CS 170 Efficient Algorithms and Intractable Problems

Lecture 13
Dynamic Programming III

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Interested in meeting 1-1 with TAs?

- → Fill out a form on Ed
- → General advice for course, midterm performance, and etc.

Recap of the last 2 lectures

Dynamic Programming!

The recipe!

- Step 1. Identify subproblems (aka optimal substructure)
- **Step 2.** Find a recursive formulation for the subproblems
- Step 3. Design the Dynamic Programming Algorithm
- → Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already

- → Fibonacci
- → Shortest Paths (in DAGs, Bellman-Ford, and All-Pair)
- → Longest increasing subsequence
- → Edit distance

This lecture

Even more examples!

- → Knapsack (without repetition)
- → Traveling Salesman Problem
- → Independent Sets on Trees

Best way to learn dynamic programming is by doing a lot of examples!

By doing more examples today, we will also develop intuition about how to choose subproblems (Recipe's step 1).

Knapsack

Knapsack

All integers!

<u>Input</u>: A weight capacity W, and n items with (weights, values), $(w_1, v_1), \dots, (w_n, v_n)$.

Output: Most valuable combination of items, whose total weight is at most W.

Two variants:

- 1. With repetition (aka unbounded supply, aka with replacement)
- \rightarrow For each item *i*, we can take as many copies of it as we want
- 2. Without repetition (0-1 knapsack, aka without replacement)
- → For each item, either we take 1 copy or 0 copy of it.

Knapsack

All integers!

<u>Input</u>: A weight capacity W, and n items with (weights, values), $(w_1, v_1), \dots, (w_n, v_n)$.

Output: Most valuable combination of items, whose total weight is at most W.

Item	
Item	

Weight:

6

3

4

2

Value:

30

14

16

9

With repetition:

1 tent + 2 sandwiches = 48 value

Weight = 10

Without repetition:
1 tent + 1 stove = **46 value**Weight = **10**

Step 1: Subproblems of Knapsack (with repetition)

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers</u>.

<u>Output</u>: Most valuable combination of items (<u>with repetition</u>), whose total weight is \leq W.

What makes for good subproblems?

- Not too many of them (the more subproblems the slower the DP algorithm)
- Must have enough information in it to compute subproblems recursively (needed for step 2).

Subproblems: For all $c \le W$, K(c) = best value achievable for knapsack of capacity c.

Step 2: Recurrence in Knapsack (with repetition)

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers.</u>

<u>Output</u>: Most valuable combination of items (<u>with repetition</u>), whose total weight is \leq W.

Step 1: Subproblems K(c) = best value achievable for knapsack of capacity c, for $c \le W$. Step 2:

Let's say we commit to putting a copy of item i for which $w_i \le c$ in the knapsack

- \rightarrow Then only $c w_i$ capacity remains to be optimally packed.
- → The recurrence relationship

-> pptimalivalue of remains capacité

Step 3: Design the Algorithm

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers</u>.

<u>Output</u>: Most valuable combination of items (<u>with repetition</u>), whose total weight is \leq W.

How do we memo-ize the subproblems in this recurrence relation?

$$\underline{K(c)} = \max_{i:w_i \le c} \{v_i + K(c - w_i)\}$$

Runtime of this algorithm?

Number of subproblems: O(W)

Per subproblem, max over O(n) cases $\rightarrow O(n)$ time per subproblem.

Total runtime: O(nW)

```
Knapsack-with-repetition(W, (w_1, v_1), ..., (w_n, v_n))

An array K of size W+1.

K[0]=0

For c=1,...,W,

K[c]=\max_{i:w_i \le c} \{v_i + K(c-w_i)\}

return K[W]
```

Polynomial vs Pseudo-Polynomial Time

We quantify runtimes as functions of input size.

→ **Input size**: # bits needed to write the input

What is the input size the of Knapsack

- Weight capacity $W \rightarrow \text{Needs } O(\log(W))$ bits
- *n* items with weights at most W (remove any larger item) \rightarrow most $O(\log(W))$ bits
- Total input size of knapsack: $O(n \log(W))$

Does the dynamic programming for knapsack run efficiently?

- \rightarrow Not polynomial time exactly! Runtime O(nW) but input size $O(n \log(W))$
- → Called a pseudo-polynomial time algorithm
 - \rightarrow A runtime that's polynomial in the <u>numerical value</u> of the input (like W) but not in the <u>size of the input</u> (like $O(n \log(W))$).

Knapsack without Repitions

Knapsack Recap

All integers!

<u>Input</u>: A weight capacity W, and n items with (weights, values), $(w_1, v_1), \dots, (w_n, v_n)$.

Output: Most valuable combination of items, whose total weight is at most W.

Weight:

6

3

4

Value:

30

14

16

9

Last Variant

With repetition:

1 tent + 2 sandwiches = **48 value**

Weight =10

This Variant

Without repetition:

1 tent + 1 stove = **46 value**

Weight = 10

Step 1: Knapsack Subproblems

Can we still use the same subproblems

K(c) = best value achievable for knapsack of capacity c, for $c \le W$?

Challenge: We are only allowed one copy of an item, so the subproblem needs to "know" what items we have used and what we haven't.

We need a different way of tracking subproblems!

Idea: Solve knapsack for

smaller sets of items and smaller capacities!

Step 1: Knapsack Subproblems (without repetition)

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers</u>.

<u>Output</u>: Most valuable <u>subset of items</u>, whose total weight is \leq W.

First solve the problem for small knapsacks and small sets of items

Then larger knapsacks

Step 2: Knapsack Recurrence (without repetition)

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers.</u>

<u>Output</u>: Most valuable <u>subset of items</u>, whose total weight is $\leq W$.

Step 1: Subproblems: For all $c \leq W$ and all $j \leq n$

K(i,c) = best value achievable for knapsack of capacity c using only items 1, ..., j

Discuss

Step 2: Compute K(j, c) using smaller subproblems.

Case 1

Optimal solution using items 1, ..., j doesn't actually use item *j*.

$$K(j_1c) = M$$
 $\left(\frac{1}{2} (j_1c) \right)$

Case 2

Optimal solution using items

1, ...,
$$j$$
 uses item j .

 $k(j-1,c-w_j)+v_j'$

Hint: keep track of value, leftover capacity, and item set.

Step 3: Design the Algorithm

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers</u>.

<u>Output</u>: Most valuable <u>subset of items</u>, whose total weight is ≤W.

How do we memo-ize the subproblems in this recurrence relation?

$$K(j,c) = \max_{0} \{ K(j-1,c), v_j + K(j-1,c-w_j) \}$$
, base cases: $K(0,c) = 0$ and $K(j,0) = 0$
 $K(j,c) = \max_{0} \{ K(j-1,c), v_j + K(j-1,c-w_j) \}$, base cases: $K(0,c) = 0$ and $K(j,0) = 0$
 $K(j-1,c) = \max_{0} \{ K(j-1,c-w_j) \}$, where $K(j-1,c) = 0$ and $K(j,c) = 0$ and $K(j,c) = 0$ and $K(j,c) = 0$

Runtime of this algorithm

Input: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. All integers.

<u>Output</u>: Most valuable <u>subset of items</u>, whose total weight is \leq W.

O(nW) number of subproblems.

For each subproblem, we take max of 2 values:

 \rightarrow Work per subproblem O(1)

Total runtime: O(nW).

Space complexity: O(nW)

```
Knapsack-no-rep(W, (w_1, v_1), \dots, (w_n, v_n))
   An array K of size (n + 1) \times (W + 1)
    For c = 0, ..., W: K[0, c] = 0
    For j = 0, ..., n: K[j, 0] = 0
   For j = 1, ..., n:

For c = 1, ..., W,

K[j, c] = \max \{ K(j-1, c), v_j + K(j-1, c-w_j) \}
    return K[n, W]
```

Runtime of this algorithm

Space complexity: O(nW) O(W)

$$K[j, c] = \max_{j:w_j < c} \{ K(j-1, c), v_j + K(j-1, c-w_j) \}$$

return K[n, W]

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Definition: A **tour** is a path through the cities, that

- 1) Starts from city 1
- 2) Visits every city, exactly once
- 3) Returns to city 1

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Definition: A **tour** is a path through the cities, that

- 1) Starts from city 1
- 2) Visits every city, exactly once
- 3) Returns to city 1

Tour of distance: 13

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Definition: A **tour** is a path through the cities, that

- 1) Starts from city 1
- 2) Visits every city, exactly once
- 3) Returns to city 1

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Definition: A **tour** is a path through the cities, that

- 1) Starts from city 1
- 2) Visits every city, exactly once
- 3) Returns to city 1

Naïve brute force algorithm:

- \rightarrow (n-1)! Tours
- \rightarrow Each O(n) to compute distance.
- $\rightarrow O(n!)$ runtime

Dynamic programming gives us $O(n^2 2^n)$

Tour of distance: 10

One of the most famous Math/CS problems.

Notoriously difficult.

The DP algorithm is a substantial improvement over brute force. Take n=25

$$\rightarrow 0(n!) \approx 10^{25}$$

$$O(n^2 2^n) \approx 10^{10}$$

Step 1: Subproblems of TSP

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Think of subproblems as partial tour!

 \rightarrow It starts from city 1, ends in city j, and passing through all cities in a set S (which includes 1 and j). Set S of cities (including 1 and j)

Subproblems: For all $j \le n$ and $S \subseteq \{1, ..., n\}$, s.t. S includes 1 and j.

T[S, j] = length of the shortest path visiting all cities in S exactly once, starting from 1 and ending at j.

Step 2: Recurrence Relation for TSP

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Subproblems: For all $j \le n$ and $S \subseteq \{1, ..., n\}$, s.t. S includes 1 and j.

 $T[S, j] \Rightarrow$ length of the shortest path visiting all cities in S exactly once, starting from 1 and ending at j.

Step 2: Compute T[S, j] using smaller subproblems.

Step 2: Recurrence Relation for TSP

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Recurrence relation: We don't know which city i is the 2^{nd} to last.

 \rightarrow Take the minimum over all $i \in S$ such that $i \neq j$.

Length
$$T[S \setminus \{j\}, i]$$

$$\rightarrow T[S,j] = \min\{T[S\setminus\{j\},i] + (d_{ij}) | i \in S \text{ and } i \neq j\}$$

Step 2: Base Cases and the Final Solution

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

Recurrence relation: $T[S, j] = \min\{T[S \setminus \{j\}, i] + d_{ij} \mid i \in S \text{ and } i \neq j\}$

Base cases: $T[\{1\}, 1] = 0$ and for all other S of size $\geq 2[T[S, 1] = \infty$.

Final solution:

- \rightarrow Add the final (j, 1) edge cost: $T[\{1, ..., n\}, j] + d_{j1}$
- \rightarrow Find the best j: $\min_{j \neq 1} T[\{1, ..., n\}, j] + d_{j1}$

Length T[S, j] d_{j1}

Step 3: Design the algorithm T(S,j) 2", n

Input: cities $1 \dots n$ and pairwise distances d_{ij} between cities i and j.

Output: A "tour" of minimum total distance.

 $O(2^n \times n)$ number of subproblems.

For each subproblem, we take min of $\leq n$ values: \rightarrow Work per subproblem O(n)

Total runtime: $O(n^2 2^n)$.

```
TSP(d_{ij}: i, j \in [n])
    An array T of size 2^n \times n.
    T[\{1\},1] = 0, T[S,1] = \infty for all sets S
    For set size s = 2, ..., n
         For sets S, s.t. |S| = s, 1 \in S
               For j \in S
                     T[S,j] = \min_{i \in S: i \neq j} \{T[S \setminus \{j\}, i] + d_{ij}\}
return \min_{j \neq 1} T[\{1, ..., n\}, j] + d_{j1}
```