SO FAR...

Divide & Conquer

Connectivity & Shortest Paths

Greedy Algs
Dynamic Programming

- Powerful & widely applicable "recipe" for algorithm design

Examples:
1) Maximum Increasing Subsequence
2) Knapsack
3) Edit Distance
4) All-Pairs Shortest Paths
5) Hamiltonian Cycle
6) Independent Sets in Trees

Many more
Dynamic Programming Example No. 1:

Longest Path in a DAG

Input: A DAG (directed acyclic graph) \(G = (V, E) \)

Goal: Find the length of longest path.

[Assume: 1, 2, ..., n is a topological sort of graph]
Step 1: Define “Subproblems”

Let “\(L[i] = \text{length of longest path ending at vertex } i \)”

\[L(1), L(2), \ldots, L(n) \rightarrow n \text{ subproblems} \]

The longest path = maximum \(\{ L(1), L(2), \ldots, L(n) \} \)

in the DAG
STEP 2: Write a recurrence relation among subproblems

\[L[i] = \text{“length of longest path ending at } i \text{”} \]

for \(i = 1 \ldots n \)

\[L[7] = \text{maximum} \left\{ \begin{array}{l}
L[3] + 1 \\
L[6] + 1 \\
L[5] + 1
\end{array} \right. \]

length of longest path ending at 7
Step 2: Write a recurrence relation among subproblems

\[L[i] = \text{"length of longest path ending at } i \text{"} \]
for \(i = 1 \ldots n \).

\[L(i) = \max_{j \rightarrow i} \{ L(j) + 1 \} \]
Step 3: Use the recurrence relation to solve subproblems

\[
L[i] \quad \text{for } i = 1 \ldots n
\]

- **Initialise:** \(L[i] = 0 \quad \forall \ i = 1 \ldots n \)
- **for** \(i = 1 \) **to** \(n \)
 - \(L[i] = \max \left\{ L[j] + 1 \mid j \in \text{prev}[i], j < i \right\} \)
- \(\text{prev}[i] = j \) for which \(L[i] = \max \left(L[j] + 1, L[i] \right) \)

\[|E| + |V| \]

\[
\text{return} \quad \text{Maximum } \left\{ L[1], L[2], \ldots, L[n] \right\}
\]
Longest Increasing Subsequence (LIS)

Input: Array of numbers $A[1], \ldots, A[n]$

Goal: Find the LIS

$\text{longest path in the OAH} = \text{longest increasing subsequence}$

$A := \begin{bmatrix} 11 & 100 & 1 & 7 & 18 & 23 & 25 & 10 \end{bmatrix}$

$\#\text{edges} = O(n^2)$