
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab    and    John Wright

EECS, UC Berkeley

Lecture 14
Dynamic Programming IV (updated) 



Announcements

Nika’s OH after class today:
→Meet at the podium of the entrance and walk to nearby benches.
→Submit request for 1-1 TA. Meeting by today
→We will finish midterm regrades later this week
→HW 7 due on Saturday

Remember him?!

Next few weeks:
→ John Wright will be lecturing
→ I will be back for some fun lectures towards the end of the semester!



Recap of the last 3 lectures
Dynamic Programming!

The recipe!
Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
→ Shortest Paths (in DAGs, Bellman-Ford, and All-Pair), Longest increasing 

subsequence, Edit distance, Knapsack, Traveling Salesman Problem, …



This lecture
Last lecture on Dynamic Programming
→ Independent Sets on Trees

Best way to learn dynamic programming is by doing a lot of examples!



Independent Sets (in Trees)
Input: Undirected Graph 𝐺 = (𝑉, 𝐸)

Output: Largest “independent set” of 𝐺.

Definition: 𝑆 ⊆ 𝑉 is an independent set of 𝐺 if there are no edges between any 
𝑢, 𝑣 ∈ 𝑆.
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𝐴, 𝐷, 𝐹  is an independent set.



Independent Sets (in Trees)
Input: Undirected Graph 𝐺 = (𝑉, 𝐸)

Output: Largest “independent set” of 𝐺.

Definition: 𝑆 ⊆ 𝑉 is an independent set of 𝐺 if there are no edges between any 
𝑢, 𝑣 ∈ 𝑆.
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𝐴, 𝐵, 𝐹  is NOT an independent set.

Finding largest independent set can’t be done in polynomial time in general graphs.
For trees, dynamic programming gives 𝑂( 𝑉 ) algorithm!



Independent Sets in Trees
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.

Output: Largest “independent set” of 𝐺.

Recall, trees don’t have cycles!
→We can pick and node of a tree and say that 

it’s the root
→Rooted trees create a natural order 

between nodes, parent to children.
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Which choice of subproblem is more appropriate?

Max IS in the subtree 

rooted at a node

Max IS in 

the ancestors of a node

Discuss



Step 1: Subproblems for Independent Sets 
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.

Output: Largest “independent set” of 𝐺.

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = 𝑣
Size of max independent set in 
subtree rooted at 𝑣.



Step 2: Recurrence for Independent Sets 
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.

Output: Largest “independent set” of 𝐺.

𝑣

Recurrence: Compute 𝐼 𝑣  using smaller 
subproblems (its descendants)

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = Size of max independent set in 
subtree rooted at 𝑣.



Two Cases:
Recurrence: Compute 𝐼 𝑣  using smaller subproblems (its descendants)

Case 1: The optimal solution for 𝐼 𝑣  uses 𝑣. 

None of the children of 𝑣 can be in the 
independent set. 

Recurse to the grandchildren levels:

𝐼 𝑣 = 1 + ෍

𝑢:grandchild of 𝑣

𝐼[𝑢]



Two Cases:
Recurrence: Compute 𝐼 𝑣  using smaller subproblems (its descendants)

Case 2: The optimal solution for 𝐼 𝑣  does NOT use 𝑣. 

This doesn’t restrict the optimal solution in the 
children of 𝑣.

Recurse to the children levels:

𝐼 𝑣 = ෍

𝑢: child of 𝑣

𝐼[𝑢]



Step 2: Recurrence for Independent Sets 
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.

Output: Largest “independent set” of 𝐺.

𝑣

Recurrence: Compute 𝐼 𝑣  using smaller 
subproblems (its descendants)

Subproblems: For each 𝑣 ∈ 𝑉

𝐼 𝑣 = Size of max independent set in 
subtree rooted at 𝑣.

𝐼 𝑣 = max 1 + ෍

𝑢:grandchild of 𝑣

𝐼[𝑢] , ෍

𝑢: child of 𝑣

𝐼[𝑢]



Step 3: Design the Algorithm
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.

Output: Largest “independent set” of 𝐺.

We need a data structure to store the tree easily.

→ How to ensure that every child is processed before the parent?

Recall, post numbers in DFS(G):

• If 𝑢 is a descendent of 𝑣: 𝑝𝑜𝑠𝑡 𝑢 < 𝑝𝑜𝑠𝑡 𝑣 .

Bottom-up: memo-ize in increasing order of 𝑝𝑜𝑠𝑡 numbers, in any DFS traversal.
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Step 3: Design the Algorithm
Input: Undirected Graph 𝐺 = 𝑉, 𝐸  and G is a tree.

Output: Largest “independent set” of 𝐺.

Independent-Set-Tree(𝐺 = 𝑉, 𝐸  )

      An array 𝐼 of size 𝑛.

      sort 𝑣1 … 𝑣𝑛 in increasing post order of DFS(G)

      For 𝑖 = 1, … , 𝑛

 

      return 𝐼 𝑣𝑛

𝐼 𝑣𝑖 = max

1 + ෍

𝑢:grandchild of 𝑣𝑖

𝐼[𝑢] ,

෍

𝑢: child of 𝑣𝑖

𝐼[𝑢]

1. In trees: 𝐸 = 𝑉 − 1.
2. DFS Runtime = 𝑂( 𝑉 )

3. Each edge is looked at ≤ 2 times.
→ Once for its parent’s subproblem.
→Once for its grandparent’s 

subproblem.
Total work for all subproblems = 
O 𝐸 = O( V ).

Total runtime: 𝑂(|𝑉|).



3 Min Break and Attendance

https://forms.gle/W4zaMWqNzJmA3wMw6

Password: subtrees

Sign in using @berkeley.edu



Chain Matrix Multiplication



Matrix Multiplication

𝑚 × 𝑝

×            =

𝑝 × 𝑛

𝑚 × 𝑛

Number of operations:
→Outcome matrix of size 𝑚 × 𝑛
→Each cell is a dot product of two vectors of length 𝑝, so O(𝑝)
→Total: 𝑂 𝑚𝑛𝑝

Lecture 2: 
Fast matrix multiplication 

does slightly better!
Here, we work with naïve 

multiplication.



Chain Matrix Multiplication

A
50 × 20

× ×        ×                                =

Outcome
50 × 60

B
20
× 1

C
1
× 10

D
10 × 60

Matrix multiplication is associative (can put parenthesis anywhere), but not 
commutative (can’t switch left and right order)



Chain Matrix Multiplication

Parenthesization Cost of Computation

𝐴 × 𝐵 × 𝐶 × 𝐷

𝐴 × 𝐵 × 𝐶 × 𝐷

𝐴 × 𝐵 × 𝐶 × 𝐷



Chain Matrix Multiplication
Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖  is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 ×  … ,× 𝐴𝑛 .

𝐴

× 𝐵 × 𝐶 × 𝐷

Parenthesizations correspond to binary Trees

50 × 20

20 × 1 1 × 10

10 × 60

𝐶𝑜𝑠𝑡: 20 × 1
× 10
Matrix: 20 ×

10

𝐶𝑜𝑠𝑡: 20 × 10
× 60

Matrix: 20 × 60

𝐶𝑜𝑠𝑡: 50 × 20
× 60

Matrix: 50 × 60

𝐴 × 𝐵 × 𝐶

× 𝐷

𝐴 × 𝐵
× 𝐶 × 𝐷



Step 1: Subproblems
Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖  is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 ×  … ,× 𝐴𝑛 .

Subproblem choice: The cost of multiplying a contagious subset of the matrices

𝐶𝑜𝑠𝑡 𝑖, 𝑗 =Minimum cost of multiplying 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗  for 𝑖 ≤ 𝑗 

Why is this a good choice?

For a tree to be optimal, every subtree 
also has to be optimal.

Natural subproblem order, start from 
leaves and consider every subtree.



Step 2: Recurrence Relation
Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖  is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 ×  … ,× 𝐴𝑛 .

Subproblem choice: The cost of multiplying a contagious subset of the matrices

𝐶𝑜𝑠𝑡 𝑖, 𝑗 =Minimum cost of multiplying 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗  for 𝑖 ≤ 𝑗 

To multiply 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗 , we have to parenthesize it, say by splitting at 𝑘: 

 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗  = 𝐴𝑖 × ⋯ × 𝐴𝑘 × (𝐴𝑘+1 × ⋯ 𝐴𝑗):

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = 𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + Cost of multiplying 𝑚𝑖−1 × 𝑚𝑘  by 𝑚𝑘 × 𝑚𝑗  

matrices
= 𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + 𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = min
𝑘:𝑖≤𝑘≤𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + 𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

For the best parenthesization of the 𝐴𝑖 × 𝐴𝑖+1 … ,× 𝐴𝑗:

This slide has been updated to fix a typo in the recurrence relation



Order of Computation

𝐶𝑜𝑠𝑡 𝑖, 𝑗 = min
𝑘:𝑖≤𝑘≤𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗 + 𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

Go by the increasing size of 𝑗 − 𝑖:
→Base case: 𝐶𝑜𝑠𝑡 𝑖, 𝑖 = 0 for all 𝑖 = 1, … , 𝑛
→Start from s = 𝑗 − 𝑖 being 1, 2 … , 𝑛 − 1
→Fill in diagonally

This slide has been updated to fix a typo in the recurrence relation



Step 3: Memo-ization

Chain-Matrix-Mult(𝑚0, 𝑚1, ⋯ , 𝑚𝑛)

   An array C of size 𝑛 × 𝑛

   For 𝑖 = 1, … , 𝑛, C 𝑖, 𝑖 = 0

   For 𝑠 = 1 … , 𝑛 − 1

       For 𝑖 = 1, … , 𝑛 − 𝑠

             𝑗 ← 𝑖 + 𝑠 

             C 𝑖, 𝑗 = min
𝑘:𝑖≤𝑘≤𝑗

𝐶𝑜𝑠𝑡 𝑖, 𝑘 + 𝐶𝑜𝑠𝑡 𝑘 + 1, 𝑗
+𝑚𝑖−1 × 𝑚𝑘 × 𝑚𝑗

Return C 1, 𝑛

Number of subproblems is 𝑂 𝑛2

Per subproblem:
•  Minimize over O(𝑛) choices for 

identity of 𝑘.
• Each value takes O(1) to compute
→ Total of O(𝑛) cost per subproblem. 

Total runtime 𝑂 𝑛3

Input: Matrices 𝐴1, … , 𝐴𝑛, where matrix 𝐴𝑖  is of dimension 𝑚𝑖−1 × 𝑚𝑖 .
Output: Minimum cost of multiplying 𝐴1 ×  … ,× 𝐴𝑛 .

This slide has been updated to fix a typo in the recurrence relation



Summary of Subproblem



Remember the Recipe

The recipe!
Step 1. Identify subproblems (aka optimal substructure)
Step 2. Find a recursive formulation for the subproblems
Step 3. Design the Dynamic Programming Algorithm
→Memo-ize computation starting from smallest subproblems and building up.

What makes for good subproblems?
• Not too many of them (the more subproblems the slower the DP algorithm)
• Must have enough information in it to compute subproblems recursively (needed 

for step 2).



Common Subproblem on Arrays

The input is an array 𝑥1, … , 𝑥𝑛 and subproblem is 𝑥1, … , 𝑥𝑖  

The input is an array 𝑥1, … , 𝑥𝑛 and subproblem is 𝑥𝑖 , … , 𝑥𝑗  

The input is two array 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑛 and subproblems
𝑥1, … , 𝑥𝑖  and 𝑦1, … , 𝑦𝑗  or in some cases 𝑥𝑖 , … , 𝑥𝑗  and 𝑦𝑟 , … , 𝑦𝑠 . 



Common Subproblems on Trees

The input is a tree (or something that can be interpreted as a tree), the subproblems 
are subtrees



Common Subproblems for Graphs

You might need more creativity!

Problem might be about cycles (like Traveling salesperson), but it’s easier to think 
about subpaths as subproblems:
→ It is harder to recurse from a big cycle to a smaller cycles
→ It is easier to recurse from a longer path to a shorter path

Problem might be about paths (like All-Pair Shortest Path, or TSP), but it helps to 
track internal vertices:
→Subproblems may need to take into account sets of vertices
→Sets like 𝑥1, … , 𝑥𝑗  for all 𝑗 (e.g., Floyd Warshall) or all subsets of 𝑥1, … , 𝑥𝑛  (e.g., 

Traveling Saleperson).



Next time: 

→ Linear Programming

Wrap up

We did lots of dynamic programming!

Dynamic programming can be best learned by practice! Do lots more example 
at home.


	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the last 3 lectures
	Slide 4: This lecture
	Slide 5: Independent Sets (in Trees)
	Slide 6: Independent Sets (in Trees)
	Slide 7: Independent Sets in Trees
	Slide 8: Which choice of subproblem is more appropriate?
	Slide 9: Step 1: Subproblems for Independent Sets 
	Slide 10: Step 2: Recurrence for Independent Sets 
	Slide 11: Two Cases:
	Slide 12: Two Cases:
	Slide 13: Step 2: Recurrence for Independent Sets 
	Slide 14: Step 3: Design the Algorithm
	Slide 15: Step 3: Design the Algorithm
	Slide 16: 3 Min Break and Attendance
	Slide 17: Chain Matrix Multiplication
	Slide 18: Matrix Multiplication
	Slide 19: Chain Matrix Multiplication
	Slide 20: Chain Matrix Multiplication
	Slide 21: Chain Matrix Multiplication
	Slide 23: Step 1: Subproblems
	Slide 24: Step 2: Recurrence Relation
	Slide 25: Order of Computation
	Slide 26: Step 3: Memo-ization
	Slide 27: Summary of Subproblem
	Slide 28: Remember the Recipe
	Slide 29: Common Subproblem on Arrays
	Slide 30: Common Subproblems on Trees
	Slide 31: Common Subproblems for Graphs
	Slide 32: Wrap up

