
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 14
Dynamic Programming IV (updated)

Announcements

Nika’s OH after class today:
→Meet at the podium of the entrance and walk to nearby benches.
→Submit request for 1-1 TA. Meeting by today
→We will finish midterm regrades later this week
→HW 7 due on Saturday

Remember him?!

Next few weeks:
→ John Wright will be lecturing
→ I will be back for some fun lectures towards the end of the semester!

Recap of the last 3 lectures
Dynamic Programming!

The recipe!
Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
→ Shortest Paths (in DAGs, Bellman-Ford, and All-Pair), Longest increasing

subsequence, Edit distance, Knapsack, Traveling Salesman Problem, …

This lecture
Last lecture on Dynamic Programming
→ Independent Sets on Trees

Best way to learn dynamic programming is by doing a lot of examples!

Independent Sets (in Trees)
Input: Undirected Graph 𝐺 = (𝑉, 𝐸)

Output: Largest “independent set” of 𝐺.

Definition: 𝑆 ⊆ 𝑉 is an independent set of 𝐺 if there are no edges between any
𝑢, 𝑣 ∈ 𝑆.

A

C

B

D

E F

𝐴, 𝐷, 𝐹 is an independent set.

Independent Sets (in Trees)
Input: Undirected Graph 𝐺 = (𝑉, 𝐸)

Output: Largest “independent set” of 𝐺.

Definition: 𝑆 ⊆ 𝑉 is an independent set of 𝐺 if there are no edges between any
𝑢, 𝑣 ∈ 𝑆.

A

C

B

D

E F

𝐴, 𝐵, 𝐹 is NOT an independent set.

Finding largest independent set can’t be done in polynomial time in general graphs.
For trees, dynamic programming gives 𝑂(𝑉) algorithm!

Independent Sets in Trees
Input: Undirected Graph 𝐺 = 𝑉, 𝐸 and G is a tree.

Output: Largest “independent set” of 𝐺.

Recall, trees don’t have cycles!
→We can pick and node of a tree and say that

it’s the root
→Rooted trees create a natural order

between nodes, parent to children.

A

D

B

E F

C

A

D

B

E F

C

Which choice of subproblem is more appropriate?

Max IS in the subtree

rooted at a node

Max IS in

the ancestors of a node

Discuss

Step 1: Subproblems for Independent Sets
Input: Undirected Graph 𝐺 = 𝑉, 𝐸 and G is a tree.

Output: Largest “independent set” of 𝐺.

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = 𝑣
Size of max independent set in
subtree rooted at 𝑣.

Step 2: Recurrence for Independent Sets
Input: Undirected Graph 𝐺 = 𝑉, 𝐸 and G is a tree.

Output: Largest “independent set” of 𝐺.

𝑣

Recurrence: Compute 𝐼 𝑣 using smaller
subproblems (its descendants)

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = Size of max independent set in
subtree rooted at 𝑣.

Two Cases:
Recurrence: Compute 𝐼 𝑣 using smaller subproblems (its descendants)

Case 1: The optimal solution for 𝐼 𝑣 uses 𝑣.

None of the children of 𝑣 can be in the
independent set.

Recurse to the grandchildren levels:

𝐼 𝑣 = 1 + ෍

𝑢:grandchild of 𝑣

𝐼[𝑢]

Two Cases:
Recurrence: Compute 𝐼 𝑣 using smaller subproblems (its descendants)

Case 2: The optimal solution for 𝐼 𝑣 does NOT use 𝑣.

This doesn’t restrict the optimal solution in the
children of 𝑣.

Recurse to the children levels:

𝐼 𝑣 = ෍

𝑢: child of 𝑣

𝐼[𝑢]

Step 2: Recurrence for Independent Sets
Input: Undirected Graph 𝐺 = 𝑉, 𝐸 and G is a tree.

Output: Largest “independent set” of 𝐺.

𝑣

Recurrence: Compute 𝐼 𝑣 using smaller
subproblems (its descendants)

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = Size of max independent set in
subtree rooted at 𝑣.

𝐼 𝑣 = max 1 + ෍

𝑢:grandchild of 𝑣

𝐼[𝑢] , ෍

𝑢: child of 𝑣

𝐼[𝑢]

Step 3: Design the Algorithm
Input: Undirected Graph 𝐺 = 𝑉, 𝐸 and G is a tree.

Output: Largest “independent set” of 𝐺.

We need a data structure to store the tree easily.

→ How to ensure that every child is processed before the parent?

Recall, post numbers in DFS(G):

• If 𝑢 is a descendent of 𝑣: 𝑝𝑜𝑠𝑡 𝑢 < 𝑝𝑜𝑠𝑡 𝑣 .

Bottom-up: memo-ize in increasing order of 𝑝𝑜𝑠𝑡 numbers, in any DFS traversal.

A

D

B

E F

C

Step 3: Design the Algorithm
Input: Undirected Graph 𝐺 = 𝑉, 𝐸 and G is a tree.

Output: Largest “independent set” of 𝐺.

Independent-Set-Tree(𝐺 = 𝑉, 𝐸)

 An array 𝐼 of size 𝑛.

 sort 𝑣1 … 𝑣𝑛 in increasing post order of DFS(G)

 For 𝑖 = 1, … , 𝑛

 return 𝐼 𝑣𝑛

𝐼 𝑣𝑖 = max

1 + ෍

𝑢:grandchild of 𝑣𝑖

𝐼[𝑢] ,

෍

𝑢: child of 𝑣𝑖

𝐼[𝑢]

1. In trees: 𝐸 = 𝑉 − 1.
2. DFS Runtime = 𝑂(𝑉)

3. Each edge is looked at ≤ 2 times.
→ Once for its parent’s subproblem.
→Once for its grandparent’s

subproblem.
Total work for all subproblems =
O 𝐸 = O(V).

Total runtime: 𝑂(|𝑉|).

3 Min Break and Attendance

https://forms.gle/W4zaMWqNzJmA3wMw6

Password: subtrees

Sign in using @berkeley.edu

Chain Matrix Multiplication

Matrix Multiplication

𝑚 × 𝑝

× =

𝑝 × 𝑛

𝑚 × 𝑛

Number of operations:
→Outcome matrix of size 𝑚 × 𝑛
→Each cell is a dot product of two vectors of length 𝑝, so O(𝑝)
→Total: 𝑂 𝑚𝑛𝑝

Lecture 2:
Fast matrix multiplication

does slightly better!
Here, we work with naïve

multiplication.

Chain Matrix Multiplication

A
50 × 20

× × × =

Outcome
50 × 60

B
20
× 1

C
1
× 10

D
10 × 60

Matrix multiplication is associative (can put parenthesis anywhere), but not
commutative (can’t switch left and right order)

Chain Matrix Multiplication

Parenthesization Cost of Computation

𝐴 × 𝐵 × 𝐶 × 𝐷

𝐴 × 𝐵 × 𝐶 × 𝐷

𝐴 × 𝐵 × 𝐶 × 𝐷

Chain Matrix Multiplication
Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖 is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 × … ,× 𝐴𝑛 .

𝐴

× 𝐵 × 𝐶 × 𝐷

Parenthesizations correspond to binary Trees

50 × 20

20 × 1 1 × 10

10 × 60

𝐶𝑜𝑠𝑡: 20 × 1
× 10
Matrix: 20 ×

10

𝐶𝑜𝑠𝑡: 20 × 10
× 60

Matrix: 20 × 60

𝐶𝑜𝑠𝑡: 50 × 20
× 60

Matrix: 50 × 60

𝐴 × 𝐵 × 𝐶

× 𝐷

𝐴 × 𝐵
× 𝐶 × 𝐷

Step 1: Subproblems
Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖 is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 × … ,× 𝐴𝑛 .

Subproblem choice: The cost of multiplying a contagious subset of the matrices

𝐶𝑜𝑠𝑡 𝑖, 𝑗 =Minimum cost of multiplying 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗 for 𝑖 ≤ 𝑗

Why is this a good choice?

For a tree to be optimal, every subtree
also has to be optimal.

Natural subproblem order, start from
leaves and consider every subtree.

Step 2: Recurrence Relation
Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖 is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 × … ,× 𝐴𝑛 .

Subproblem choice: The cost of multiplying a contagious subset of the matrices

𝐶𝑜𝑠𝑡 𝑖, 𝑗 =Minimum cost of multiplying 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗 for 𝑖 ≤ 𝑗

To multiply 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗 , we have to parenthesize it, say by splitting at 𝑘:

 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗 = 𝐴𝑖 × ⋯ × 𝐴𝑘 × (𝐴𝑘+1 × ⋯ 𝐴𝑗):

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = 𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + Cost of multiplying 𝑚𝑖−1 × 𝑚𝑘 by 𝑚𝑘 × 𝑚𝑗

matrices
= 𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + 𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = min
𝑘:𝑖≤𝑘≤𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + 𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

For the best parenthesization of the 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗:

This slide has been updated to fix a typo in the recurrence relation

Order of Computation

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = min
𝑘:𝑖≤𝑘≤𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + 𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

Go by the increasing size of 𝑗 − 𝑖:
→Base case: 𝐶𝑜𝑠𝑡 𝑖, 𝑖 = 0 for all 𝑖 = 1, … , 𝑛
→Start from s = 𝑗 − 𝑖 being 1, 2 … , 𝑛 − 1
→Fill in diagonally

This slide has been updated to fix a typo in the recurrence relation

Step 3: Memo-ization

Chain-Matrix-Mult(𝑚0, 𝑚1, ⋯ , 𝑚𝑛)

 An array C of size 𝑛 × 𝑛

 For 𝑖 = 1, … , 𝑛, C 𝑖, 𝑖 = 0

 For 𝑠 = 1 … , 𝑛 − 1

 For 𝑖 = 1, … , 𝑛 − 𝑠

 𝑗 ← 𝑖 + 𝑠

 C 𝑖, 𝑗 = min
𝑘:𝑖≤𝑘≤𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗
+𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

Return C 1, 𝑛

Number of subproblems is 𝑂 𝑛2

Per subproblem:
• Minimize over O(𝑛) choices for

identity of 𝑘.
• Each value takes O(1) to compute
→ Total of O(𝑛) cost per subproblem.

Total runtime 𝑂 𝑛3

Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖 is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 × … ,× 𝐴𝑛 .

This slide has been updated to fix a typo in the recurrence relation

Summary of Subproblem

Remember the Recipe

The recipe!
Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→Memo-ize computation starting from smallest subproblems and building up.

What makes for good subproblems?
• Not too many of them (the more subproblems the slower the DP algorithm)
• Must have enough information in it to compute subproblems recursively (needed

for step 2).

Common Subproblem on Arrays

The input is an array 𝑥1, … , 𝑥𝑛 and subproblem is 𝑥1, … , 𝑥𝑖

The input is an array 𝑥1, … , 𝑥𝑛 and subproblem is 𝑥𝑖 , … , 𝑥𝑗

The input is two array 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑛 and subproblems
𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗 or in some cases 𝑥𝑖 , … , 𝑥𝑗 and 𝑦𝑟 , … , 𝑦𝑠 .

Common Subproblems on Trees

The input is a tree (or something that can be interpreted as a tree), the subproblems
are subtrees

Common Subproblems for Graphs

You might need more creativity!

Problem might be about cycles (like Traveling salesperson), but it’s easier to think
about subpaths as subproblems:
→ It is harder to recurse from a big cycle to a smaller cycles
→ It is easier to recurse from a longer path to a shorter path

Problem might be about paths (like All-Pair Shortest Path, or TSP), but it helps to
track internal vertices:
→Subproblems may need to take into account sets of vertices
→Sets like 𝑥1, … , 𝑥𝑗 for all 𝑗 (e.g., Floyd Warshall) or all subsets of 𝑥1, … , 𝑥𝑛 (e.g.,

Traveling Saleperson).

Next time:

→ Linear Programming

Wrap up

We did lots of dynamic programming!

Dynamic programming can be best learned by practice! Do lots more example
at home.

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the last 3 lectures
	Slide 4: This lecture
	Slide 5: Independent Sets (in Trees)
	Slide 6: Independent Sets (in Trees)
	Slide 7: Independent Sets in Trees
	Slide 8: Which choice of subproblem is more appropriate?
	Slide 9: Step 1: Subproblems for Independent Sets
	Slide 10: Step 2: Recurrence for Independent Sets
	Slide 11: Two Cases:
	Slide 12: Two Cases:
	Slide 13: Step 2: Recurrence for Independent Sets
	Slide 14: Step 3: Design the Algorithm
	Slide 15: Step 3: Design the Algorithm
	Slide 16: 3 Min Break and Attendance
	Slide 17: Chain Matrix Multiplication
	Slide 18: Matrix Multiplication
	Slide 19: Chain Matrix Multiplication
	Slide 20: Chain Matrix Multiplication
	Slide 21: Chain Matrix Multiplication
	Slide 23: Step 1: Subproblems
	Slide 24: Step 2: Recurrence Relation
	Slide 25: Order of Computation
	Slide 26: Step 3: Memo-ization
	Slide 27: Summary of Subproblem
	Slide 28: Remember the Recipe
	Slide 29: Common Subproblem on Arrays
	Slide 30: Common Subproblems on Trees
	Slide 31: Common Subproblems for Graphs
	Slide 32: Wrap up

