CS170
Efficient Algorithms and Intractable Problems

Lecture 14

Dynamic Programming [V

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Nika’s OH after class today:

—> Meet at the podium of the entrance and walk to nearby benches.
—> Submit request for 1-1 TA. Meeting by today

- We will finish midterm regrades later this week

- HW 7 due on Saturday

Recap of the last 3 lectures

Dynamic Programming!

-
The recipe!

Step 1. Identify subproblems (aka optimal substructure)

Step 2. Find a recursive formulation for the subproblems

Step 3. Design the Dynamic Programming Algorithm

_ =2 Memo-ize computation starting from smallest subproblems and building up.

We saw a lot of examples already
—> Shortest Paths (in DAGs, Bellman-Ford, and All-Pair), Longest increasing
subsequence, Edit distance, Knapsack, Traveling Salesman Problem, ...

This lecture

Last lecture on Dynamic Programming
—> Independent Sets on Trees

—2 Ol Valwe Maliply

Best way to learn dynamic programming is by doing a lot of examples!

Independent Sets (in Trees)

Input: Undirected Graph ¢ = (V,E)
Output: Largest “independent set” of G.

Definition: S € V is an independent set of ¢ if there are no edges between any
u,v € S.

@ B {A,D, F} is an independent set.

D—®

Independent Sets (in Trees)

Input: Undirected Graph ¢ = (V,E)
Output: Largest “independent set” of G.

Definition: S € V is an independent set of ¢ if there are no edges between any
u,v € S.

{4, B, F}is NOT an independent set.

Finding largest independent set can’t be done in polynomial time in general graphs.
For trees, dynamic programming gives O (|V|) algorithm!

Independent Sets in Trees

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Recall, trees don’t have cycles!

—> We can pick and node of a tree and say that
it's the root

- Rooted trees create a natural order
between nodes, parent to children.

<

Which choice of subproblem is more appropriate?

-

Max IS in the subtree

node

Discuss

Max IS in

the ancestors of a node

~

Step 1: Subproblems for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
— subtree rooted at v.

Step 2: Recurrence for Independent Sets
Input: Undirected Graph G = (V, E) and G is a tree.

Output: Largest “independent set” of G. ‘
Subproblems: Foreachv € V J/ "
// \
I(v) = Size of max independent setin / Q N ‘
subtree rooted at v. ! § \
/ 1 ~ \

Recurrence: Compute /[v] using smaller /I ‘ ’
subproblems (its descendants) K ‘ ‘

Two Cases: /ﬂw Tudogadirh Sek . Sbbree vookd o\

Recurrence: Compute I[v] using smaller subproblems (its descendants)

Case 1: The optimal solution for I[v] uses v. ‘
None of the children of v can be in the @ ‘
independent set.

\/ \/
Recurse to the grandchildren levels: .“ .z‘ .“ ‘

pas:
[[vl]=1+ Z I[u] ‘

u:grandchild of v

Two Cases:

Recurrence: Compute I|v] using smaller subproblems (its descendants)

Case 2: The optimal solution for I|v] does NOT use v.

This doesn’t restrict the optimal solution in the
children of v.

Recurse to the children levels:

u: child of v

Step 2: Recurrence for Independent Sets

Input: Undirected Graph G = (V, E) and G is a tree.
Output: Largest “independent set” of G.

Subproblems: Foreachv € V

I(v) = Size of max independent set in
subtree rooted at v.

Recurrence: Compute /|v] using smaller
subproblems (its descendants)

()

I[v] = max<1+ 2 I[u], 2 I[u]

X u:grandchild of v u: child of v)

Y

Step 3: Design the Algorithm

Input: Undirected Graph ¢ = (V,E) and G is a tree.

—

Output: Largest “independent set” of G.

We need a data structure to store the tree easily.

—> How to ensure that every child is processed before the parent?

Recall, post numbers in DFS(G):
 If uis a descendent of v: post(u) < post(v).

Bottom-up: memo-ize in increasing order of post numbers, in any DFS traversal.

Step 3: Design the Algorithm T[] mine Todipotbde ek

Input: Undirected Graph G = (V, E) and G is a tree. Size v Sboher valy
ok~

Output: Largest “independent set” of G.

1. Intrees: |E| = |V]| - 1.

Independent-Set-Tree(G = (V,E))
2. DFS Runtime = 0(|V]) =’ @(“”E’)

An array [of size n.

sort v, ... v, in increasing post order of DFS(G)

3. Each edge is looked at < 2 times. Fori=1,...n \\((

-> Once for its parent’s subproblem.)

—> Once for its grandparent’s 1+ z Iu],
subproblem. . u:grandchild of v;

Total work for all subproblems = I[v;] = max >

O(IE]) = o(IVI). 2 ITu]

\ u: child of v; y,
Total runtime: O(|V]).

return /|v, |

Chain Matrix Multiplication

Matrix Multiplication Lecture 2:

Fast matrix multiplication
does slightly better!
Here, we work with naive
multiplication.

mxp

Number of operations:
—> Outcome matrix of size m X n

—> Each cell is a dot product of two vectors of length p, so O(p)
- Total: Om

Chain Matrix Multiplication A x@x (CxD))

><I—X—/-
)

A B C D Outcome
50x 20 20 1 10 X 60 50 X 60
X1 X10

Matrix multiplication is associative (can put parenthesis anywhere), but not

CW (can’t switch left and right order) AN + B WA

Chain Matrix Multiplication

Outcome
50%60

Parefthegsizatio Cost of Computation
Ax(g_.;x c> xD) | 9ox\x10 + 20510 X £0 + B0y 20x60 = 72,000

20x\0

A BxC
(@x B X)) xD 20;(\(;\0 4 56x20x D 4 50£10x60 = Ub,200
122} MU

(A% B) x (C xD) 50 120x] 4 \XxOx68 ¥ HOx| X6Q = L\,Gﬁof

5@ @2_ 8 Pl D

Chain Matrix Multiplication

oy M
Input: Matrices Ay, ..., A,, where matrix 4; is of dimension m;_ @ e
Output: Minimum cost of multiplying 4; X ..., X 4,,.

Parenthesizations correspond to binary Trees

Cost:20 x 1 /
X 60 Q @
Matrix: X

Cost: 50 X 20
X 60
Matrix: 50 X 60

Cost: 2 o~ g
X 10
Matrlx

Step 1: Subproblems

Input: Matrices A4, ..., A,,, where matrix A4; is of dimension m;_; X m;.
Qutput: Minimum cost of multiplying 4A; X ...,X A4,,.

Subproblem choice: The cost of multiplying a contagious subset of the matrices

Cost|i, j] =Minimum cost of multiplying A; X A;;; ...,X A; fori < j

Why is this a good choice?

For a tree to be optimal, every subtree
also has to be optimal.

Natural subproblem order, start from
leaves and consider every subtree. @

Step 2: Recurrence Relation

Input: Matrices 44, ..., 4,,, where matrix 4; is of dimension m;_; X m;.
Output: Minimum cost of multiplying 4A; X ...,X A,,.

Subproblem choice: The cost of multiplying a contagious subset of the matrices

Costl|i,j] =Minimum co ultiplying i41 X Ajfori <j
To multiply A; X 4;,; ...,X Aj, we }@?Arﬁé q?l?@t say by splitting a@ 4,‘«---4“"31
A X Ajyq e, A_(A X XAR)W(AkHX Aﬁ-\
Costli,j] = Costli, k] + Cost|k VTWR by m;, X m;
matrices = Cost[‘i,/k] + Costlk + 1,ﬁ'] +m_q X my, X m; C_/ o
For the best parenthesization of the A; X 4;, 1 ... %

o
Costli,j] = krrg{rl {Cost[i, k] + Cost[k + 1,@ +m;_q X my X m}

P

\ Order of Computation Pi- w A

Costli,] = k?l}cll]{COSt i, k] + Costlk + 1,75 + mli_l X my, X m;}

Go by the increasing size of j — i:
- Base case: Cost[i,i] = 0 foralli = N
- Startfrom s = j — i being 1, 2 ,@ , Ay (\’?\3
- Fill in diagonall IR Tt Mttty ’V‘ﬁ N
w;iﬁ 1N = -
D$.l D) N\—)) .

Step 3: Memo-ization

Input: Matrices 44, ..., 4,,, where matrix 4; is of dimension m;_; X m;.
Output: Minimum cost of multiplying 4A; X ...,X A,,.

Chain-Matrix-Mult(my, m, -+, m,,)

Number of subproblems is 0(n?) Cag\r
An array Cof sizen X n

Per subproblem: Fori=1,..,nClii]=0
* Minimize over O(n) choices for Fors=1..n—1
identity of k.

* Each value takes O(1) to compute Fori=1,..,n—s

- Total of O(n) cost per subproblem. Jjeits 5
Clii]= mi {Cost[i, k] + Cost|k + 1,3]}
L= kl;ré}?(/ +mi_1 X my, X m]
Total runtime 0(n?>) Return C[1, n]
3 bﬂﬂ— -.,(A
)

Summary of Subproblem

Remember the Recipe

-
The recipe!

Step 1. Identify subproblems (aka optimal substructure)

Step 2. Find a recursive formulation for the subproblems

Step 3. Design the Dynamic Programming Algorithm

=2 Memo-ize computation starting from smallest subproblems and building up.

What makes for good subproblems?

* Not too many of them (the more subproblems the slower the DP algorithm)

* Must have enough information in it to compute subproblems recursively (needed
for step 2).

Common Subproblem on Arrays

The inputis an array x4, ...,

X, and subproblem is x4, ...,

"
D) o T

A %

The inputis an afray':q,

zrmi'S'tl'prUﬂlem is x;, ...,

L

O ‘Vj ™ S

The inputis two array x4, ...,
X1, ..., X; and yq, ..., y; or in some cases Xx;, ...,

x4 j

ru-

Xy and yq, ...

Xi

Xj

X3 T —g Y P Mwﬁyﬁ

, Vi, and subproblems

xj and yy, ...

» Vs

\

-9

[

P

Common Subproblems on Trees

The inputis a tree (or something that can be interpreted as a tree), the subproblems
are subtrees

Common Subproblems for Graphs

You might need more creativity!

Problem might be about cycles (like Traveling salesperson), but it’s easier to think
about subpaths as subproblems:

- It is harder to recurse from a big cycle to a smaller cycles
—> It is easier to recurse from a longer path to a shorter path

Problem might be about paths (like All-Pair Shortest Path, or TSP), but it helps to
track internal vertices:

—> Subproblems need to take into account sets of ve
- Sets likmr all j (e.g., Floyd Warshall) or g1l subsets of {x4, ..., x,} (e.g.,

Traveling Saleperson). —

Wrap up

We did lots of dynamic programming!

Dynamic programming can be best learned by practice! Do lots more example
at home.

Next time:
—> Linear Programming

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of the last 3 lectures
	Slide 4: This lecture
	Slide 5: Independent Sets (in Trees)
	Slide 6: Independent Sets (in Trees)
	Slide 7: Independent Sets in Trees
	Slide 8: Which choice of subproblem is more appropriate?
	Slide 9: Step 1: Subproblems for Independent Sets
	Slide 10: Step 2: Recurrence for Independent Sets
	Slide 11: Two Cases:
	Slide 12: Two Cases:
	Slide 13: Step 2: Recurrence for Independent Sets
	Slide 14: Step 3: Design the Algorithm
	Slide 15: Step 3: Design the Algorithm
	Slide 16: 3 Min Break and Attendance
	Slide 17: Chain Matrix Multiplication
	Slide 18: Matrix Multiplication
	Slide 19: Chain Matrix Multiplication
	Slide 20: Chain Matrix Multiplication
	Slide 21: Chain Matrix Multiplication
	Slide 23: Step 1: Subproblems
	Slide 24: Step 2: Recurrence Relation
	Slide 25: Order of Computation
	Slide 26: Step 3: Memo-ization
	Slide 27: Summary of Subproblem
	Slide 28: Remember the Recipe
	Slide 29: Common Subproblem on Arrays
	Slide 30: Common Subproblems on Trees
	Slide 31: Common Subproblems for Graphs
	Slide 32: Wrap up

