Lecture 17 Duality

Outline

Maximum flow

Input: Directed graph G = (V, E), source $s \in V$, sink $t \in V$, capacities $c_e \in \mathbb{Z}^+$

Goal: Route the maximum amount of water from *s* to *t*

Def: Given a flow f on G, the residual graph G_f is as follows. For all edges (u, v):

- 1. Find a path **P** from **s** to **t** in the residual graph which is not yet saturated
- 2. Send more flow along **P**
- 3. Repeat

- 1. Find a path **P** from **s** to **t** in the residual graph which is not yet saturated
- 2. Send more flow along **P**
- 3. Repeat

= an augmenting path

 $s \rightarrow A \rightarrow B \rightarrow t$: **3 units**

- 1. Find a path **P** from **s** to **t** in the residual graph which is not yet saturated
- 2. Send more flow along **P**
- 3. Repeat

 $s \rightarrow A \rightarrow B \rightarrow t$: **3 units** $s \rightarrow A \rightarrow t$: **2 units**

- 1. Find a path **P** from **s** to **t** in the residual graph which is not yet saturated
- 2. Send more flow along **P**
- 3. Repeat

- 1. Find a path **P** from **s** to **t** in the residual graph which is not yet saturated
- 2. Send more flow along **P**
- 3. Repeat

- 1. Find a path **P** from **s** to **t** in the residual graph which is not yet saturated
- 2. Send more flow along *P*
- 3. Repeat

total: 8 units

- 1. Find a path **P** from **s** to **t** in the residual graph which is not yet saturated
- 2. Send more flow along **P**
- 3. Repeat

total: 8 units

Def: An *s*-*t* cut is a partition $V = L \cup R$ of the vertices such that $s \in L$ and $t \in R$

(Harris and Ross' "bottleneck")

Thm: Max-flow = Min-cut

Pf: Only need to show " \geq "

Run Ford-Fulkerson on **G**. Let **f** be the flow it outputs.

Then no $s \rightarrow t$ in residual graph G_f .

Set L = vertices reachable from s in G_f .

R = everything else.

 $Max-flow \ge size(f) = capacity(L, R) \ge Min-cut.$

Thm: Ford-Fulkerson outputs a **maximum flow**.

Runtime \approx # of augmenting paths $\leq U$, where U = Max-flow (× the time to find the paths) (in graphs of integer weights) $\leq \mathbf{0}(m+n) \cdot \mathbf{U}$ Is this a good runtime? Suppose each capacity c_e was $\leq C$. Then $U \leq m \cdot C$. Each c_e is a $\log_2(C)$ -bit integer. So **U** can be **exponential** in the input length! This is a **pseudo-polynomial** algorithm (it is polynomial in the **numerical value** of the input) Recall: Knapsack

Runtime \approx # of augmenting paths \leq U, where U = Max-flow
(× the time to find the paths)(in graphs of integer weights)
 \leq 0(m + n) \cdot U

Surprise: If all the capacities are integral, then the Max-flow is integral. (all the capacities/flows are integers)

Other algorithms:

Dinitz 1970/Edmonds-Karp 1972: Always pick the shortest augmenting path Runs in time **O**(*n m*²)! (many, many more) :

Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva 2022: $O(m^{1+o(1)} \cdot \log(U))$ (only 112 pages!)

Outline

Bipartite Perfect Matching

Input: Bipartite (undirected) graph G = (L, R, E) with |L| = |R| = n**Output:** A perfect matching from *L* to *R*

Example:

- **L** = UC Berkeley courses
- **R** = UC Berkeley classrooms
- E = each course is connected to the classrooms it can be taught in

Q: Can we assign every course to a room?

Bipartite Perfect Matching

Input: Bipartite (undirected) graph G = (L, R, E) with |L| = |R| = n**Output:** A perfect matching from *L* to *R*

Thm: *G* has a perfect matching \Leftrightarrow Max-flow(*G*') = *n*

Pf:

Case 1: (⇒) ✓

- 1. Let *M* be a perfect matching in *G*.
- 2. Put 1 unit of flow on every edge in M and every $s \rightarrow v$ edge and every $v \rightarrow t$ edge.
- 3. Then this is a flow of size *n*.

a "**reduction** from perfect matching to maximum flow"

Outline

Earlier: Max-Flow = Min-Cut

Could always prove that a flow was **optimal** by showing a cut of the same value

This is a general property of LPs known as **duality**

The book calls duality a **magic trick**

$$\begin{array}{ll} \max & 5x_1 + 4x_2 \\ \text{s.t.} & 2x_1 + x_2 \leq 100 \\ x_1 & \leq 30 \\ x_2 \leq 60 \end{array} \quad \begin{array}{ll} \text{also} & x_1 \geq 0 \\ x_2 \geq 0 \\ \end{array}$$

Solution: $x_1 = 20, x_2 = 60$, value = 340

 $\begin{array}{rll} \max & 5x_1 + 4x_2 \\ \text{s.t.} & 2x_1 + x_2 \leq 100 & \text{also} & x_1 \geq 0 \\ & (x_1 & \leq 30) \cdot 5 & x_2 \geq 0 \\ + & (x_2 \leq 60) \cdot 4 \\ & 5x_1 + 4x_2 \leq 5 \cdot 30 + 4 \cdot 60 \\ & & 390 \end{array}$

Solution: $x_1 = 20, x_2 = 60$, value = 340

$$\begin{array}{rll} \max & 5x_1 + 4x_2 \\ \text{s.t.} & (2x_1 + x_2 \le 100) \cdot 3 \\ & (x_1 & \le 30) \cdot 0 \\ & + (x_2 \le 60) \cdot 1 \end{array} \quad \text{also} \quad x_1 \ge 0 \\ & x_2 \ge 0 \\ & + (x_2 \le 60) \cdot 1 \end{array}$$

Solution: $x_1 = 20, x_2 = 60$, value = 340

$$\begin{array}{rll} \max & 5x_1 + 4x_2 \\ \text{s.t.} & (2x_1 + x_2 \le 100) \cdot 5/2 & \text{also} & x_1 \ge 0 \\ & (x_1 & \le 30) \cdot 0 & x_2 \ge 0 \\ + & (x_2 \le 60) \cdot 3/2 \\ & 5x_1 + 4x_2 \le \frac{5}{2} \cdot 100 + \frac{3}{2} \cdot 60 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Solution: $x_1 = 20, x_2 = 60$, value = 340

Primal LP: max $5x_1 + 4x_2$ s.t. $(2x_1 + x_2 \le 100) \cdot y_1$ also $x_1 \ge 0$ $(x_1 \leq 30) \cdot y_2$ $x_2 \ge 0$ + ($x_2 \le 60$) $\cdot y_3$ $(2y_1 + y_2) \cdot x_1 + (y_1 + y_3) \cdot x_2 \le 100 \cdot y_1 + 30 \cdot y_2 + 60 \cdot y_3$ **Dual LP:** min $100 \cdot y_1 + 30 \cdot y_2 + 60 \cdot y_3$ s.t. $y_1, y_2, y_3 \ge 0$ $5 \le 2y_1 + y_2$ $4 \le y_1 + y_3$ **By construction:** $5x_1 + 4x_2 \le 100 \cdot y_1 + 30 \cdot y_2 + 60 \cdot y_3$ **Primal LP Opt** \leq **Dual LP Opt**

Cor: Primal LP OPT \leq **Dual LP OPT**

LP duality history

George Dantzig

Co-inventor of LPs, inventor of simplex, Berkeley grad student and faculty Was taking a statistics class

Professor wrote two of the most famous unsolved problems in statistics on the board

But Dantzig arrived late, mistook them for homework Turned in solutions a few days later,

said they "seemed to be a little harder than usual"

