CS170
Efficient Algorithms and Intractable Problems

Lecture 13

Dynamic Programming IlI

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Interested in meeting 1-1 with TAs?
- Fill out a form on Ed

—> General advice for course, midterm performance, and etc.

Recap of the last 2 lectures

Dynamic Programming!

-
The recipe!

Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm

_ =2 Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
—> Fibonacci
—> Shortest Paths (in DAGs, Bellman-Ford, and All-Pair)

—> Longest increasing subsequence
—> Edit distance

This lecture

Even more examples!

- Knapsack (without repetition)
—> Traveling Salesman Problem
—> Independent Sets on Trees

Best way to learn dynamic programming is by doing a lot of examples!

By doing more examples today, we will also develop intuition about how to
choose subproblems (Recipe’s step 1).

Knapsack

KnapsaCk All integers!

Input: A weight capacity W, and n items with (weights, values), (wy,v{), -, (W,,, Uy,).
Output: Most valuable combination of items, whose total weight is at most W.

Two variants:

1. With repetition (aka unbounded supply, aka with replacement)
—> For each item i, we can take as many copies of it as we want

2. Without repetition (0-1 knapsack, aka without replacement)
-> For each item, either we take 1 copy or 0 copy of it.

Knapsack

Input: A weight capacity W, and n items with (weights, values), (wy,v{), -, (W,,, Uy,).

All integers!

Output: Most valuable combination of items, whose total weight is at most W.

D -
[tem ‘
Weight: 6 3 4 2
Value: 30 14 16 9
With repetition: Without repetition:
1 tent + 2 sandwiches = 48 value 1 tent + 1 stove = 46 value

Weight =10 Weight =10

Step 1: Subproblems of Knapsack (with repetition)

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.

Output: Most valuable combination of items (with repetition), whose total weight is <W.

What makes for good subproblems?

* Not too many of them (the more subproblems the slower the DP algorithm)

* Must have enough information in it to compute subproblems recursively (needed
for step 2).

Subproblems: For all ¢ < W, K(c) = best value achievable for knapsack of capacity c.

Then larger knapsacks

First solve the problem
for small knapsacks

Step 2: Recurrence in Knapsack (with repetition)

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.
Output: Most valuable combination of items (with repetition), whose total weight is <W.

Step 1: Subproblems K (c) = best value achievable for knapsack of capacity ¢, forc < W.
Step 2:
Let’s say we commit to putting a copy of item i for which w; < ¢ in the knapsack
-=> Then only ¢ — w; capacity remains to be optimally packed.
—> The recurrence relationship
K(c) = max{v; + K(c — w;)}

[:W;<C

Step 3: Design the Algorithm

Input: A weight capacity W, and n items (w{, v,), -**, (W,,, V). All integers.
Output: Most valuable combination of items (with repetition), whose total weight is <W.

How do we memo-ize the subproblems in this recurrence relation?

K(c) = max{v; + K(c — w;)}

i:wi<c
Runtime of this algorithm? Knapsack-with-repetition(W, (wy, v4), ..., (Wn, 1))
An array K of size W + 1.
Number of subproblems: O (W) K[0] = 0
Per subproblem, max over O(n) cases Forc=1,...W,
- 0(n) time per subproblem. Klc| = lI‘TAl/a}C{U + K(c —w;)}
Total runtime: O(nlV/) return K{W]

Polynomial vs Pseudo-Polynomial Time

We quantify runtimes as functions of input size.

—> Input size: # bits needed to write the input

What is the input size the of Knapsack
* Weight capacity W - Needs O(log(W)) bits

* n items with weights at most W (remove any larger item) = most O(log(WW)) bits
» Total input size of knapsack: O(nlog(IW))

Does the dynamic programming for knapsack run efficiently?

—> Not polynomial time exactly! Runtime O(nW) but input size O(n log(W))
—> Called a pseudo-polynomial time algorithm

—> A runtime that’s polynomial in the numerical value of the input (like W) but not in
the size of the input (like O(n log(W))).

Knapsack without Repitions

Knapsack Recap

Input: A weight capacity W, and n items with (weights, values), (wy,v{), -, (W,,, Uy,).

All integers!

Output: Most valuable combination of items, whose total weight is at most W.

N

254
3 4 2
14 16 9
s Last Variant ~N - This Variant
With repetition: Without repetition:
1 tent + 2 sandwiches = 48 value 1 tent + 1 stove = 46 value
\ Weight =10 Y L Weight =10

Step 1: Knapsack Subproblems

Can we still use the same subproblems
K(c) = best value achievable for knapsack of capacity c, for c < W?

Challenge: We are only allowed one copy of an item, so the subproblem
needs to “know” what items we have used and what we haven't.

We need a different way of tracking subproblems!

Idea: Solve knapsack for
* smaller sets of items and smaller capacities!

Step 1: Knapsack Subproblems (without repetition)

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.

Output: Most valuable subset of items, whose total weight is <W.

First solve the problem for
small knapsacks and small
sets of items

Jl¢

el\l!""
.4 § —,ﬁf)i
P

()

Then larger knapsacks

And larger item sets

Step 2: Knapsack Recurrence (without repetition)

Input: A weight capacity W, and n items (w{, v,), -**, (W,,, V). All integers.
Output: Most valuable subset of items, whose total weight is <W.

Step1: Subproblems: Forallc < W andallj <n

K(j, c) = best value achievable for knapsack of capacity c using only items 1, ..., j
Discuss

Step 2: Compute K (j, ¢) using smaller subproblems.
Casel
Optimal solution using items 1, ..., j
doesn’t actually use item j.

Case 2
Optimal solution using items
1,...,j uses item j.

Step 3: Design the Algorithm

Input: A weight capacity W, and n items (w{, v,), -**, (W,,, V). All integers.
Output: Most valuable subset of items, whose total weight is <W.

How do we memo-ize the subproblems in this recurrence relation?

K(j,c) = max {K(j —1,¢),v +K(j —1,c —Wj)}, base cases: K(0,c) =0and K(j,0) =0

Jwj<c
0 C—Wj C W
0
j—1 KG—1,c—w) K(j—ll,c)
\\\ ¥
J — K(j,c)
n

Runtime of this algorithm

Input: A weight capacity W, and n items (w{, v,), -**, (W,,, V). All integers.

Output: Most valuable subset of items, whose total weight is <W.

Knapsack-no-rep(W, (wy, v1), ..., Wy, v,))

0 (nW) number of subproblems.
(nW) number of subproblems An array K of size (n + 1) X (W + 1).

For each subproblem, we take Forc=0,..,W:K[0,c] =0
max of 2 values: Forj=0,..,n:K[j,0] =0
—> Work per subproblem 0(1)
Forj=1,..,n:
Total runtime: O (nW/). Forc=1,..,W,
Klj,cl = j%?i(c{ KG—1,c),v; + K(] —1,¢c — Wj)}

Space complexity: O (nW)
return K|n, W]

Runtime of this algorithm

Fill in the table one row at a time and keep only the last row.
0 cee C — W] cee C cee W
0
(.
! . —— - h
)| J
n
Total runtime: O (nW). Forc=1,..,W,

K[jlc] — maX{KU - 1,C] ,vj +K[] — 1,C —W]]:
Space complexity: O ,(;{W) o(W) return K[n, W1

Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Traveling Salesperson Problem (TSP)

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Tour of distance: 13

Traveling Salesperson Problem (TSP)

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Tour of distance: 10

Traveling Salesperson Problem (TSP)

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Tour of distance: 10

Naive brute force algorithm:

= (n — 1)! Tours

—> Each O(n) to compute distance.
- 0(n!) runtime

Dynamic programming gives us 0(n*2™)

One of the most famous Math /CS problems.
Notoriously difficult.

The DP algorithm is a substantial
improvement over brute force. Take n = 25
>0(n!) = 10%°

2>0(n%2") ~ 101Y

The
) TRAVELING
The Traveling SALESMAN
Salesman Preblem PROBLEM

HERE’S THE CORRECT START... ik
David L Applegate
Robert E, Bixby, Vasek Chvatal,
and William J. Cook

ohaidt iR _ OFFICIAL RULES ON REVERSE SIDE

Step 1: Subproblems of TSP

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Think of subproblems as partial tour!
—> It starts from city 1, ends in city j, and passing through all cities in a set S (which

includes 1 and j).
Set S of cities (including 1 and j)

(A

O—O—@O—D

Subproblems: Forallj <nand S < {1, ...,n}, s.t. S includes 1 and .

T[S, jl = length of the shortest path visiting all cities in S exactly
once, starting from 1 and ending at j.

Step 2: Recurrence Relation for TSP

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Subproblems: Forallj <nand S < {1, ...,n}, s.t. S includes 1 and .

T[S, j] = length of the shortest path visiting all cities in S exactly
once, starting from 1 and ending at j.

Step 2: Compute T[S, j| using smaller subproblems.
Length T[S, j]

f 2
®—O0—O0—
N) 4
Y

Length T[S \ j, i]

Step 2: Recurrence Relation for TSP

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Recurrence relation: We don’t know which city i is the 2" to last.
—> Take the minimum over all i € S such thati # j.

Length T[S, J]
A
(A
N) dy

Length T[S \ {j}, il
2> T1S,jl = min{T[S\{j},i] +d;; | i € Sand i # j}

Step 2: Base Cases and the Final Solution

Input: cities 1 ...n and pairwise distances d;; between cities i and j.
Qutput: A “tour” of minimum total distance.
Recurrence relation: T[S, j| = min{T[S\{j},i] +d;; | i € Sand i # j}

Base cases: T[{1},1] = 0 and for all other S of size > 2,|T|S, 1] = co.

\ No partial path allowed to

start and ends at 1.

Final solution:
—> Add the final (j, 1) edge cost: Length T[S, J]

> Find the best O—O—O—-O—@

rjnil?T[{l, onhjl+ dj1

-
-~---—————

Step 3: Design the algorithm

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

0(2™ X n) number of
subproblems.

For each subproblem, we take

min of < n values:
-> Work per subproblem 0 (n)

Total runtime: 0 (n*2™").

TSP(d;;: i,j € [n])
An array T of size 2™ X n.
T[{1},1] =0, T[S, 1] = oo forall sets S
For setsizes = 2,...,n
For sets S,s.t.|S| =s,1€ S
Forjes

T[S,j] = min {T[S\{j},] +d;;}

LES: %]

return minT[{1, ..., n},j] + d;4

JE-X!

Independent Sets (in Trees)

Input: Undirected Graph ¢ = (V,E)
Output: Largest “independent set” of G.

Definition: S € V is an independent set of ¢ if there are no edges between any
u,v € S.

@ B {A,D, F} is an independent set.

D—®

Independent Sets (in Trees)

Input: Undirected Graph ¢ = (V,E)
Output: Largest “independent set” of G.

Definition: S € V is an independent set of ¢ if there are no edges between any
u,v € S.

@ B {A, B, F}is NOT an independent set.

D—®

O—

Finding largest independent set can’t be done in polynomial time in general graphs.
For trees, dynamic programming gives O (|V|) algorithm!

Independent Sets in Trees

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Recall, trees don’t have cycles!

—> We can pick and node of a tree and say that
it's the root

- Rooted trees create a natural order
between nodes, parent to children.

<

Step 1: Subproblems for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
subtree rooted at v.

Step 2: Recurrence for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
subtree rooted at v.

Recurrence: Compute /|v] using smaller
subproblems (its descendants)

Two Cases:

Recurrence: Compute I|v] using smaller subproblems (its descendants)

Case 1: The optimal solution for I[v] uses v.

None of the children of v can be in the
independent set.

Recurse to the grandchildren levels:

I[vl] =1+ Z I[u]

u:grandchild of v

Two Cases:

Recurrence: Compute I|v] using smaller subproblems (its descendants)

Case 2: The optimal solution for I|v] does NOT use v.

This doesn’t restrict the optimal solution in the
children of v.

Recurse to the children levels:

u: child of v

Step 2: Recurrence for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
subtree rooted at v.

Recurrence: Compute /|v] using smaller
subproblems (its descendants)

()

I[v] = max<1+ 2 I[u], 2 I[u]

X u:grandchild of v u: child of v)

Y

Step 3: Design the Algorithm

Input: Undirected Graph G = (V,E) and G is a tree. |
Output: Largest “independent set” of G. = “;‘/y\

We need a data structure to store the tree easily.

—> How to ensure that every child is processed before the parent?

Recall, post numbers in DFS(G):
 If uis a descendent of v: post(u) < post(v).

Bottom-up: memo-ize in increasing order of post numbers, in any DFS traversal.

Step 3: Design the Algorithm

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

1. Intrees: |E| = V] — 1. Independent-Set-Tree(G = (V,E))
2. DFS Runtime = O(|V]) An array [of size n.
sort v, ... v, in increasing post order of DFS(G)
3. Each edge is looked at < 2 times. Fori=1,...n
—> Once for its parent’s subproblem. ()
—> Once for its grandparent’s 1+ z Iu],
subproblem. u:grandchild of v;
Total VI\:/)ork for all subproblems = I[v;] = max >
O(IED) = O(IVI). >)
\ u: child of v; y,
Total runtime: O(|V]).
return /|v, |

Wrap up

We did lots of dynamic programming!

Dynamic programming can be best learned by practice! Do lots more example
at home.

Next time: A different paradigm of
algorithm design

—> Linear Programming

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the last 2 lectures
	Slide 4: This lecture
	Slide 5
	Slide 6: Knapsack
	Slide 7: Knapsack
	Slide 8: Step 1: Subproblems of Knapsack (with repetition)
	Slide 9: Step 2: Recurrence in Knapsack (with repetition)
	Slide 10: Step 3: Design the Algorithm
	Slide 11: Polynomial vs Pseudo-Polynomial Time
	Slide 12
	Slide 13: Knapsack Recap
	Slide 14: Step 1: Knapsack Subproblems
	Slide 15: Step 1: Knapsack Subproblems (without repetition)
	Slide 16: Step 2: Knapsack Recurrence (without repetition)
	Slide 17: Step 3: Design the Algorithm
	Slide 18: Runtime of this algorithm
	Slide 19: Runtime of this algorithm
	Slide 20: 3 Min Break and Attendance
	Slide 21
	Slide 22: Traveling Salesperson Problem (TSP)
	Slide 23: Traveling Salesperson Problem (TSP)
	Slide 24: Traveling Salesperson Problem (TSP)
	Slide 25: Traveling Salesperson Problem (TSP)
	Slide 26
	Slide 27: Step 1: Subproblems of TSP
	Slide 28: Step 2: Recurrence Relation for TSP
	Slide 29: Step 2: Recurrence Relation for TSP
	Slide 30: Step 2: Base Cases and the Final Solution
	Slide 31: Step 3: Design the algorithm
	Slide 32
	Slide 33: Independent Sets (in Trees)
	Slide 34: Independent Sets (in Trees)
	Slide 35: Independent Sets in Trees
	Slide 36: Step 1: Subproblems for Independent Sets
	Slide 37: Step 2: Recurrence for Independent Sets
	Slide 38: Two Cases:
	Slide 39: Two Cases:
	Slide 40: Step 2: Recurrence for Independent Sets
	Slide 41: Step 3: Design the Algorithm
	Slide 42: Step 3: Design the Algorithm
	Slide 43: Wrap up

