
Lecture 16
Maximum flow

: source
: destination

30

= a capacity of
30,000 tons

: source
: destination

30

= a capacity of
30,000 tons

: source
: destination

Total East → West capacity: 163,000 tons
Optimal due to the bottleneck

30

= a capacity of
30,000 tons

Harris and Ross solved this problem
using a greedy algorithm they called “flooding”

But flooding would sometimes output incorrect solutions
So they approached their colleagues Ford and Fulkerson,

who devised an alg known as the Ford-Fulkerson algorithm

We will see this algorithm today.
See also: “On the history of the transportation and maximum flow problems”

by Alexander Schrijver

Input:
Maximum flow

1. Directed graph 𝑮 = (𝑽, 𝑬)
2. One “source vertex” 𝒔 ∈ 𝑽
3. One “sink vertex” 𝒕 ∈ 𝑽
4. For each edge 𝒆 ∈ 𝑬, a “capacity” 𝒄𝒆 ∈ ℤ" (or ℝ")

𝒔

Goal: Route the maximum amount of water from 𝒔 to 𝒕

𝒕

1

1 1

1

1

1

1 1

1 1

1 1

1 unit
of water

1 unit
of water

𝒔

𝒕

2 units of flow (water)

1 unit

1/2
1/2

1/2

1/2

1/2
1

1

1/2
1/21/2

1

Input:
Maximum flow

1. Directed graph 𝑮 = (𝑽, 𝑬)
2. One “source vertex” 𝒔 ∈ 𝑽
3. One “sink vertex” 𝒕 ∈ 𝑽
4. For each edge 𝒆 ∈ 𝑬, a “capacity” 𝒄𝒆 ∈ ℤ" (or ℝ")

𝒔

Goal: Route the maximum amount of water from 𝒔 to 𝒕

𝒕

1

1 1

1

1

1

1 1

1 1

1 1

1 unit
of water

1 unit
of water

𝒔

𝒕

2 units of flow (water)

1 unit

1/2
1/2

1/2

1/2

1/2
1

1

1/2
1/21/2

1

2 units of flow

Def: A flow assigns a number 𝒇𝒆 to each directed edge 𝒆 ∈ 𝑬 such that

for each vertex 𝒗

(Nonnegativity)
(Capacity)
(Flow in = flow out)

𝒇𝒆 ≥ 𝟎
𝒇𝒆 ≤ 𝒄𝒆

≠ 𝒔, 𝒕,

flow in flow out, 6
𝒖→𝒗

𝒇𝒖,𝒗 = 6
𝒗→𝒘

𝒇𝒗,𝒘

Def: The size of a flow 𝒇 is the total quantity sent from 𝒔 to 𝒕.

𝒔 size 𝒕 𝐬𝐢𝐳𝐞 𝒇 = 6
𝒔→𝒗

𝒇𝒔,𝒗 =6
𝒗→𝒕

𝒇𝒗,𝒕

Maximum flow
maximize 𝐬𝐢𝐳𝐞(𝒇)

s.t. {𝒇𝒆} is a flow
= a linear program!

Max flow algorithm: first try
1. Find a path 𝑷 from 𝒔 to 𝒕 which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕

1

1 1

1

𝒔

𝑨

𝑩

𝒕

1

1 1

1

1

𝑠 → 𝐴 → 𝑡: 1 unit
𝑠 → 𝐵 → 𝑡: 1 unit

total: 2 units

(Harris and Ross’ “flooding” method)

𝒔

𝑨

𝑩

𝒕

1

1 1

1

1 𝒔

𝑨

𝑩

𝒕

1

1 1

1

0𝒔

𝑨

𝑩

𝒕

0

1 0

1

0

1

1

1

𝑠 → 𝐴 → 𝐵 → 𝑡: 1 unit “residual graph”
𝑠 → 𝐵 → 𝐴 → 𝑡: 1 unit

2 units total!

Def: Given a graph 𝑮 and a flow 𝒇 on 𝑮, the residual graph 𝑮𝒇 is as follows.
For all edges (𝒖, 𝒗):

𝒖
flow 𝒇𝒖,𝒗

𝒗
capacity 𝒄𝒖,𝒗

(in original graph)

𝒖
capacity 𝒄𝒖,𝒗 − 𝒇𝒖,𝒗

𝒗

capacity 𝒇𝒖,𝒗

(in residual graph)

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕

3

6

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

9

5

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
2

0

6

6

`

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
2

0

6

6

𝑠 → 𝐴 → 𝑡: 2 units

`

3

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

0

4

6

𝑠 → 𝐴 → 𝑡: 2 units

`

5

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

7 0

4

6

𝑠 → 𝐴 → 𝑡: 2 units
𝑠 → 𝐵 → 𝐴 → 𝑡: 3 units

`

5 2

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

4 0

1

9

𝑠 → 𝐴 → 𝑡: 2 units
𝑠 → 𝐵 → 𝐴 → 𝑡: 3 units

total: 8 units

`

5 5

3 3

0

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

4 0

1

9

𝑠 → 𝐴 → 𝑡: 2 units
𝑠 → 𝐵 → 𝐴 → 𝑡: 3 units

total: 8 units

`

5 5

3 3

0

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

Def: An 𝒔-𝒕 cut is a partition 𝑽 = 𝑳 ∪ 𝑹 of the vertices such that 𝒔 ∈ 𝑳 and 𝒕 ∈ 𝑹

𝒔 𝒕

𝑳 𝑹

Def: The capacity of the cut is 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲 𝑳, 𝑹 = 6
𝒖→𝒗

𝒄𝒖,𝒗	

𝒖 ∈ 𝑳, 𝒗 ∈ 𝑹Thm: For any flow 𝒇 and any cut (𝑳, 𝑹),
𝐬𝐢𝐳𝐞 𝒇 ≤ 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲(𝑳, 𝑹).

𝒔

𝑨

𝑩

𝒕

5

7 3

6

9

Def: An 𝒔-𝒕 cut is a partition 𝑽 = 𝑳 ∪ 𝑹 of the vertices such that 𝒔 ∈ 𝑳 and 𝒕 ∈ 𝑹

𝒔 𝒕

𝑳 𝑹

Def: The capacity of the cut is 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲 𝑳, 𝑹 = 6
𝒖→𝒗

𝒄𝒖,𝒗	

𝒖 ∈ 𝑳, 𝒗 ∈ 𝑹Thm: For any flow 𝒇 and any cut (𝑳, 𝑹),
𝐬𝐢𝐳𝐞 𝒇 ≤ 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲(𝑳, 𝑹).

Aka: Max-flow ≤ Min-cut

(Harris and Ross’ “bottleneck”)

Def: The Min-cut is the cut with minimum capacity. 𝒔

𝑨

𝑩

𝒕

5

7 3

6

9

so size 𝑓 ≥ Min-cut.

Thm:
Only need to show “≥”

Max-flow = Min-cut
Pf:

Run Ford-Fulkerson on 𝑮. Let 𝒇 be the flow it outputs.
Then no 𝒔 → 𝒕 in residual graph 𝑮𝒇.
Set 𝑳 =	vertices reachable from 𝒔 in 𝑮𝒇.

𝑹 =	everything else.

𝒔 𝒕

𝑳 𝑹in 𝑮𝒇:

𝒔 𝒕

𝑳 𝑹in 𝑮:

𝒄𝒆 𝒇𝒆

flow 0

so size 𝑓 = capacity(𝐿, 𝑅)

0
0
0
0

Thm: Ford-Fulkerson outputs a maximum flow.

= 𝒄𝒆

so size 𝑓 Max-flow ≥

Runtime ≈ # of augmenting paths ≤ 𝑼, where 𝑼 = Max-flow
(× the time to find the paths)

≤ 𝐎 𝑚 + 𝑛 ⋅ 𝑼
(in graphs of integer weights)

Is this a good runtime?

Suppose each capacity 𝒄𝒆 was ≤ 𝑪.

Then 𝑼 ≤ 𝒎 ⋅ 𝑪.

Each 𝒄𝒆 is a 𝐥𝐨𝐠𝟐(𝑪)–bit integer.

So 𝑼 can be exponential in the input length!

This is a pseudo-polynomial algorithm
(it is polynomial in the numerical value of the input)

Recall: Knapsack

Runtime ≈ # of augmenting paths ≤ 𝑼, where 𝑼 = Max-flow
(× the time to find the paths)

≤ 𝐎 𝑚 + 𝑛 ⋅ 𝑼
(in graphs of integer weights)

Surprise: If all the capacities are integral, then the Max-flow is integral.
(all the capacities/flows are integers)

Other algorithms:
Dinitz 1970/Edmonds-Karp 1972:

⋮
(many, many more)

⋮

Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva 2022: 𝐎(𝑚,"- , ⋅ log 𝑼)

Runs in time 𝐎(𝑛	𝑚.)!
Always pick the shortest augmenting path

(only 112 pages!)

