Lecture 16
Maximum flow
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Harris and Ross solved this problem
using a greedy algorithm they called “flooding”

But flooding would sometimes output incorrect solutions

So they approached their colleagues Ford and Fulkerson,
who devised an alg known as the Ford-Fulkerson algorithm

MAXIMAL FLOW THROUGH A NETWORK
L. R. FORD, Jr. axp D. R. FULKERSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

We will see this algorithm today.

See also: “On the history of the transportation and maximum flow problems”
by Alexander Schrijver



Maximum flow
Input: 1. Directed graph G = (V,E)

2. One “sourcevertex"s eV

3. One“sinkvertex"t eV

4. Foreach edge e € E, a“capacity” ¢, € Z* (or R")
Goal: Route the maximum amount of water from sto t

1/2 1
1/2 1/2 1
1 unit 1 unit 1/2 1/2
of water of water
1 unit 1/2 1/2
1 1/2

2 units of flow (water)
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Def: A flow assigns a number f, to each directed edge e € E such that
(Nonnegativity) f. =0

(Capacity) f. <c,

(Flow in = flow out) for each vertexv # s, ¢,

flow in 4 % - flow out, Z fupr = z fow

vV->w

Def: The size of a flow f is the total quantity sent from s to t.

@é | size - 9@ size(f) = ) fon = fue

vt

Maximum flow
maximize size(f)

= a linear program!
s.t. {fe}isaflow Prog



Max flow algorithm: first try  (Harris and Ross’ “flooding” method)
1. Find a path P from s to t which is not yet saturated

2. Send more flow along P

3. Repeat

s > A-t:1unit
s > B - t: 1 unit

total: 2 units



s—>A-B-t1unit “residual graph” 2 units total!
s—>B—-A-t:1unit

Def: Given a graph G and a flow f on G, the residual graph Gy is as follows.

For all edges (u, v): capacity f
uv

capacity c¢,,,,
® 20, u

flow £, ., capacity ¢, , — fuv

(in original graph) (in residual graph)



Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
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Def: An s-t cutis a partition V = L U R of the vertices such thats € Land t € R

Def: The capacity of the cutis capacity(L,R) = z Cuv

u-—-v

Thm: For any flow f and any cut (L, R), uelLveR
size(f) < capacity(L, R).




Def: An s-t cutis a partition V = L U R of the vertices such thats € Land t € R

Def: The capacity of the cutis capacity(L,R) = z Cuv

u-—-v

Thm: For any flow f and any cut (L, R), ueLveR
size(f) < capacity(L, R).

Def: The Min-cut is the cut with minimum capacity.

Aka: Max-flow < Min-cut

(Harris and Ross’ “bottleneck”)




Thm: Max-flow = Min-cut

Pf: Only need to show ">"
Run Ford-Fulkerson on G. Let f be the flow it outputs.
Then no s — tin residual graph Gy.

Set L = vertices reachable from s in Gy.
R = everything else.

inG:

Max-flow > size(f) = capacity(L,R) > Min-cut.

Thm: Ford-Fulkerson outputs a maximum flow.




Runtime = # of augmenting paths < U, where U = Max-flow
(X the time to find the paths) (in graphs of integer weights)
<0O(m+n)-U
s this a good runtime?
Suppose each capacity ¢, was < C.
ThenU <m - C.
Each c, is alog,(C)-bit integer.

So U can be exponential in the input length!

This is a pseudo-polynomial algorithm

(it is polynomial in the numerical value of the input)

Recall: Knapsack



Runtime = # of augmenting paths < U, where U = Max-flow
(X the time to find the paths) (in graphs of integer weights)
<0(m+n)-U

Surprise: If all the capacities are integral, then the Max-flow is integral.

(all the capacities/flows are integers)

Other algorithms:

Dinitz 1970/Edmonds-Karp 1972:  Always pick the shortest augmenting path
Runs in time O(n m?)!

(many, many more)

Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva 2022: 0(m*+°W . log(U))
(only 112 pages!)



