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Announcements

Interested in meeting 1-1 with TAs?
→Fill out a form on Ed
→General advice for course, midterm performance, and etc.



Recap of the last 2 lectures
Dynamic Programming!

The recipe!
Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
→ Fibonacci
→ Shortest Paths (in DAGs, Bellman-Ford, and All-Pair)
→ Longest increasing subsequence
→ Edit distance



This lecture
Even more examples!
→ Knapsack (without repetition)
→ Traveling Salesman Problem
→ Independent Sets on Trees

Best way to learn dynamic programming is by doing a lot of examples!

By doing more examples today, we will also develop intuition about how to 
choose subproblems (Recipe’s step 1).



Knapsack



Knapsack

Two variants: 
1. With repetition (aka unbounded supply, aka with replacement)
→ For each item 𝑖, we can take as many copies of it as we want
2. Without repetition (0-1 knapsack, aka without replacement)
→ For each item, either we take 1 copy or 0 copy of it.

Input: A weight capacity 𝑊, and 𝑛 items with (weights, values), 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛).
Output: Most valuable combination of items, whose total weight is at most W.

All integers!



Knapsack
Input: A weight capacity 𝑊, and 𝑛 items with (weights, values), 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛).
Output: Most valuable combination of items, whose total weight is at most W.

Weight:

Value:

6 3 4 2

30 14 16 9

Item

With repetition:
1 tent + 2 sandwiches = 48 value

Weight =10

Without repetition:
1 tent + 1 stove = 46 value

Weight =10

W = 10

All integers!



Step 1: Subproblems of Knapsack (with repetition)

What makes for good subproblems?
• Not too many of them (the more subproblems the slower the DP algorithm)
• Must have enough information in it to compute subproblems recursively (needed 

for step 2).

Subproblems: For all 𝑐 ≤ 𝑊, 𝐾 𝑐 = best value achievable for knapsack of capacity 𝑐.

Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable combination of items (with repetition), whose total weight is ≤W.

First solve the problem 
for small knapsacks

Then larger knapsacks



Step 2: Recurrence in Knapsack (with repetition)

Step 1: Subproblems 𝐾 𝑐 = best value achievable for knapsack of capacity 𝑐, for c ≤ 𝑊.
Step 2:
Let’s say we commit to putting a copy of item 𝑖 for which 𝑤𝑖 ≤ 𝑐 in the knapsack
→Then only 𝑐 − 𝑤𝑖  capacity remains to be optimally packed.  
→The recurrence relationship

Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable combination of items (with repetition), whose total weight is ≤W.

𝐾 𝑐 = max
𝑖:𝑤𝑖≤𝑐

𝑣𝑖 + 𝐾(𝑐 − 𝑤𝑖)



Step 3: Design the Algorithm

How do we memo-ize the subproblems in this recurrence relation?

Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable combination of items (with repetition), whose total weight is ≤W.

𝐾 𝑐 = max
𝑖:𝑤𝑖≤𝑐

𝑣𝑖 + 𝐾(𝑐 − 𝑤𝑖)

Knapsack-with-repetition(𝑊, 𝑤1, 𝑣1 , … , (𝑤𝑛, 𝑣𝑛))
      An array 𝐾 of size 𝑊 + 1.
      𝐾 0 = 0 
      For 𝑐 = 1, … , 𝑊, 
 𝐾 𝑐 = max

𝑖:𝑤𝑖≤𝑐
𝑣𝑖 + 𝐾(𝑐 − 𝑤𝑖)

      return 𝐾 𝑊

Runtime of this algorithm?

Number of subproblems: 𝑂(𝑊)

Per subproblem, max over 𝑂 𝑛  cases 
→ 𝑂 𝑛  time per subproblem.

Total runtime: 𝑂(𝑛𝑊)



Polynomial vs Pseudo-Polynomial Time
We quantify runtimes as functions of input size.
→ Input size: # bits needed to write the input

What is the input size the of Knapsack
• Weight capacity W → Needs 𝑂(log(𝑊)) bits
• 𝑛 items with weights at most 𝑊 (remove any larger item) → most 𝑂 log 𝑊  bits
•  Total input size of knapsack: 𝑂(𝑛 log(𝑊))

Does the dynamic programming for knapsack run efficiently?
→Not polynomial time exactly! Runtime 𝑶(𝒏𝑾) but input size 𝑶(𝒏 𝒍𝒐𝒈(𝑾))
→Called a pseudo-polynomial time algorithm
→A runtime that’s polynomial in the numerical value of the input (like W) but not in 

the size of the input (like 𝑂(𝑛 𝑙𝑜𝑔(𝑊))).



Knapsack without Repitions



Knapsack Recap
Input: A weight capacity 𝑊, and 𝑛 items with (weights, values), 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛).
Output: Most valuable combination of items, whose total weight is at most W.

Weight:

Value:

6 3 4 2

30 14 16 9

Item

With repetition:
1 tent + 2 sandwiches = 48 value

Weight =10

Without repetition:
1 tent + 1 stove = 46 value

Weight =10

W = 10

All integers!

Last Variant This Variant



Step 1: Knapsack Subproblems
Can we still use the same subproblems 
      𝐾 𝑐 = best value achievable for knapsack of capacity 𝑐, for c ≤ 𝑊?

Challenge: We are only allowed one copy of an item, so the subproblem 
needs to “know” what items we have used and what we haven’t.

We need a different way of tracking subproblems!

Idea: Solve knapsack for 
• smaller sets of items and smaller capacities!



Step 1: Knapsack Subproblems (without repetition)
Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable subset of items, whose total weight is ≤W.
First solve the problem for 
small knapsacks and small 
sets of items

Then larger knapsacks

And larger item sets



Step 2: Knapsack Recurrence (without repetition)

Step1: Subproblems: For all 𝑐 ≤ 𝑊 and all 𝑗 ≤ 𝑛

Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable subset of items, whose total weight is ≤W.

𝐾 𝑗, 𝑐 = best value achievable for knapsack of capacity 𝑐 using only items 1, … , 𝑗

Step 2: Compute 𝐾 𝑗, 𝑐  using smaller subproblems. 
Case 1 

Optimal solution using items 1, … , 𝑗 
doesn’t actually use item 𝑗.

Case 2 
Optimal solution using items 

1, … , 𝑗 uses item 𝑗.

Hint: keep track of value, leftover capacity, and item set. 

Discuss



Step 3: Design the Algorithm

0 ⋯ 𝑐 − 𝑤𝑗 ⋯ 𝑐 ⋯ 𝑊

0

⋮
𝑗 − 1 𝐾(𝑗 − 1, 𝑐 − 𝑤𝑗) ⋯ 𝐾(𝑗 − 1, 𝑐)

𝑗 𝐾(𝑗, 𝑐)

⋮

𝑛

𝐾 𝑗, 𝑐 = max
𝑗:𝑤𝑗<𝑐

 𝐾 𝑗 − 1, 𝑐  , 𝑣𝑗 + 𝐾 𝑗 − 1, 𝑐 − 𝑤𝑗 , base cases: 𝐾 0, 𝑐 = 0 and 𝐾 𝑗, 0 = 0

How do we memo-ize the subproblems in this recurrence relation?

Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable subset of items, whose total weight is ≤W.



Runtime of this algorithm

Knapsack-no-rep(𝑊, 𝑤1, 𝑣1 , … , (𝑤𝑛, 𝑣𝑛))
      An array 𝐾 of size 𝑛 + 1 × (𝑊 + 1).
      For 𝑐 = 0, … , 𝑊: 𝐾 0, 𝑐 = 0 
      For 𝑗 = 0, … , 𝑛: 𝐾 𝑗, 0 = 0
      
      For 𝑗 = 1, … , 𝑛: 
 For 𝑐 = 1, … , 𝑊, 
      𝐾 𝑗, 𝑐 = max

𝑗:𝑤𝑗<𝑐
 𝐾 𝑗 − 1, 𝑐  , 𝑣𝑗 + 𝐾 𝑗 − 1, 𝑐 − 𝑤𝑗

      return 𝐾 𝑛, 𝑊

𝑂 𝑛𝑊  number of subproblems.

For each subproblem, we take 
max of 2 values:
→Work per subproblem 𝑂(1)

Total runtime: 𝑂(𝑛𝑊).

Space complexity: 𝑂(𝑛𝑊)

Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable subset of items, whose total weight is ≤W.



Knapsack-no-rep(𝑊, 𝑤1, 𝑣1 , … , (𝑤𝑛, 𝑣𝑛))
      An array 𝐾 of size 𝑛 + 1 × (𝑊 + 1).
      For 𝑐 = 0, … , 𝑊: 𝐾 0, 𝑐 = 0 
      For 𝑗 = 0, … , 𝑛: 𝐾 𝑗, 0 = 0
      
      For 𝑗 = 1, … , 𝑛: 
 For 𝑐 = 1, … , 𝑊, 
      𝐾 𝑗, 𝑐 = max  𝐾[𝑗 − 1, 𝑐] , 𝑣𝑗 + 𝐾[𝑗 − 1, 𝑐 − 𝑤𝑗]
      return 𝐾 𝑛, 𝑊

Runtime of this algorithm

𝑂 𝑛𝑊  number of subproblems.

For each subproblem, we take 
max of 2 values:
→Work per subproblem 𝑂(1)

Total runtime: 𝑂(𝑛𝑊).

Space complexity: 𝑂 𝑛𝑊

Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.
Output: Most valuable subset of items, whose total weight is ≤W.

0 ⋯ 𝑐 − 𝑤𝑗 ⋯ 𝑐 ⋯ 𝑊

0

⋮
𝑗 − 1 𝐾(𝑗 − 1, 𝑐 − 𝑤𝑗) ⋯ 𝐾(𝑗 − 1, 𝑐)

𝑗 𝐾(𝑗, 𝑐)

⋮

𝑛

Fill in the table one row at a time and keep only the last row.

𝑂(𝑊)



Traveling Salesperson Problem



Traveling Salesperson Problem (TSP)
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that 
1) Starts from city 1
2) Visits every city, exactly once
3) Returns to city 1 

A

C

3

2

4 B

D

2

3

1
E

2

2

2

4



Traveling Salesperson Problem (TSP)
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that 
1) Starts from city 1
2) Visits every city, exactly once
3) Returns to city 1 

Tour of distance: 13 

A

C

3

2

4 B

D

2

3

1
E

2

2

2

4



Traveling Salesperson Problem (TSP)
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that 
1) Starts from city 1
2) Visits every city, exactly once
3) Returns to city 1 

A

C

3

2

4 B

D

2

3

1
E

2

2

2

4

Tour of distance: 10 



Traveling Salesperson Problem (TSP)
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that 
1) Starts from city 1
2) Visits every city, exactly once
3) Returns to city 1 

Naïve brute force algorithm:
→ (𝑛 − 1)! Tours
→Each 𝑂(𝑛) to compute distance.
→𝑂 𝑛!  runtime

Dynamic programming gives us 𝑂 𝑛22𝑛

A

C

3

2

4 B

D

2

3

1
E

2

2

2

4

Tour of distance: 10 



One of the most famous Math/CS problems.

Notoriously difficult.

The DP algorithm is a substantial 
improvement over brute force. Take 𝑛 = 25
→𝑂 𝑛! ≈ 1025

→𝑂 𝑛22𝑛 ≈ 1010



Step 1: Subproblems of TSP
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

Think of subproblems as partial tour!
→ It starts from city 1, ends in city 𝑗, and passing through all cities in a set 𝑆 (which 
includes 1 and 𝑗).

1 𝑖1 𝑖2 𝑗

Set 𝑆 of cities (including 1 and 𝑗)

Subproblems: For all 𝑗 ≤ 𝑛 and 𝑆 ⊆ {1, … , 𝑛}, s.t. 𝑆 includes 1 and 𝑗.  

𝑇 𝑆, 𝑗 = length of the shortest path visiting  all cities in 𝑆 exactly 
once, starting from 1 and ending at 𝑗. 



Step 2: Recurrence Relation for TSP
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

1 𝑗𝑖

Length 𝑇 𝑆, 𝑗

Subproblems: For all 𝑗 ≤ 𝑛 and 𝑆 ⊆ {1, … , 𝑛}, s.t. 𝑆 includes 1 and 𝑗.  

𝑇 𝑆, 𝑗 = length of the shortest path visiting  all cities in 𝑆 exactly 
once, starting from 1 and ending at 𝑗. 

Step 2: Compute 𝑇 𝑆, 𝑗  using smaller subproblems. 

𝑑𝑖𝑗

Length 𝑇 𝑆 ∖ 𝑗, 𝑖



Step 2: Recurrence Relation for TSP
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

1 𝑗𝑖

Length 𝑇 𝑆, 𝑗

Recurrence relation: We don’t know which city 𝒊 is the 2nd to last.
→ Take the minimum over all 𝑖 ∈ 𝑆 such that 𝑖 ≠ 𝑗.

𝑑𝑖𝑗

Length 𝑇 𝑆 ∖ {𝑗}, 𝑖

→ 𝑇 𝑆, 𝑗 = min{𝑇 𝑆\{𝑗}, 𝑖 + 𝑑𝑖𝑗 ∣ 𝑖 ∈ 𝑆 and 𝑖 ≠ 𝑗}



Step 2: Base Cases and the Final Solution
Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.

1 𝑗𝑖

Length 𝑇 𝑆, 𝑗

Recurrence relation: 𝑇 𝑆, 𝑗 = min{𝑇 𝑆\{𝑗}, 𝑖 + 𝑑𝑖𝑗 ∣ 𝑖 ∈ 𝑆 and 𝑖 ≠ 𝑗}

Base cases: 𝑇 {1}, 1 = 0 and for all other 𝑆 of size ≥ 2, 𝑇 𝑆, 1 = ∞. 

No partial path allowed to 
start and ends at 1.

Final solution:
→Add the final (𝑗, 1) edge cost:

𝑇 {1, … , 𝑛}, 𝑗 + 𝑑𝑗1

→Find the best 𝑗: 
min
𝑗≠1

𝑇 {1, … , 𝑛}, 𝑗 + 𝑑𝑗1

 
𝑑𝑗1



Step 3: Design the algorithm

TSP(𝑑𝑖𝑗:  𝑖, 𝑗 ∈ [𝑛])
      An array 𝑇 of size 2𝑛 × 𝑛.
      T[{1},1] = 0, T 𝑆, 1 = ∞ for all sets 𝑆
      For set size 𝑠 = 2, … , 𝑛
             For sets 𝑆, s.t. 𝑆 = 𝑠, 1 ∈ 𝑆
        For 𝑗 ∈ 𝑆
   𝑇 𝑆, 𝑗 = min

𝑖∈𝑆: 𝑖≠𝑗
{𝑇 𝑆\{𝑗}, 𝑖 + 𝑑𝑖𝑗}   

return min
𝑗≠1

𝑇 {1, … , 𝑛}, 𝑗 + 𝑑𝑗1

𝑂 2𝑛 × 𝑛  number of 
subproblems.

For each subproblem, we take 
min of ≤ 𝑛 values:
→Work per subproblem 𝑂(𝑛)

Total runtime: 𝑂(𝑛22𝑛).

Input: cities 1 … 𝑛 and pairwise distances 𝑑𝑖𝑗  between cities 𝑖 and 𝑗.
Output: A “tour” of minimum total distance.



Independent Sets (in Trees)
Input: Undirected Graph 𝐺 = (𝑉, 𝐸)
Output: Largest “independent set” of 𝐺.

Definition: 𝑆 ⊆ 𝑉 is an independent set of 𝐺 if there are no edges between any 
𝑢, 𝑣 ∈ 𝑆.

A

C

B

D

E F

𝐴, 𝐷, 𝐹  is an independent set.



Independent Sets (in Trees)
Input: Undirected Graph 𝐺 = (𝑉, 𝐸)
Output: Largest “independent set” of 𝐺.

Definition: 𝑆 ⊆ 𝑉 is an independent set of 𝐺 if there are no edges between any 
𝑢, 𝑣 ∈ 𝑆.

A

C

B

D

E F

𝐴, 𝐵, 𝐹  is NOT an independent set.

Finding largest independent set can’t be done in polynomial time in general graphs.
For trees, dynamic programming gives 𝑂( 𝑉 ) algorithm!



Independent Sets in Trees
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.
Output: Largest “independent set” of 𝐺.

Recall, trees don’t have cycles!
→We can pick and node of a tree and say that 

it’s the root
→Rooted trees create a natural order 

between nodes, parent to children.

A

D

B

E F

C
A

D

B

E F

C



Step 1: Subproblems for Independent Sets 
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.
Output: Largest “independent set” of 𝐺.

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = 𝑣Size of max independent set in 
subtree rooted at 𝑣.



Step 2: Recurrence for Independent Sets 
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.
Output: Largest “independent set” of 𝐺.

𝑣

Recurrence: Compute 𝐼 𝑣  using smaller 
subproblems (its descendants)

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = Size of max independent set in 
subtree rooted at 𝑣.



Two Cases:
Recurrence: Compute 𝐼 𝑣  using smaller subproblems (its descendants)

Case 1: The optimal solution for 𝐼 𝑣  uses 𝑣. 

None of the children of 𝑣 can be in the 
independent set. 

Recurse to the grandchildren levels:

𝐼 𝑣 = 1 + 
𝑢:grandchild of 𝑣

𝐼[𝑢]



Two Cases:
Recurrence: Compute 𝐼 𝑣  using smaller subproblems (its descendants)

Case 2: The optimal solution for 𝐼 𝑣  does NOT use 𝑣. 

This doesn’t restrict the optimal solution in the 
children of 𝑣.

Recurse to the children levels:

𝐼 𝑣 = 
𝑢: child of 𝑣

𝐼[𝑢]



Step 2: Recurrence for Independent Sets 
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.
Output: Largest “independent set” of 𝐺.

𝑣

Recurrence: Compute 𝐼 𝑣  using smaller 
subproblems (its descendants)

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = Size of max independent set in 
subtree rooted at 𝑣.

𝐼 𝑣 = max 1 + 
𝑢:grandchild of 𝑣

𝐼[𝑢] , 
𝑢: child of 𝑣

𝐼[𝑢]



Step 3: Design the Algorithm
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.
Output: Largest “independent set” of 𝐺.

We need a data structure to store the tree easily.
→ How to ensure that every child is processed before the parent?

Recall, post numbers in DFS(G):
• If 𝑢 is a descendent of 𝑣: 𝑝𝑜𝑠𝑡 𝑢 < 𝑝𝑜𝑠𝑡 𝑣 .

Bottom-up: memo-ize in increasing order of 𝑝𝑜𝑠𝑡 numbers, in any DFS traversal.

A

D

B

E F

C



Step 3: Design the Algorithm
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.
Output: Largest “independent set” of 𝐺.

Independent-Set-Tree(𝐺 = 𝑉, 𝐸  )
      An array 𝐼 of size 𝑛.
      sort 𝑣1 … 𝑣𝑛 in increasing post order of DFS(G)
      For 𝑖 = 1, … , 𝑛

 

      return 𝐼 𝑣𝑛

𝐼 𝑣𝑖 = max

1 + 
𝑢:grandchild of 𝑣𝑖

𝐼[𝑢] ,


𝑢: child of 𝑣𝑖

𝐼[𝑢]

1. In trees: 𝐸 = 𝑉 − 1.
2. DFS Runtime = 𝑂( 𝑉 )

3. Each edge is looked at ≤ 2 times.
→ Once for its parent’s subproblem.
→Once for its grandparent’s 

subproblem.
Total work for all subproblems = 
O 𝐸 = O( V ).

Total runtime: 𝑂(|𝑉|).



Next time: A different paradigm of 
algorithm design
→ Linear Programming

Wrap up
We did lots of dynamic programming!

Dynamic programming can be best learned by practice! Do lots more example 
at home.


	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the last 2 lectures
	Slide 4: This lecture
	Slide 5
	Slide 6: Knapsack
	Slide 7: Knapsack
	Slide 8: Step 1: Subproblems of Knapsack (with repetition)
	Slide 9: Step 2: Recurrence in Knapsack (with repetition)
	Slide 10: Step 3: Design the Algorithm
	Slide 11: Polynomial vs Pseudo-Polynomial Time
	Slide 12
	Slide 13: Knapsack Recap
	Slide 14: Step 1: Knapsack Subproblems
	Slide 15: Step 1: Knapsack Subproblems (without repetition)
	Slide 16: Step 2: Knapsack Recurrence (without repetition)
	Slide 17: Step 3: Design the Algorithm
	Slide 18: Runtime of this algorithm
	Slide 19: Runtime of this algorithm
	Slide 20: 3 Min Break and Attendance
	Slide 21
	Slide 22: Traveling Salesperson Problem (TSP)
	Slide 23: Traveling Salesperson Problem (TSP)
	Slide 24: Traveling Salesperson Problem (TSP)
	Slide 25: Traveling Salesperson Problem (TSP)
	Slide 26
	Slide 27: Step 1: Subproblems of TSP
	Slide 28: Step 2: Recurrence Relation for TSP
	Slide 29: Step 2: Recurrence Relation for TSP
	Slide 30: Step 2: Base Cases and the Final Solution
	Slide 31: Step 3: Design the algorithm
	Slide 32
	Slide 33: Independent Sets (in Trees)
	Slide 34: Independent Sets (in Trees)
	Slide 35: Independent Sets in Trees
	Slide 36: Step 1: Subproblems for Independent Sets 
	Slide 37: Step 2: Recurrence for Independent Sets 
	Slide 38: Two Cases:
	Slide 39: Two Cases:
	Slide 40: Step 2: Recurrence for Independent Sets 
	Slide 41: Step 3: Design the Algorithm
	Slide 42: Step 3: Design the Algorithm
	Slide 43: Wrap up

