗)

⋮

𝐸 𝑖, 𝑗 = min 𝐸 𝑖 − 1, 𝑗 + 1, 𝐸 𝑖, 𝑗 − 1 + 1 , 𝐸 𝑖 − 1, 𝑗 − 1 + 1(𝑆 𝑖 ≠ 𝑇 𝑗)
Base case: 𝐸 𝑖, 0 = 𝑖 and 𝐸 0, 𝑗 = 𝑗

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

How do we memo-ize the subproblems in this recurrence relation?

0 ⋯ 𝑗 − 1 𝑗 ⋯
0

⋮

𝑖 − 1
𝐸(𝑖 − 1, 𝑗 − 1) 𝐸(𝑖 − 1, 𝑗)

𝑖 𝐸 𝑖, 𝑗 − 1 𝐸(𝑖, 𝑗)

⋮

Step 3: Design the Algorithm

𝐸 𝑖, 𝑗 = min 𝐸 𝑖 − 1, 𝑗 + 1, 𝐸 𝑖, 𝑗 − 1 + 1 , 𝐸 𝑖 − 1, 𝑗 − 1 + 1(𝑆 𝑖 ≠ 𝑇 𝑗)
Base case: 𝐸 𝑖, 0 = 𝑖 and 𝐸 0, 𝑗 = 𝑗

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

How do we memo-ize the subproblems in this recurrence relation?

0 ⋯ 𝑗 − 1 𝑗 ⋯
0

⋮

𝑖 − 1
𝐸(𝑖 − 1, 𝑗 − 1) 𝐸(𝑖 − 1, 𝑗)

𝑖 𝐸 𝑖, 𝑗 − 1 𝐸(𝑖, 𝑗)

⋮

Step 3: Design the Algorithm

𝐸 𝑖, 𝑗 = min 𝐸 𝑖 − 1, 𝑗 + 1, 𝐸 𝑖, 𝑗 − 1 + 1 , 𝐸 𝑖 − 1, 𝑗 − 1 + 1(𝑆 𝑖 ≠ 𝑇 𝑗)
Base case: 𝐸 𝑖, 0 = 𝑖 and 𝐸 0, 𝑗 = 𝑗

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

How do we memo-ize the subproblems in this recurrence relation?

0 ⋯ 𝑗 − 1 𝑗 ⋯
0

⋮

𝑖 − 1
𝐸(𝑖 − 1, 𝑗 − 1) 𝐸(𝑖 − 1, 𝑗)

𝑖 𝐸 𝑖, 𝑗 − 1 𝐸(𝑖, 𝑗)

⋮

Step 3: Design the Algorithm

𝐸 𝑖, 𝑗 = min 𝐸 𝑖 − 1, 𝑗 + 1, 𝐸 𝑖, 𝑗 − 1 + 1 , 𝐸 𝑖 − 1, 𝑗 − 1 + 1(𝑆 𝑖 ≠ 𝑇 𝑗)
Base case: 𝐸 𝑖, 0 = 𝑖 and 𝐸 0, 𝑗 = 𝑗

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

How do we memo-ize the subproblems in this recurrence relation?

Runtime of this algorithm

Edit-Distance(𝑆 1 … 𝑚 , 𝑇[1 ⋯ 𝑛])
 (𝑚 + 1) × (𝑛 + 1) array 𝐸
 For 𝑖 = 0, 1, … , 𝑚, 𝐸 𝑖, 0 = 𝑖
 For 𝑗 = 0, 1, … , 𝑛, 𝐸 0, 𝑗 = 𝑗
 For 𝑖 = 1, … , 𝑚
 For 𝑗 = 1, … , 𝑛

 E 𝑖, 𝑗 ← min
𝐸 𝑖 − 1, 𝑗 + 1,
𝐸 𝑖, 𝑗 − 1 + 1 ,

𝐸 𝑖 − 1, 𝑗 − 1 + 1(𝑆 𝑖 ≠ 𝑇 𝑗)
 return E 𝑚, 𝑛

𝑂 𝑚𝑛 number of subproblems.

For each subproblem, we take
minimum of 3 values.
→Work per subproblem 𝑂(1)

Total runtime: 𝑂(𝑚𝑛).

Input: Two strings 𝑆[1 … 𝑚] and 𝑇 1 … 𝑛
Output: Compute the smallest number of edits to turn 𝑆 into 𝑇.

Next time: More examples of DP
Knapsack and other graph problems

Wrap up
More examples of dynamic programming.
• Longest increasing subsequence
• Edit distance
• Knapsack (with repetition)

→ Also got more experience on how to choose subproblems.

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the Last Lecture
	Slide 4: This lecture
	Slide 5: Recap: Shortest Path with Negative Weights
	Slide 6: Bellman-Ford Algorithm
	Slide 7
	Slide 8: All-Pair Shortest Path (APSP)
	Slide 9: Dynamic Programming Recipe
	Slide 10: Identify the subproblems (optimal substructure)
	Slide 11: Dynamic Programming Recipe
	Slide 12: Recursive Formulation
	Slide 13: Recursive Formulation
	Slide 14: Recursive Formulation
	Slide 15: Putting the two cases together
	Slide 16: Dynamic Programming Recipe
	Slide 17: The Floyd-Washall Algorithm for APSP
	Slide 18
	Slide 19: Longest Increasing Subsequences (LIS)
	Slide 20: Longest Increasing Subsequence
	Slide 21: Step 1: Subproblems of LIS
	Slide 22: Step 1: Subproblems of LIS
	Slide 23: Step 1: Subproblems of LIS
	Slide 24: Step 2: Recurrence of LIS subproblems
	Slide 25: Step 2: Recurrence of LIS subproblems
	Slide 26: Step 3: Design the DP Algorithm
	Slide 27: 3 Min Break and Attendance
	Slide 28
	Slide 29: Computing the Edit Distance
	Slide 30: Applications of Edit Distance
	Slide 31: Edit Distance and Cost of Alignment
	Slide 32: Step 1: Subproblems of Edit Distance
	Slide 33: Step 2: Recurrence Relation of Edit Distance
	Slide 34: Step 2: Recurrence Relation of Edit Distance
	Slide 35: Step 3: Design the Algorithm
	Slide 36: Step 3: Design the Algorithm
	Slide 37: Step 3: Design the Algorithm
	Slide 38: Step 3: Design the Algorithm
	Slide 39: Runtime of this algorithm
	Slide 49: Wrap up

