
Lecture 17
Duality

Outline

1. Maximum flow

2. Bipartite perfect matching

3. Linear programming duality

Maximum flow
Input: Directed graph 𝑮 = (𝑽, 𝑬), source 𝒔 ∈ 𝑽, sink 𝒕 ∈ 𝑽, capacities 𝒄𝒆 ∈ ℤ"

Goal: Route the maximum amount of water from 𝒔 to 𝒕

𝒔

𝑨

𝑩

𝒕

1

1 1

1

11 unit

Def: Given a flow 𝒇 on 𝑮, the residual graph 𝑮𝒇 is as follows. For all edges (𝒖, 𝒗):

𝒖
flow 𝒇𝒖,𝒗

𝒗
capacity 𝒄𝒖,𝒗

in original:

𝒖
capacity 𝒄𝒖,𝒗 − 𝒇𝒖,𝒗

𝒗

capacity 𝒇𝒖,𝒗in residual:

1 unit 𝒔

𝑨

𝑩

𝒕

0

1 0

1

0

1

1

1Want to undo!

Reverses

the flow

Cancels the flow!

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕

3

6

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

9

5

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
2

0

6

6

`

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
2

0

6

6

𝑠 → 𝐴 → 𝑡: 2 units

`

3

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

0

4

6

𝑠 → 𝐴 → 𝑡: 2 units

`

5

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

7

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

7 0

4

6

𝑠 → 𝐴 → 𝑡: 2 units
𝑠 → 𝐵 → 𝐴 → 𝑡: 3 units

`

5 2

3

3

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

4 0

1

9

𝑠 → 𝐴 → 𝑡: 2 units
𝑠 → 𝐵 → 𝐴 → 𝑡: 3 units

total: 8 units

`

5 5

3 3

0

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

Ford-Fulkerson algorithm
1. Find a path 𝑷 from 𝒔 to 𝒕 in the residual graph which is not yet saturated
2. Send more flow along 𝑷
3. Repeat

𝒔

𝑨

𝑩

𝒕
0

4 0

1

9

𝑠 → 𝐴 → 𝑡: 2 units
𝑠 → 𝐵 → 𝐴 → 𝑡: 3 units

total: 8 units

`

5 5

3 3

0

𝑠 → 𝐴 → 𝐵 → 𝑡: 3 units

= an augmenting path

Def: An 𝒔-𝒕 cut is a partition 𝑽 = 𝑳 ∪ 𝑹 of the vertices such that 𝒔 ∈ 𝑳 and 𝒕 ∈ 𝑹

𝒔 𝒕

𝑳 𝑹

Def: The capacity of the cut is 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲 𝑳, 𝑹 = @
𝒖→𝒗

𝒄𝒖,𝒗	

𝒖 ∈ 𝑳, 𝒗 ∈ 𝑹Thm: For any flow 𝒇 and any cut (𝑳, 𝑹),
𝐬𝐢𝐳𝐞 𝒇 ≤ 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲(𝑳, 𝑹).

𝒔

𝑨

𝑩

𝒕

5

7 3

6

9

Def: An 𝒔-𝒕 cut is a partition 𝑽 = 𝑳 ∪ 𝑹 of the vertices such that 𝒔 ∈ 𝑳 and 𝒕 ∈ 𝑹

𝒔 𝒕

𝑳 𝑹

Def: The capacity of the cut is 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲 𝑳, 𝑹 = @
𝒖→𝒗

𝒄𝒖,𝒗	

𝒖 ∈ 𝑳, 𝒗 ∈ 𝑹Thm: For any flow 𝒇 and any cut (𝑳, 𝑹),
𝐬𝐢𝐳𝐞 𝒇 ≤ 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲(𝑳, 𝑹).

Aka: Max-flow ≤ Min-cut

(Harris and Ross’ “bottleneck”)

Def: The Min-cut is the cut with minimum capacity. 𝒔

𝑨

𝑩

𝒕

5

7 3

6

9

so size 𝑓 ≥ Min-cut.

Thm:
Only need to show “≥”

Max-flow = Min-cut
Pf:

Run Ford-Fulkerson on 𝑮. Let 𝒇 be the flow it outputs.
Then no 𝒔 → 𝒕 in residual graph 𝑮𝒇.
Set 𝑳 =	vertices reachable from 𝒔 in 𝑮𝒇.

𝑹 =	everything else.

𝒔 𝒕

𝑳 𝑹in 𝑮𝒇:

𝒔 𝒕

𝑳 𝑹in 𝑮:

𝒄𝒆 𝒇𝒆

flow 0

so size 𝑓 = capacity(𝐿, 𝑅)

0
0
0
0

Thm: Ford-Fulkerson outputs a maximum flow.

= 𝒄𝒆

so size 𝑓 Max-flow ≥

Runtime ≈ # of augmenting paths ≤ 𝑼, where 𝑼 = Max-flow
(× the time to find the paths)

≤ 𝐎 𝑚 + 𝑛 ⋅ 𝑼
(in graphs of integer weights)

Is this a good runtime?

Suppose each capacity 𝒄𝒆 was ≤ 𝑪.

Then 𝑼 ≤ 𝒎 ⋅ 𝑪.

Each 𝒄𝒆 is a 𝐥𝐨𝐠𝟐(𝑪)–bit integer.

So 𝑼 can be exponential in the input length!

This is a pseudo-polynomial algorithm
(it is polynomial in the numerical value of the input)

Recall: Knapsack

Runtime ≈ # of augmenting paths ≤ 𝑼, where 𝑼 = Max-flow
(× the time to find the paths)

≤ 𝐎 𝑚 + 𝑛 ⋅ 𝑼
(in graphs of integer weights)

Surprise: If all the capacities are integral, then the Max-flow is integral.
(all the capacities/flows are integers)

Other algorithms:
Dinitz 1970/Edmonds-Karp 1972:

⋮
(many, many more)

⋮

Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva 2022: 𝐎(𝑚)"*) ⋅ log 𝑼)

Runs in time 𝐎(𝑛	𝑚+)!
Always pick the shortest augmenting path

(only 112 pages!)

Outline

2. Bipartite perfect matching

3. Linear programming duality

1. Maximum flow

Input:
Bipartite Perfect Matching

Bipartite (undirected) graph 𝑮 = (𝑳, 𝑹, 𝑬) with 𝑳 = 𝑹 = 𝒏
Output: A perfect matching from 𝑳 to 𝑹

𝑹𝑳

Graph
𝑮

Example:
𝑳 = UC Berkeley courses
𝑹 = UC Berkeley classrooms

each course is connected
to the classrooms it can be taught in

Q: Can we assign every course to a room?

𝑬 =

Input:
Bipartite Perfect Matching

Bipartite (undirected) graph 𝑮 = (𝑳, 𝑹, 𝑬) with 𝑳 = 𝑹 = 𝒏
Output: A perfect matching from 𝑳 to 𝑹

𝑹𝑳

Graph
𝑮

Graph
𝑮′

1

1

1

1

1

1

1

1

Thm: 𝑮 has a perfect matching ⇔ Max-flow(𝑮′)	= 	𝒏

𝒔 𝒕

1

1 1

1

1

1

1

Thm: 𝑮 has a perfect matching
 ⇔ Max-flow(𝑮′)	= 	𝒏

Graph 𝑮′
𝑹𝑳

𝒔 𝒕

Pf:
Case 1: (⇒)
1. Let 𝑴 be a perfect matching in 𝑮.
2. Put 1 unit of flow on every edge in M

and every 𝒔 → 𝑣 edge
and every 𝑣 → 𝒕 edge.

3. Then this is a flow of size 𝒏.

Thm: 𝑮 has a perfect matching
 ⇔ Max-flow(𝑮′)	= 	𝒏

Graph 𝑮′
𝑹𝑳

a “reduction from perfect matching
to maximum flow”

Pf:
Case 1: (⇒)
Case 2: (⇐)

1. Let 𝒇 be an integral flow of size 𝒏 in 𝑮′.

2. Each 𝒖 ∈ 𝑳 has 1 unit of flow on 1 outgoing edge
3. Each 𝒗 ∈ 𝑹 has 1 unit of flow on 1 incoming edge
4. These edges form a matching of size 𝒏.

Recall from earlier:
If the capacities are integral,
then the Max-Flow is integral.

𝒔 𝒕

(all flow values 0 or 1)

Outline

3. Linear programming duality

1. Maximum flow

2. Bipartite perfect matching

Earlier: Max-Flow = Min-Cut

The book calls duality
a magic trick

Could always prove that a flow was optimal
by showing a cut of the same value

This is a general property of LPs known as duality

max (5𝑥! + 4𝑥"
s.t. 𝑥! ≥ 02𝑥! + 4𝑥" ≤ 100 ⋅ 𝑦!

2𝑥! + 4𝑥" ≤ 300 ⋅ 5
2𝑥! + 4𝑥" ≤ 600 ⋅ 4

also
𝑥" ≥ 0

Solution: 𝑥! = 20, 𝑥" = 60, value = 340
Q: Can we prove this is optimal?

max (5𝑥! + 4𝑥"
s.t. 𝑥! ≥ 02𝑥! + 4𝑥" ≤ 100 ⋅ 𝑦!

2𝑥! + 4𝑥" ≤ 300 ⋅ 5
2𝑥! + 4𝑥" ≤ 600 ⋅ 4

also
𝑥" ≥ 0

Solution:

+

𝑥! = 20, 𝑥" = 60, value = 340
Q: Can we prove this is optimal?

5𝑥! + 4𝑥" ≤ 5 ⋅ 30 + 4 ⋅ 600

390

max (5𝑥! + 4𝑥"
s.t. 𝑥! ≥ 02𝑥! + 4𝑥" ≤ 100 ⋅ 3

2𝑥! + 4𝑥" ≤ 300 ⋅ 0
2𝑥! + 4𝑥" ≤ 600 ⋅ 1

also
𝑥" ≥ 0

Solution:

+

𝑥! = 20, 𝑥" = 60, value = 340
Q: Can we prove this is optimal?

6𝑥! + 4𝑥" ≤ 3 ⋅ 100 + 600

360

(5𝑥! + 4𝑥" ≤

max (5𝑥! + 4𝑥"
s.t. 𝑥! ≥ 02𝑥! + 4𝑥" ≤ 100 ⋅ 5/2

2𝑥! + 4𝑥" ≤ 300 ⋅ 0
2𝑥! + 4𝑥" ≤ 600 ⋅ 3/2

also
𝑥" ≥ 0

Solution:

+

5𝑥! + 4𝑥" ≤
5
2 ⋅ 100 +

3
2 ⋅ 600

340
𝑥! = 20, 𝑥" = 60, value = 340

Q: Can we prove this is optimal?

max (5𝑥) + 4𝑥+
s.t. 𝑥) ≥ 0

2𝑥) + 4𝑥+ ≤ 300 ⋅ 𝑦+
2𝑥) + 4𝑥+ ≤ 600 ⋅ 𝑦.

also
Primal LP:

2𝑦) + 𝑦+ ⋅ 𝑥) + 𝑦) + 𝑦. ⋅ 𝑥+ ≤ 100 ⋅ 𝑦) + 30 ⋅ 𝑦+ + 60 ⋅ 𝑦.

Dual LP: min 100 ⋅ 𝑦) + 30 ⋅ 𝑦+ + 60 ⋅ 𝑦.
𝑦), 𝑦+, 𝑦. ≥ 0s.t.
5 ≤ 2𝑦) + 𝑦+
4 ≤ 𝑦) + 𝑦.

By construction: 5𝑥) + 4𝑥+ ≤ 100 ⋅ 𝑦) + 30 ⋅ 𝑦+ + 60 ⋅ 𝑦.

𝑥+ ≥ 0

Primal LP Opt ≤ Dual LP Opt

+

2𝑥) + 4𝑥+ ≤ 100 ⋅ 𝑦)

Primal LP
max

s.t.

⋅

⋅ ≤

and
≥ 0

Thm: (Weak duality) all feasible solutions
𝒙 to primal LP

all feasible solutions
𝒚 to dual LP

≤

Pf:
≤ ≤ =

Cor: Primal LP OPT ≤ Dual LP OPT

𝑐/
𝑥

𝑥𝐴 𝑏

𝑥

Dual LP
max

s.t.

⋅

⋅ ≥

and
≥ 0

𝑏/
𝑦

𝑦𝐴/ 𝑐

𝑦

𝑐/
𝑥 𝑥𝑦/ 𝐴 𝑦/ 𝑏 𝑏/ 𝑦

Weak duality:
“duality gap”

Primal Dual

Objective value

Thm: (Strong duality)
If the Primal LP Opt is bounded,
 then Primal LP Opt = Dual LP Opt

∴ duality gap = 0

Example: Max-Flow = Min-Cut
LP LP

dual

(in recitation)

LP duality history

George Dantzig

Co-inventor of LPs,
inventor of simplex,

Berkeley grad student
and faculty

Was taking a statistics class
Professor wrote two of the most famous unsolved
 problems in statistics on the board
But Dantzig arrived late, mistook them for homework
Turned in solutions a few days later,

said they “seemed to be a little harder than usual”

LP duality history

George Dantzig

Co-inventor of LPs,
inventor of simplex,

Berkeley grad student
and faculty

John von Neumann

All-time great
mathematician

“Let me tell you about my newest
invention: linear programming”

“Oh that!”
(Lectures Dantzig about linear

programming for 1.5 hours,
invents linear program duality)

“It’s equivalent to zero-sum games, which I
have also recently invented”

