CS 170 Efficient Algorithms and Intractable Problems

Lecture 14 Dynamic Programming IV (updated)

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Nika's OH after class today:

- \rightarrow Meet at the podium of the entrance and walk to nearby benches.
- \rightarrow Submit request for 1-1 TA. Meeting by today
- \rightarrow We will finish midterm regrades later this week
- \rightarrow HW 7 due on Saturday

Next few weeks: → John Wright will be lecturing → I will be back for some fun lectures towards the end of the semester!

Recap of the last 3 lectures

Dynamic Programming!

The recipe!

Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→ Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already

→ Shortest Paths (in DAGs, Bellman-Ford, and All-Pair), Longest increasing subsequence, Edit distance, Knapsack, Traveling Salesman Problem, ...

This lecture

Last lecture on Dynamic Programming → Independent Sets on Trees

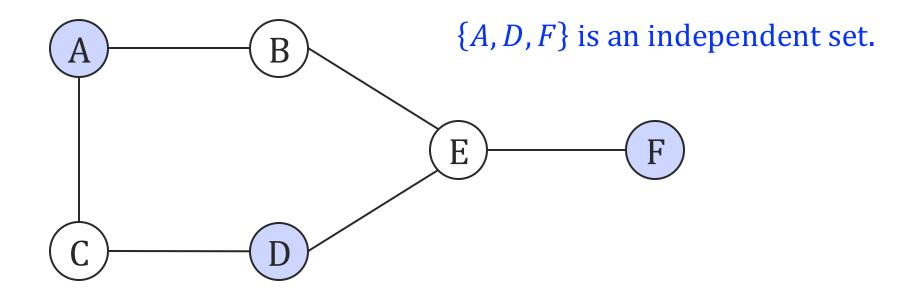
Best way to learn dynamic programming is by doing a lot of examples!

Independent Sets (in Trees)

<u>Input</u>: Undirected Graph G = (V, E)

<u>Output</u>: Largest "independent set" of *G*.

Definition: $S \subseteq V$ is an **independent set** of *G* if there are no edges between any $u, v \in S$.

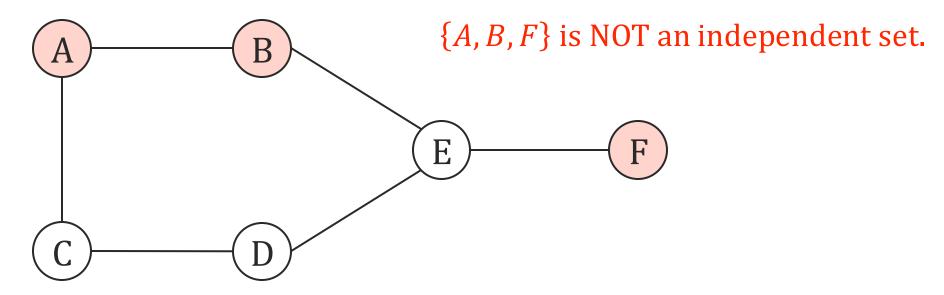


Independent Sets (in Trees)

<u>Input</u>: Undirected Graph G = (V, E)

<u>Output</u>: Largest "independent set" of *G*.

Definition: $S \subseteq V$ is an **independent set** of *G* if there are no edges between any $u, v \in S$.



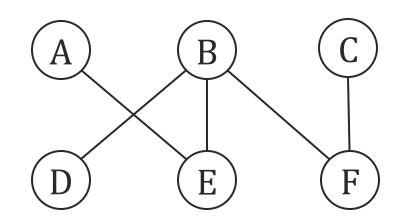
Finding largest independent set can't be done in polynomial time in general graphs. For trees, dynamic programming gives O(|V|) algorithm!

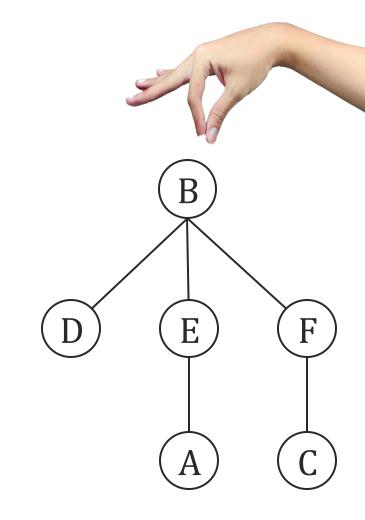
Independent Sets in Trees

<u>Input</u>: Undirected Graph G = (V, E) and G is a tree. <u>Output</u>: Largest "independent set" of G.

Recall, trees don't have cycles!

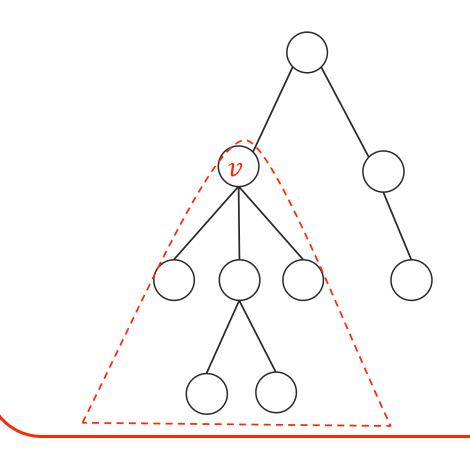
- → We can pick and node of a tree and say that it's the **root**
- → Rooted trees create a natural order between nodes, parent to children.

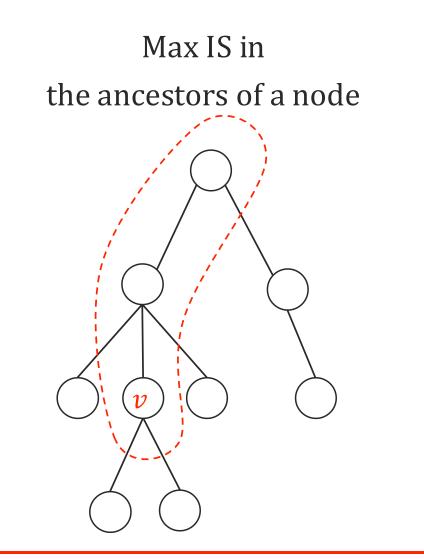




Which choice of subproblem is more appropriate?

rooted at a node





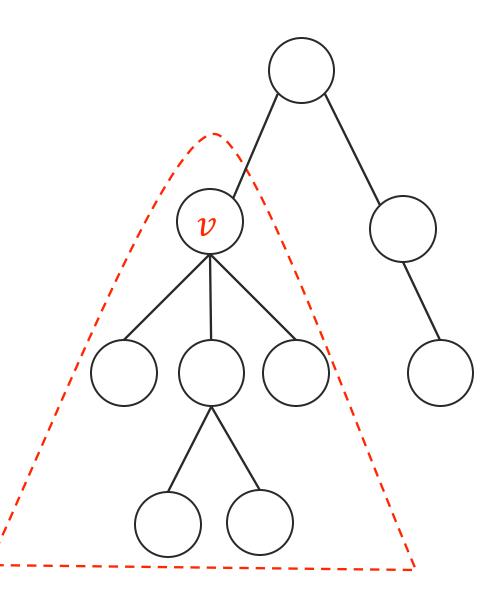
Step 1: Subproblems for Independent Sets

<u>Input</u>: Undirected Graph G = (V, E) and G is a tree.

<u>Output</u>: Largest "independent set" of *G*.

Subproblems: For each $v \in V$

I(v) = Size of max independent set in subtree rooted at v.



Step 2: Recurrence for Independent Sets

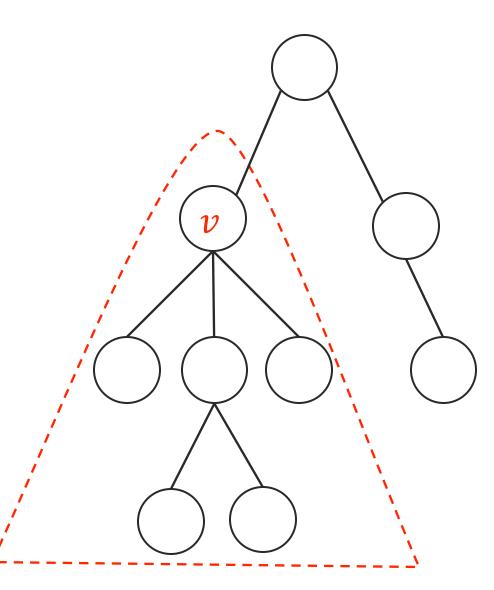
<u>Input</u>: Undirected Graph G = (V, E) and G is a tree.

<u>Output</u>: Largest "independent set" of *G*.

Subproblems: For each $v \in V$

I(v) = Size of max independent set in subtree rooted at v.

Recurrence: Compute I[v] using smaller subproblems (its descendants)



Two Cases:

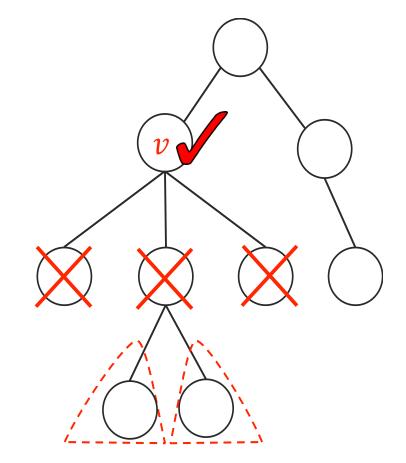
Recurrence: Compute I[v] using smaller subproblems (its descendants)

Case 1: The optimal solution for I[v] uses v.

None of the children of v can be in the independent set.

Recurse to the grandchildren levels:

$$I[v] = 1 + \sum_{u: \text{grandchild of } v} I[u]$$



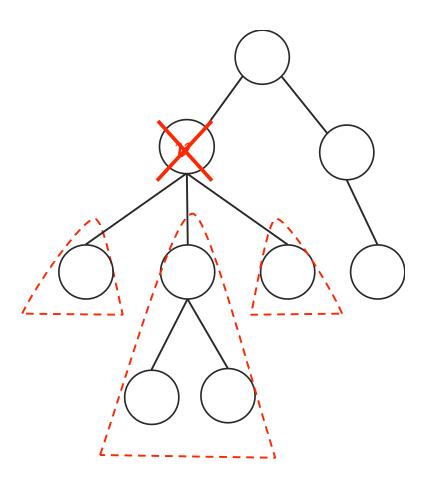
Recurrence: Compute I[v] using smaller subproblems (its descendants)

Case 2: The optimal solution for I[v] does NOT use v.

This doesn't restrict the optimal solution in the children of *v*.

Recurse to the children levels:

$$I[v] = \sum_{u: \text{ child of } v} I[u]$$



Step 2: Recurrence for Independent Sets

<u>Input</u>: Undirected Graph G = (V, E) and G is a tree.

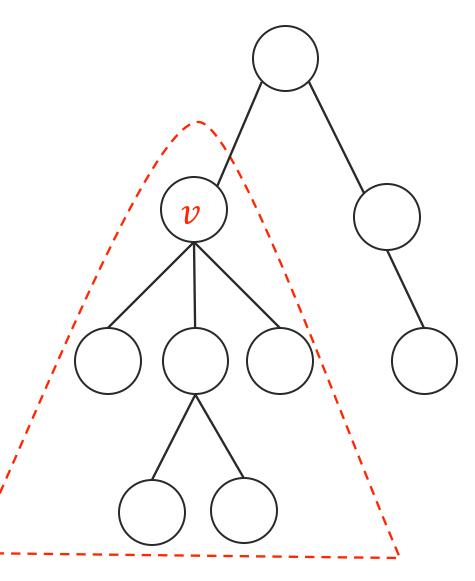
<u>Output</u>: Largest "independent set" of *G*.

Subproblems: For each $v \in V$

I(v) = Size of max independent set in subtree rooted at v.

Recurrence: Compute I[v] using smaller subproblems (its descendants)

$$I[v] = \max\left\{1 + \sum_{u:\text{grandchild of } v} I[u], \sum_{u:\text{ child of } v} I[u]\right\}$$



Step 3: Design the Algorithm

<u>Input</u>: Undirected Graph G = (V, E) and G is a tree. <u>Output</u>: Largest "independent set" of G.

We need a data structure to store the tree easily.

→ How to ensure that every child is processed before the parent?

Recall, **post** numbers in DFS(G):

• If u is a descendent of v: post(u) < post(v).

Bottom-up: memo-ize in increasing order of *post* numbers, in any DFS traversal.

Lecture 5-6 material! В

E

F

Step 3: Design the Algorithm

<u>Input</u>: Undirected Graph G = (V, E) and G is a tree. <u>Output</u>: Largest "independent set" of G.

- 1. In trees: |E| = |V| 1.
- 2. DFS Runtime = O(|V|)
- 3. Each edge is looked at ≤ 2 times.
 → Once for its parent's subproblem.
 → Once for its grandparent's subproblem.
 Total work for all subproblems = 0(|E|) = 0(|V|).

Total runtime: O(|V|).

Independent-Set-Tree(G = (V, E)) An array *I* of size *n*. sort $v_1 \dots v_n$ in increasing post order of DFS(G) **For** i = 1, ..., n $I[v_i] = \max \left\{ \begin{array}{l} 1 + \sum_{\substack{u: \text{grandchild of } v_i}} I[u], \\ \sum_{\substack{u: \text{ child of } v_i}} I[u] \end{array} \right\}$

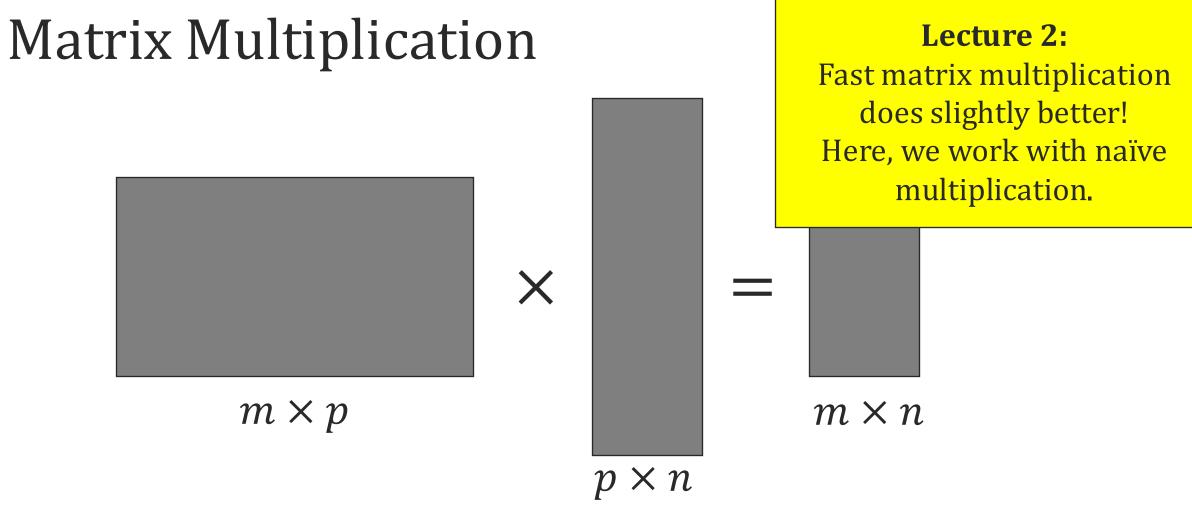
return $I[v_n]$

3 Min Break and Attendance

Password: subtrees

Sign in using @berkeley.edu

https://forms.gle/W4zaMWqNzJmA3wMw6

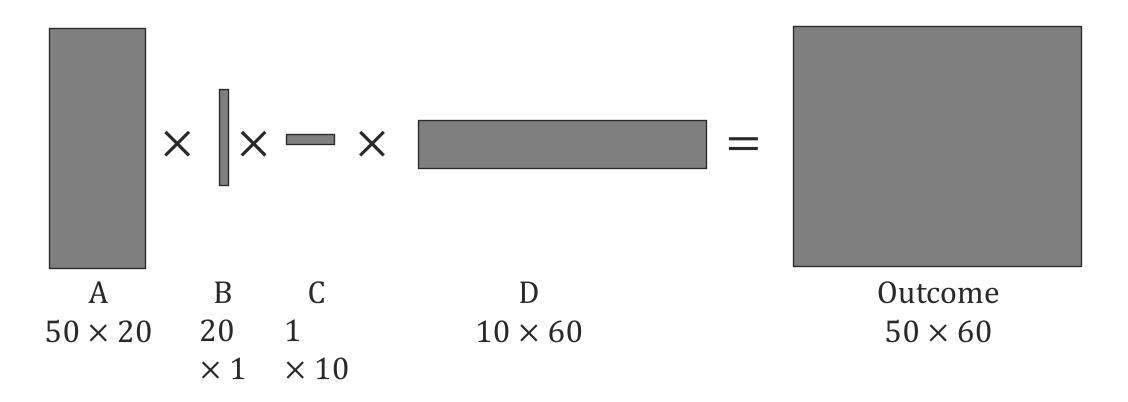


Number of operations:

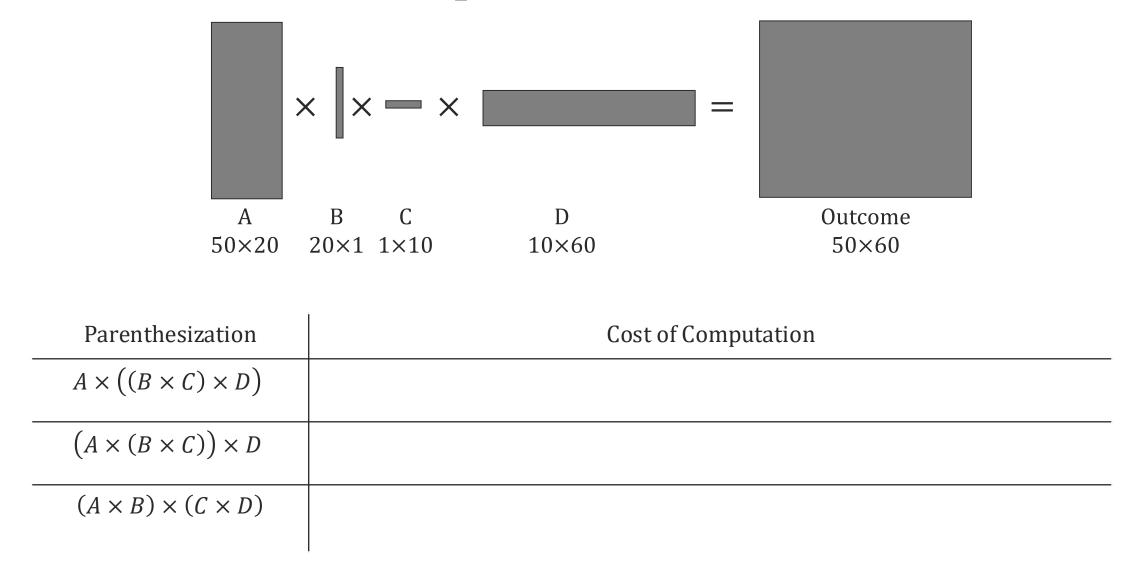
 \rightarrow Outcome matrix of size $m \times n$

 \rightarrow Each cell is a dot product of two vectors of length *p*, so O(p)

→ Total: O(mnp)

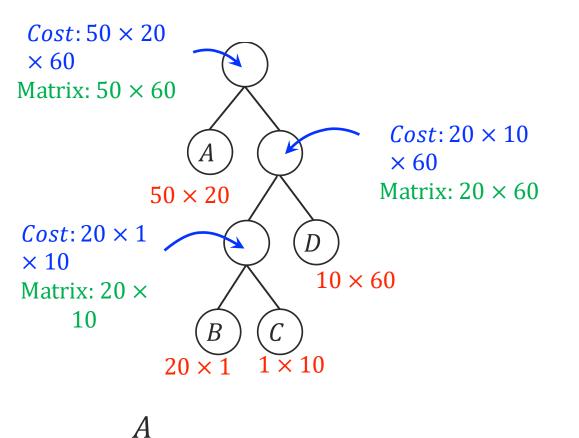


Matrix multiplication is associative (can put parenthesis anywhere), but not commutative (can't switch left and right order)



<u>Input</u>: Matrices $A_1, ..., A_n$, where matrix A_i is of dimension $m_{i-1} \times m_i$. <u>Output</u>: Minimum cost of multiplying $A_1 \times ..., \times A_n$.

Parenthesizations correspond to binary Trees



 $((D \land C) \land D)$

 $(A \times (B \times C))$

 $(A \times B)$ $\mathcal{N}(\mathcal{O} \mathcal{N} \mathcal{D})$

Step 1: Subproblems

<u>Input</u>: Matrices $A_1, ..., A_n$, where matrix A_i is of dimension $m_{i-1} \times m_i$. <u>Output</u>: Minimum cost of multiplying $A_1 \times ..., \times A_n$.

Subproblem choice: The cost of multiplying a contagious subset of the matrices $Cost[i, j] = Minimum cost of multiplying A_i \times A_{i+1} \dots \times A_j \text{ for } i \leq j$

Why is this a good choice?

For a tree to be optimal, every subtree also has to be optimal.

Natural subproblem order, start from leaves and consider every subtree.

Step 2: Recurrence Relation

<u>Input</u>: Matrices $A_1, ..., A_n$, where matrix A_i is of dimension $m_{i-1} \times m_i$. <u>Output</u>: Minimum cost of multiplying $A_1 \times ..., \times A_n$.

Subproblem choice: The cost of multiplying a contagious subset of the matrices $Cost[i, j] = Minimum cost of multiplying <math>A_i \times A_{i+1} \dots \times A_j$ for $i \leq j$

To multiply $A_i \times A_{i+1} \dots \times A_j$, we have to parenthesize it, say by splitting at k: $A_i \times A_{i+1} \dots \times A_j = (A_i \times \dots \times A_k) \times (A_{k+1} \times \dots \times A_j)$:

 $Cost[i, j] = Cost[i, k] + Cost[k + 1, j] + Cost of multiplying m_{i-1} \times m_k by m_k \times m_j$ matrices $= Cost[i, k] + Cost[k + 1, j] + m_{i-1} \times m_k \times m_j$

For the best parenthesization of the $A_i \times A_{i+1} \dots \times A_j$:

 $Cost[i,j] = \min_{k:i \le k \le j} \left\{ Cost[i,k] + Cost[k+1,j] + m_{i-1} \times m_k \times m_j \right\}$

This slide has been updated to fix a typo in the recurrence relation

Order of Computation

 $Cost[i,j] = \min_{k:i \le k \le j} \{Cost[i,k] + Cost[k+1,j] + m_{i-1} \times m_k \times m_j\}$

Go by the increasing size of j - i: \rightarrow Base case: Cost[i, i] = 0 for all i = 1, ..., n \rightarrow Start from s = j - i being 1, 2 ..., n - 1 \rightarrow Fill in diagonally

Step 3: Memo-ization

<u>Input</u>: Matrices $A_1, ..., A_n$, where matrix A_i is of dimension $m_{i-1} \times m_i$. <u>Output</u>: Minimum cost of multiplying $A_1 \times ..., \times A_n$.

Number of subproblems is $O(n^2)$

Per subproblem:

- Minimize over O(n) choices for identity of k.
- Each value takes O(1) to compute
- → Total of O(n) cost per subproblem.

Total runtime $O(n^3)$

Chain-Matrix-Mult(m_0, m_1, \cdots, m_n) An array C of size $n \times n$ For i = 1, ..., n, C[i, i] = 0For s = 1 ..., n - 1For i = 1, ..., n - s $i \leftarrow i + s$ $C[i,j] = \min_{k:i \le k \le i} \left\{ \begin{array}{c} Cost[i,k] + Cost[k+1,j] \\ +m_{i-1} \times m_k \times m_i \end{array} \right\}$ **Return** C[1, n]

This slide has been updated to fix a typo in the recurrence relation

Summary of Subproblem

Remember the Recipe

The recipe!

Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→ Memo-ize computation starting from smallest subproblems and building up.

What makes for good subproblems?

- Not too many of them (the more subproblems the slower the DP algorithm)
- Must have enough information in it to compute subproblems recursively (needed for step 2).

Common Subproblem on Arrays

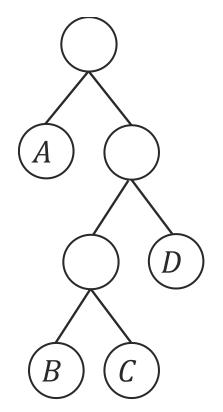
The input is an array x_1, \ldots, x_n and subproblem is x_1, \ldots, x_i

The input is an array x_1, \ldots, x_n and subproblem is x_i, \ldots, x_j

The input is two array $x_1, ..., x_n$ and $y_1, ..., y_n$ and subproblems $x_1, ..., x_i$ and $y_1, ..., y_j$ or in some cases $x_i, ..., x_j$ and $y_r, ..., y_s$.

Common Subproblems on Trees

The input is a tree (or something that can be interpreted as a tree), the subproblems are subtrees



Common Subproblems for Graphs

You might need more creativity!

Problem might be about cycles (like Traveling salesperson), but it's easier to think about subpaths as subproblems:

- \rightarrow It is harder to recurse from a big cycle to a smaller cycles
- \rightarrow It is easier to recurse from a longer path to a shorter path

Problem might be about paths (like All-Pair Shortest Path, or TSP), but it helps to track internal vertices:

 \rightarrow Subproblems may need to take into account sets of vertices

→ Sets like $\{x_1, ..., x_j\}$ for all *j* (e.g., Floyd Warshall) or all subsets of $\{x_1, ..., x_n\}$ (e.g., Traveling Saleperson).

Wrap up

We did lots of dynamic programming!

Dynamic programming can be best learned by practice! Do lots more example at home.

Next time: → Linear Programming