CS170
Efficient Algorithms and Intractable Problems

Lecture 13

Dynamic Programming IlI

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Interested in meeting 1-1 with TAs?
- Fill out a form on Ed

—> General advice for course, midterm performance, and etc.

Recap of the last 2 lectures

Dynamic Programming!

-
The recipe!

Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm

_ =2 Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
—> Fibonacci
—> Shortest Paths (in DAGs, Bellman-Ford, and All-Pair)

—> Longest increasing subsequence
—> Edit distance

This lecture

Even more examples!

- Knapsack (without repetition)
—> Traveling Salesman Problem
—> Independent Sets on Trees

Best way to learn dynamic programming is by doing a lot of examples!

By doing more examples today, we will also develop intuition about how to
choose subproblems (Recipe’s step 1).

Knapsack

KnapsaCk All integers!

Input: A weight capacity W, and n items with (weights, values), (wy,v{), -, (W,,, Uy,).
Output: Most valuable combination of items, whose total weight is at most W.

Two variants:

1. With repetition (aka unbounded supply, aka with replacement)
—> For each item i, we can take as many copies of it as we want

2. Without repetition (0-1 knapsack, aka without replacement)
-> For each item, either we take 1 copy or 0 copy of it.

Knapsack

Input: A weight capacity W, and n items with (weights, values), (wy,v{), -, (W,,, Uy,).

All integers!

Output: Most valuable combination of items, whose total weight is at most W.

D -
[tem ‘
Weight: 6 3 4 2
Value: 30 14 16 9
With repetition: Without repetition:
1 tent + 2 sandwiches = 48 value 1 tent + 1 stove = 46 value

Weight =10 Weight =10

Step 1: Subproblems of Knapsack (with repetition)

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.

Output: Most valuable combination of items (with repetition), whose total weight is <W.

What makes for good subproblems?

* Not too many of them (the more subproblems the slower the DP algorithm)

* Must have enough information in it to compute subproblems recursively (needed
for step 2).

Subproblems: For all ¢ < W, K(c) = best value achievable for knapsack of capacity c.

Then larger knapsacks

First solve the problem
for small knapsacks

Step 2: Recurrence in Knapsack (with repetition)

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.
Output: Most valuable combination of items (with repetition), whose total weight is <W.

Step 1: Subproblems K (c) = best value achievable for knapsack of capacity ¢, forc < W.
Step 2:

Let’s say we commit to putting a copy of item i for which w; < ¢ in the knapsack

—> Then only ¢ — w; capacity remains to be optimally packed.

- The recurrence relationship vl ile~ v
K(c) = max@+ K(c—wp))
i:w;<c

> v?hw,onvaf,wc (L
MMy (af Y

Tltnm‘l
L ; 7‘

Step 3: Design the Algorithm

Input: A weight capacity W, and n items (w{, v,), -**, (W,,, V). All integers.
Output: Most valuable combination of items (with repetition), whose total weight is <W.

How do we memo-ize the subproblems in this recurrence relation?

K(c) = max{v; + K(c —w;)} CL w
—_— l: Wl—
Runtime of this algorithm? Knapsack-with-repetition(W, (wy, v4), ..., (Wn, 1))
An array K of size W + 1.
. -
Number of subproblems: O (W) K[0] = 0 O

Per subproblem, max over O(n) cases Forc=1,... W,
- 0(n) time per subproblem. K|c] :(max'gi-w-q v; + K(c —wy)}

return K[W]

Total runtime: O (nW)

Polynomial vs Pseudo-Polynomial Time

We quantify runtimes as functions of input size. - C\A) 52 (\)’}
\4“,? ViVl
—> Input size: # bits needed to write the input U/ o vewl
C/_____'___/_\
What is the input size the of Knapsack \070“) N \o 4 LW)

* Weight capacity W = Needs O (log(W)) bit \ F\w%@<
uﬁc@rﬂ ve-e >
* n items with weights at mos@(remove any farger item) < most O(log(WW)) bits

» Total input size of knapsack: O(nlog(IW))

Does the dynamic programming for knapsack run efficiently?
- Not polynomial time exactly! Runtime O(nW) but input size O(n log(W))
—> Called a pseudo-polynomial time algorithm Nwonm GO
—> A runtime that’s polynomial in the numerical value of the input (like W) but not in

the size of the input (like O(n log(W))).
S ————

Knapsack without Repitions

Knapsack Recap

Input: A weight capacity W, and n items with (weights, values), (wy,v{), -, (W,,, Uy,).

All integers!

Output: Most valuable combination of items, whose total weight is at most W.

N

254
3 4 2
14 16 9
s Last Variant ~N - This Variant
With repetition: Without repetition:
1 tent + 2 sandwiches = 48 value 1 tent + 1 stove = 46 value
\ Weight =10 Y L Weight =10

Step 1: Knapsack Subproblems

Can we still use the same subproblems
K(c) = best value achievable for knapsack of capacity c, for c < W?

Challenge: We are only allowed one copy of an item, so the subproblem
needs to “know” what items we have used and what we haven't.

We need a different way of tracking subproblems!

Idea: Solve knapsack for
* smaller sets of items and smaller capacities!

Step 1: Knapsack Subproblems (without repetition)

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.

Output: Most valuable subset of items, whose total weight is <W.

First solve the problem for
small knapsacks and small
sets of items

i

Then larger knapsacks

And larger item sets

Step 2: Knapsack Recurrence (without repetition)

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.
Output: Most valuable subset of items, whose total weight is <W.

Step1: Subproblems: Forallc < W andallj <n

K(j, c) = best value achievable for knapsack of capacity c using only items 1, ..., j
Discuss

Step 2: Compute K (j, ¢) using smaller subproblems.
Casel
Optimal solution using items 1, ..., j
doesn’t actually use item j.

Case 2
Optimal solution using items
1,...,j uses item j.

Wyd)sfmmfék(),t;@) KG-e-h)2) i

_

Step 3: Design the Algorithm

Input: A weight capacity W, and n items (w{, v4), -+, (W, v,). All integers.
Output: Most valuable subset of items, whose total weight is <W.

How do we memo-ize the subproblems in this recurrence relation?

7
K(,c) = max {K(j —1,¢),v +K(j —1,c —Wj)}, base cases: K(0,c) =0and K(j,0) =0

0 C—Wj C W
0
j—1 KU—l,c\—WjiL\ K(G—-4,c)
] \\YEK(]',c)l
n

Runtime of this algorithm

Input: A weight capacity W, and n items (w{, v,), -**, (W,,, V). All integers.

Output: Most valuable subset of items, whose total weight is <W.

Knapsack-no-rep(W, (wy, v1), ..., Wy, v,))

0(nW ber of subproblems.
(nW) number of subproblems An array K of size (n + 1) X (W + 1)—>

For each subproblem, we take Forc=0,..,W:K[0,c] =0
max of 2 values: Forj=0,..,n:K[j,0] =0
—> Work per subproblem 0(1)
Forj=1,..,n
Total runtime: O(nW }LW/ Forc=1,.. W 14 9 03¢
otal runtime: O(n) e W 5 ~

K[j, c] = _maX{K(j—1,6);&+K(j—1»c—wj)}

Space Comgﬂ%l Qf/'my 0 (nW) 0&3

return K|n, W]

Runtime of this algorithm

Fo
m: .] Az
5 J e ——————— el

To

Space complexity: M/I/) ow)

Klj,cl= max { KG —1,0),v; + K(j — 1,c — w;)]

J:w;<c
return K|n, W]

Traveling Salesperson Problem

Traveling Salesperson Problem (TSP)

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Traveling Salesperson Problem (TSP)

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Tour of distance: 13

Traveling Salesperson Problem (TSP)

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Tour of distance: 10

Traveling Salesperson Problem (TSP)

Input: cities 1...n and pairwise distances d;; between cities i and j.

——

Qutput: A “tour” of minimum total distance.

Definition: A tour is a path through the cities, that
1) Starts from city 1

2) Visits every city, exactly once

3) Returns to city 1

Tour of distance: 10

Naive brute force algorithm:

= (n — 1)! Tours

—> Each O(n) to compute distance.
- 0(n!) runtime (f\[\/ Y\Y\

Dynamic programming gives us 0(n*2™)

One of the most famous Math /CS problems.
Notoriously difficult.

The DP algorithm is a substantial
improvement over brute force. Take n = 25
>0(n!) = 10%°

2>0(n%2") ~ 101Y

The
) TRAVELING
The Traveling SALESMAN
Salesman Preblem PROBLEM

HERE’S THE CORRECT START... ik
David L Applegate
Robert E, Bixby, Vasek Chvatal,
and William J. Cook

ohaidt iR _ OFFICIAL RULES ON REVERSE SIDE

Step 1: Subproblems of TSP

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Think of subproblems as partial tour!
—> It starts from city 1, ends in city j, and passing through all cities in a set S (which

includes 1 and j).
Set S of cities (including 1 and j)

(A

O—O—@O—D

Subproblems: Forallj <nand S < {1, ...,n}, s.t. S includes 1 and .

T[S, jl = length of the shortest path visiting all cities in S exactly
once, starting from 1 and ending at j.

Step 2: Recurrence Relation for TSP

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Subproblems: Forallj <nand S € {1, ...,n}, s.t. S includes 1 and j.

ﬁ" S, jﬁ length of the shortest path visiting all cities in S exactly
once, starting from 1 and ending at j.

Step 2: Compute T[S, j| using smaller subproblems. i
1 Shalest Lo B4
Length T[S,j| = S o :
gth 7[5, Lo 1 oo Shoclest
(\
\ J Lj
A

Length T[S\ j, i]

>

Step 2: Recurrence Relation for TSP

Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

Recurrence relation: We don’t know which city i is the 2" to last. , g «
—> Take the minimum over all i € S such thati # j. ?m})\q, LS M oN)
Length T[S, J] . o
/ o | dy' \
4 ‘/ \u \
\) 4
Y

Length T[S \ {j}, il
> T[S, j] = min{T[S\{j}, il ; i €Sandi#)}

Step 2: Base Cases and the Final Solution

Input: cities 1 ...n and pairwise distances d;; between cities i and j.
Qutput: A “tour” of minimum total distance.
Recurrence relation: T[S, j| = min{T[S\{j},i] +d;; | i € Sand i # j}

— >
Base cases: T[{1},1] = 0 and for all other S of size > Z(T[S, 1];3/
' /L " .';\) \ No partial path allowed to

start and ends at 1.

Final solution:
—> Add the final (j, 1) edge cost: Length T[S, /]
Tl{1,..,n},jl+ djq A \

> Find the best O—O—O—-O—@

r]n;tl{lT[{l’ onhjl+ dj1

e —

-

-~--————

. . /-_\) Y)
Step 3: Design the algorithm ‘TL?,;LQ/ 1
Input: cities 1 ...n and pairwise distances d;; between cities i and j.

Qutput: A “tour” of minimum total distance.

TSP(d;;: i,j € [n
0(2™ X n) number of (dij b €1 D ,
subproblems. An array T of sm?&n./ \
T[{1},1]1=0, T[S,1] = oo forall sets S 9=y ---¥

For each subproblem, we take For set size s = 2, .1 \glzs

min of < n values:
— F s 5, s.t. =g5,1€
- Work per subproblem 0 (n) orsetsS,st.|S|=s,1 €S S i
ForjeS S27)

TLS,jl = ie@};jms\{"}' il +d;;}

TR

otal runtime: O(n“2") return minT|{1, ..., n}, j| + dj;

Jj#1

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the last 2 lectures
	Slide 4: This lecture
	Slide 5
	Slide 6: Knapsack
	Slide 7: Knapsack
	Slide 8: Step 1: Subproblems of Knapsack (with repetition)
	Slide 9: Step 2: Recurrence in Knapsack (with repetition)
	Slide 10: Step 3: Design the Algorithm
	Slide 11: Polynomial vs Pseudo-Polynomial Time
	Slide 12
	Slide 13: Knapsack Recap
	Slide 14: Step 1: Knapsack Subproblems
	Slide 15: Step 1: Knapsack Subproblems (without repetition)
	Slide 16: Step 2: Knapsack Recurrence (without repetition)
	Slide 17: Step 3: Design the Algorithm
	Slide 18: Runtime of this algorithm
	Slide 19: Runtime of this algorithm
	Slide 20: 3 Min Break and Attendance
	Slide 21
	Slide 22: Traveling Salesperson Problem (TSP)
	Slide 23: Traveling Salesperson Problem (TSP)
	Slide 24: Traveling Salesperson Problem (TSP)
	Slide 25: Traveling Salesperson Problem (TSP)
	Slide 26
	Slide 27: Step 1: Subproblems of TSP
	Slide 28: Step 2: Recurrence Relation for TSP
	Slide 29: Step 2: Recurrence Relation for TSP
	Slide 30: Step 2: Base Cases and the Final Solution
	Slide 31: Step 3: Design the algorithm
	Slide 32
	Slide 33: Independent Sets (in Trees)
	Slide 34: Independent Sets (in Trees)
	Slide 35: Independent Sets in Trees
	Slide 36: Step 1: Subproblems for Independent Sets
	Slide 37: Step 2: Recurrence for Independent Sets
	Slide 38: Two Cases:
	Slide 39: Two Cases:
	Slide 40: Step 2: Recurrence for Independent Sets
	Slide 41: Step 3: Design the Algorithm
	Slide 42: Step 3: Design the Algorithm
	Slide 43: Wrap up

