Lecture 16
Maximum flow

.l
.
-
[
4

NOTICE THIS DOCUMENT CONTAINS INFORMATIQN AFFECTING THE
NATIONAL DEFENSE OF THE UNITED STATES WITHIN 'I‘HE MEANDIG

R
Bl 2 e R

F R gy

Riny 2 A TR N S SRR

- OF THE ESPIONAGE LAWS, TITLE 18, U. S C., SECTIONS 793 and 794

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN

e ERI R RN 1o ¥

1| ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIB*TF‘D BY LAwf"

i}.S.;%!k LN
PROJECT RAND
RESEARCH MEMORANDUM

o | SN

FUNDAMENTALS OF A METHOD FOR EVALUATING
RAIL NET CAPACITIES (U)

T. E. Harris
F. S. Ross

RM-1573

tacber 2k, 1955 Copy .No. Y y

7

This matenal ¢antains information utfcding the ootional defense of the Umted Stutes witkin
the mewaning of the vspronage laws, Tile 18 U.S.¢, Secs 793 and 794 the transmissice ot the
revelation of which in any manner to an unavibcrized peeson 1s prohibited by jaw

1340348

—1 30

= a capacity of
30,000 tons

/f? \ 2

U £
p ((\‘"' 4&'\(‘\ \ o
I

7 @ ENINGRAD

Fig. 5— Soviet and
satellite rail
network

O0SCOW

Legend: =——---— |nternational boundary

O : source
QO : destination

1340348

—1 30

= a capacity of
30,000 tons

O : source

QO : destination

ORIGINS l

-y
&% JE | ORIGINS

LG A

1340348

—1 30

= a capacity of
30,000 tons

O : source

O : destination

i

o . . 6 K 0/ ‘;. . >
‘. .. i 2 i . = = /
H o) 4 2 i
. 3) A\ o (I /
s 2 E < s Z R/, =
‘. . ' 7 Py \ &

. o o

. /Y ‘ —4f B A

ORIGINS l

& | ORIGINS

SZSE AN

Total East » West capacity: 163,000 to
Optimal due to the bottleneck

ns

Harris and Ross solved this problem
using a greedy algorithm they called “flooding”

But flooding would sometimes output incorrect solutions

So they approached their colleagues Ford and Fulkerson,
who devised an alg known as the Ford-Fulkerson algorithm

MAXIMAL FLOW THROUGH A NETWORK
L. R. FORD, Jr. axp D. R. FULKERSON

Introduction. The problem discussed in this paper was formulated by
T. Harris as follows:

We will see this algorithm today.

See also: “On the history of the transportation and maximum flow problems”
by Alexander Schrijver

Maximum flow
Input: 1. Directed graph G = (V,E)

2. One “sourcevertex"s eV

3. One“sinkvertex"t eV

4. Foreach edge e € E, a“capacity” ¢, € Z* (or R")
Goal: Route the maximum amount of water from sto t

1/2 1
1/2 1/2 1
1 unit 1 unit 1/2 1/2
of water of water
1 unit 1/2 1/2
1 1/2

2 units of flow (water)

Maximum flow
Input: 1. Directed graph G = (V,E)
2. One "source vertex" s eV
3. One“sinkvertex"t eV
4. Foreach edge e € E, a“capacity” ¢, € Z* (or R")

Goal: Route the maximum amount of waterfrom sto t
1/2 1

1/2 1/2

1 unit
of water

1 unit
of water

2 units of flow (water) 2 units of flow

Def: A flow assigns a number f, to each directed edge e € E such that
(Nonnegativity) f. =0

(Capacity) f. <c,

(Flow in = flow out) for each vertexv # s, ¢,

flow in 4 % - flow out, Z fupr = z fow

vV->w

Def: The size of a flow f is the total quantity sent from s to t.

@é | size - 9@ size(f) =) fon = fue

vt

Maximum flow
maximize size(f)

= a linear program!
s.t. {fe}isaflow Prog

Max flow algorithm: first try (Harris and Ross’ “flooding” method)
1. Find a path P from s to t which is not yet saturated

2. Send more flow along P

3. Repeat

s > A-t:1unit
s > B - t: 1 unit

total: 2 units

s—>A-B-t1unit “residual graph” 2 units total!
s—>B—-A-t:1unit

Def: Given a graph G and a flow f on G, the residual graph Gy is as follows.

For all edges (u, v): capacity f
uv

capacity c¢,,,,
® 20, u

flow £, ., capacity ¢, , — fuv

(in original graph) (in residual graph)

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units
s > B —>A-t:3units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units
s > B —>A-t:3units

total: 8 units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

s > A - B - t:3units
s > A - t: 2 units

s > B —>A-t:3units

total: 8 units

Def: An s-t cutis a partition V = L U R of the vertices such thats € Land t € R

Def: The capacity of the cutis capacity(L,R) = z Cuv

u-—-v

Thm: For any flow f and any cut (L, R), uelLveR
size(f) < capacity(L, R).

Def: An s-t cutis a partition V = L U R of the vertices such thats € Land t € R

Def: The capacity of the cutis capacity(L,R) = z Cuv

u-—-v

Thm: For any flow f and any cut (L, R), ueLveR
size(f) < capacity(L, R).

Def: The Min-cut is the cut with minimum capacity.

Aka: Max-flow < Min-cut

(Harris and Ross’ “bottleneck”)

Thm: Max-flow = Min-cut

Pf: Only need to show ">"
Run Ford-Fulkerson on G. Let f be the flow it outputs.
Then no s — tin residual graph Gy.

Set L = vertices reachable from s in Gy.
R = everything else.

inG:

Max-flow > size(f) = capacity(L,R) > Min-cut.

Thm: Ford-Fulkerson outputs a maximum flow.

Runtime = # of augmenting paths < U, where U = Max-flow
(X the time to find the paths) (in graphs of integer weights)
<0O(m+n)-U
s this a good runtime?
Suppose each capacity ¢, was < C.
ThenU <m - C.
Each c, is alog,(C)-bit integer.

So U can be exponential in the input length!

This is a pseudo-polynomial algorithm

(it is polynomial in the numerical value of the input)

Recall: Knapsack

Runtime = # of augmenting paths < U, where U = Max-flow
(X the time to find the paths) (in graphs of integer weights)
<0(m+n)-U

Surprise: If all the capacities are integral, then the Max-flow is integral.

(all the capacities/flows are integers)

Other algorithms:

Dinitz 1970/Edmonds-Karp 1972: Always pick the shortest augmenting path
Runs in time O(n m?)!

(many, many more)

Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva 2022: 0(m*+°W . log(U))
(only 112 pages!)

