CS170
Efficient Algorithms and Intractable Problems

Lecture 14
Dynamic Programming IV (updated)

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Nika’s OH after class today:

—> Meet at the podium of the entrance and walk to nearby benches.
—> Submit request for 1-1 TA. Meeting by today

- We will finish midterm regrades later this week

- HW 7 due on Saturday

Recap of the last 3 lectures

Dynamic Programming!

-
The recipe!

Step 1. Identify subproblems (aka optimal substructure)

Step 2. Find a recursive formulation for the subproblems

Step 3. Design the Dynamic Programming Algorithm

_ =2 Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
—> Shortest Paths (in DAGs, Bellman-Ford, and All-Pair), Longest increasing
subsequence, Edit distance, Knapsack, Traveling Salesman Problem, ...

This lecture

Last lecture on Dynamic Programming
—> Independent Sets on Trees

Best way to learn dynamic programming is by doing a lot of examples!

Independent Sets (in Trees)

Input: Undirected Graph ¢ = (V,E)
Output: Largest “independent set” of G.

Definition: S € V is an independent set of ¢ if there are no edges between any
u,v € S.

@ B {A,D, F} is an independent set.

D—®

Independent Sets (in Trees)

Input: Undirected Graph ¢ = (V,E)
Output: Largest “independent set” of G.

Definition: S € V is an independent set of ¢ if there are no edges between any
u,v € S.

@ B {A, B, F}is NOT an independent set.

D—®

O—

Finding largest independent set can’t be done in polynomial time in general graphs.
For trees, dynamic programming gives O (|V|) algorithm!

Independent Sets in Trees
Input: Undirected Graph G = (V, E) and G is a tree.

Output: Largest “independent set” of G. 7 ‘;*!' \
4

Recall, trees don’t have cycles!

—> We can pick and node of a tree and say that @

it’s the root
- Rooted trees create a natural order

between nodes, parent to children. Q 9 G

< ® ©

Which choice of subproblem is more appropriate?

-

Max IS in the subtree

rooted at a node

Discuss

Max IS in

the ancestors of a node

~

Step 1: Subproblems for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
subtree rooted at v.

Step 2: Recurrence for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
subtree rooted at v.

Recurrence: Compute /|v] using smaller
subproblems (its descendants)

Two Cases:

Recurrence: Compute I|v] using smaller subproblems (its descendants)

Case 1: The optimal solution for I[v] uses v.

None of the children of v can be in the
independent set.

Recurse to the grandchildren levels:

I[vl] =1+ Z I[u]

u:grandchild of v

Two Cases:

Recurrence: Compute I|v] using smaller subproblems (its descendants)

Case 2: The optimal solution for I|v] does NOT use v.

This doesn’t restrict the optimal solution in the
children of v.

Recurse to the children levels:

u: child of v

Step 2: Recurrence for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
subtree rooted at v.

Recurrence: Compute /|v] using smaller
subproblems (its descendants)

()

I[v] = max<1+ 2 I[u], 2 I[u]

X u:grandchild of v u: child of v)

Y

Step 3: Design the Algorithm

Input: Undirected Graph G = (V, E) and G is a tree. |
Output: Largest “independent set” of G. y\“‘;‘/,\
|

We need a data structure to store the tree easily.

—> How to ensure that every child is processed before the parent?

Recall, post numbers in DFS(G):
 If uis a descendent of v: post(u) < post(v).

Bottom-up: memo-ize in increasing order of post numbers, in any DFS traversal.

Step 3: Design the Algorithm

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

1. Intrees: |E| = V| — 1. Independent-Set-Tree(G = (V,E))
2. DFS Runtime = O(|V]) An array [of size n.
sort v, ... v, in increasing post order of DFS(G)
3. Each edge is looked at < 2 times. Fori=1,...n
—> Once for its parent’s subproblem. ()
—> Once for its grandparent’s 1+ z Iu],
subproblem. u:grandchild of v;
Total VI\:/)ork for all subproblems = I[v;] = max >
O(IED) = O(IVI). >)
\ u: child of v; y,
Total runtime: O(|V]).
return /|v, |

3 Min Break and Attendance

Password: subtrees

Sign in using @berkeley.edu

https://forms.gle/W4zaMWqNz]JmA3wMw6

Chain Matrix Multiplication

Matrix Multiplication Lecture 2:

Fast matrix multiplication
does slightly better!
Here, we work with naive
multiplication.

mXxp

mXn

pXn

Number of operations:
—> Outcome matrix of size m X n

—> Each cell is a dot product of two vectors of length p, so O(p)
- Total: O (mnp)

Chain Matrix Multiplication

X X_X_-

A B C D Outcome

50x 20 20 1 10 X 60 50 X 60
X1 X%X10

Matrix multiplication is associative (can put parenthesis anywhere), but not
commutative (can’t switch left and right order)

Chain Matrix Multiplication

I |X_X_ -

D Outcome
50><20 20><1 1><10 10x60 50x60

Parenthesization Cost of Computation

Ax ((BxC)xD)

(Ax(BxC))xD

(Ax B) x (C x D)

Chain Matrix Multiplication

Input: Matrices A4, ..., A,,, where matrix A4; is of dimension m;_; X m;.
Qutput: Minimum cost of multiplying 4A; X ...,X A4,,.

Parenthesizations correspond to binary Trees

Cost:50 X 20
X 60
Matrix: 50 X 60

Cost: 20 x 10
X 60
50 x 20 Matrix: 20 X 60

Cost: 20 x 1

X 10

Matrix: 20 X 10 X 60

10
20x1 1x10
A (Ax (Bx0())

Step 1: Subproblems

Input: Matrices A4, ..., A,,, where matrix A4; is of dimension m;_; X m;.
Qutput: Minimum cost of multiplying 4A; X ...,X A4,,.

Subproblem choice: The cost of multiplying a contagious subset of the matrices

Cost|i, j] =Minimum cost of multiplying A; X A;;; ...,X A; fori < j

Why is this a good choice?

For a tree to be optimal, every subtree
also has to be optimal.

Natural subproblem order, start from
leaves and consider every subtree.

Step 2: Recurrence Relation

Input: Matrices A4, ..., A,,, where matrix A4; is of dimension m;_; X m;.
Output: Minimum cost of multiplying 4A; X ...,X A,,.

Subproblem choice: The cost of multiplying a contagious subset of the matrices

Cost|i, j] =Minimum cost of multiplying A; X A;;; ...,X A; fori < j
To multiply A; X A;,, ...,X A;, we have to parenthesize it, say by splitting at k:
Ai X Ajq oo X Aj = (A; X o X Ap) X (A41 X -+ 4)):

Costli,j] = Costli, k] + Cost[k + 1,] + Cost of multiplying m;_; X m; by m; X m;

For the best parenthesization of the A; X 4;,, ...,X A;:

Costli,j] = k_irrgcrlj{Cost[i, k] + Costlk + 1,j] + m;_y x my X m;}

| This slide has been updated to fix a typo in the recurrence relation |

Order of Computation

Costli,j] = k_inlikrlj{Cost[i, k] + Costlk + 1,j] + m;_; X m X mj}

Go by the increasing size of j — i:
- Base case: Cost|i,i] =0foralli =1, ..,n

- Startfroms =j —ibeing1,2...,n—1
- Fill in diagonally

This slide has been updated to fix a typo in the recurrence relation

Step 3: Memo-ization

Input: Matrices A4, ..., A,,, where matrix A4; is of dimension m;_; X m;.
Output: Minimum cost of multiplying 4A; X ...,X A,,.

Number of subproblems is O(n?*) Chain-Matrix-Mult(mo, my, -+, my,)

An array C of sizen X n

Per subproblem: Fori=1,..,nClii]=0
* Minimize over O(n) choices for Fors=1..n—1
identity of k. Fori=1 . n—s
* Each value takes O(1) to compute R
- Total of O(n) cost per subproblem. Jelts
C[i,/]= min {Cost[i, k] + Cost|k + 1,j]}
' ki<k<j +m_q X my X m;
Total runtime 0 (n3) Return C[1, 7]

| This slide has been updated to fix a typo in the recurrence relation |

Summary of Subproblem

Remember the Recipe

-
The recipe!

Step 1. Identify subproblems (aka optimal substructure)

Step 2. Find a recursive formulation for the subproblems

Step 3. Design the Dynamic Programming Algorithm

=2 Memo-ize computation starting from smallest subproblems and building up.

What makes for good subproblems?

* Not too many of them (the more subproblems the slower the DP algorithm)

* Must have enough information in it to compute subproblems recursively (needed
for step 2).

Common Subproblem on Arrays

The inputis an array x4, ..., x,, and subproblem is x4, ..., x;

The inputis an array x;, ..., X, and subproblem is x;, ..., x;

The inputis two array x4, ..., x,, and y4, ..., y,, and subproblems
X1, ..., X; and yy, ..., y; or in some cases x;, ..., x; and Y, ..., Ys.

Common Subproblems on Trees

The inputis a tree (or something that can be interpreted as a tree), the subproblems
are subtrees

Common Subproblems for Graphs

You might need more creativity!

Problem might be about cycles (like Traveling salesperson), but it’s easier to think
about subpaths as subproblems:

- It is harder to recurse from a big cycle to a smaller cycles
—> It is easier to recurse from a longer path to a shorter path

Problem might be about paths (like All-Pair Shortest Path, or TSP), but it helps to
track internal vertices:

—> Subproblems may need to take into account sets of vertices

- Sets like {xl, . xj} for all j (e.g., Floyd Warshall) or all subsets of {x1, ..., x,,} (e.g.,
Traveling Saleperson).

Wrap up

We did lots of dynamic programming!

Dynamic programming can be best learned by practice! Do lots more example
at home.

Next time:
—> Linear Programming

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the last 3 lectures
	Slide 4: This lecture
	Slide 5: Independent Sets (in Trees)
	Slide 6: Independent Sets (in Trees)
	Slide 7: Independent Sets in Trees
	Slide 8: Which choice of subproblem is more appropriate?
	Slide 9: Step 1: Subproblems for Independent Sets
	Slide 10: Step 2: Recurrence for Independent Sets
	Slide 11: Two Cases:
	Slide 12: Two Cases:
	Slide 13: Step 2: Recurrence for Independent Sets
	Slide 14: Step 3: Design the Algorithm
	Slide 15: Step 3: Design the Algorithm
	Slide 16: 3 Min Break and Attendance
	Slide 17: Chain Matrix Multiplication
	Slide 18: Matrix Multiplication
	Slide 19: Chain Matrix Multiplication
	Slide 20: Chain Matrix Multiplication
	Slide 21: Chain Matrix Multiplication
	Slide 23: Step 1: Subproblems
	Slide 24: Step 2: Recurrence Relation
	Slide 25: Order of Computation
	Slide 26: Step 3: Memo-ization
	Slide 27: Summary of Subproblem
	Slide 28: Remember the Recipe
	Slide 29: Common Subproblem on Arrays
	Slide 30: Common Subproblems on Trees
	Slide 31: Common Subproblems for Graphs
	Slide 32: Wrap up

