Lecture 17
Duality

-

Outline

1. Maximum flow &@)N

Maximum flow
Input: Directed graph G = (V,E), source s € V, sink t € V, capacities ¢, € Z*

Goal: Route the maximum amount of waterfrom sto t
Cancels the flow!

Def: Given aflow f on G, the residual graph Gy is as follows. For all edges (u, v):

in original: in reS|duaI capacity f,,
® capacityc,, = ___--
) ————— () P

flow f, ., 4 2G> \le"s capamty Curv —

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units
s > B —>A-t:3units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

3. Repeat

s > A - B - t:3units
s > A - t: 2 units
s > B —>A-t:3units

total: 8 units

Ford-Fulkerson algorithm
1. Find a path P from s to t in the residual graph which is not yet saturated
2. Send more flow along P = an augmenting path

s > A - B - t:3units
s > A - t: 2 units

s > B —>A-t:3units

total: 8 units

Def: An s-t cutis a partition V = L U R of the vertices suchthats € Land t € R

Def: The capacity of the cutis capacity(L,R) = z Cuv

u-—-v

Thm: For any flow f and any cut (L, R), uelLveR
size(f) < capacity(L, R).

Def: An s-t cutis a partition V = L U R of the vertices suchthats € Land t € R

Def: The capacity of the cutis capacity(L,R) = z Cuv

u-—-v

Thm: For any flow f and any cut (L, R), ueLveR
size(f) < capacity(L, R).

Def: The Min-cut is the cut with minimum capacity.

Aka: Max-flow < Min-cut

(Harris and Ross’ “bottleneck”)

Thm: Max-flow = Min-cut

Pf: Only need to show ">"
Run Ford-Fulkerson on G. Let f be the flow it outputs.
Then no s — tin residual graph Gy.

Set L = vertices reachable from s in Gy.
R = everything else.

inG:

Max-flow > size(f) = capacity(L,R) > Min-cut.

Thm: Ford-Fulkerson outputs a maximum flow.

Runtime = # of augmenting paths < U, where U = Max-flow
(X the time to find the paths) (in graphs of integer weights)
<0O(m+n)-U
s this a good runtime?
Suppose each capacity ¢, was < C.
ThenU <m - C.
Each c, is alog,(C)-bit integer.

So U can be exponential in the input length!

This is a pseudo-polynomial algorithm

(it is polynomial in the numerical value of the input)

Recall: Knapsack

Runtime = # of augmenting paths < U, where U = Max-flow
(X the time to find the paths) (in graphs of integer weights)
<0(m+n)-U

Surprise: If all the capacities are integral, then the Max-flow is integral.

(all the capacities/flows are integers)

Other algorithms:

Dinitz 1970/Edmonds-Karp 1972: Always pick the shortest augmenting path
Runs in time O(n m?)!

(many, many more)

Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva 2022: 0(m*+°W . log(U))
(only 112 pages!)

Outline

Bipartite Perfect Matching
Input: Bipartite (undirected) graph G = (L, R, E) with |[L| = |R| =n
Output: A perfect matching from Lto R

Example:
: L = UC Berkeley courses
Graph R = UC Berkeley classrooms
G E = each course is connected
O to the classrooms it can be taughtin

Q: Can we assign every course to a room?

Bipartite Perfect Matching
Input: Bipartite (undirected) graph G = (L, R, E) with |[L| = |R| = n
Output: A perfect matching from Lto R

Graph — 5 Graph

L R Thm: G has a perfect matching © Max-flow(G') = n

Thm: G has a perfect matching
& Max-flow(G') = n
Pf:

Case 1: (=) |v

1. Let M be a perfect matching in G.

2. Put 1 unit of flow on every edge in M
and every s - v edge

and every v = t edge.

3. Then this is a flow of size n.

Graph G’

Thm: G has a perfect matching a "reduction from perfect matching
& Max-flow(G') = n to maximum flow”

: Recall from earlier:

If the capacities are integral,
: then the Max-Flow is integral. :

1. Let f be an integral flow of size nin G'.

(all flow values 0 or 1)
2. Each u € L has 1 unit of flow on 1 outgoing edge L R

w

Each v € R has 1 unit of flow on 1 incoming edge Graph G’

4. These edges form a matching of size n.

Outline

Earlier: Max-Flow = Min-Cut

Could always prove that a flow was optimal
by showing a cut of the same value

This is a general property of LPs known as duality

The book calls duality
a magic trick

Max le + 4‘X2

st 2x+ x, <100 also x4 =0
X1 < 30 X2 >0
X9 < 60

Solution: x; = 20, x, = 60, value = 340

Q: Can we prove this is optimal?

Max le + 4‘X2

st 2x+ x, <100 also x4 =0
(X1 < 30) - 5 X2 >0

390

Solution: x; = 20, x, = 60, value = 340

Q: Can we prove this is optimal?

max 5xq + 4x,
st (2x;1+ x5, <100)-3 also x4 =0
(xq <30)-0 Xy =0
+ (X, <60)-1

5x1+4x2S 6X1+4X2S3100+60

360

Solution: x; = 20, x, = 60, value = 340

Q: Can we prove this is optimal?

Max le + 4‘X2
st. 2x;+ x,<100)-5/2 also x1=0

(Xl SBO)O XZZO
5 3
5x1 +4x, < =-100+ =- 60
2 2
340

Solution: x; = 20, x, = 60, value = 340

Q: Can we prove this is optimal?

Primal LP: max 5x1 + 4x,

st (2x; + x, <100) -y, also x; =20
(x1 S 30) * yz xz 2 O
+ (X, <60)-y;3

2ys +y2) x1+ (1 +y3) 2, <100-y; +30 -y, + 60 - y3

Dual LP: min 100-y; +30-y, + 60 -y,
S.t. YV1,¥Y2,YV3 >0
5 <2y +y;
4 <y, +y3

By construction: 5x; +4x, <100-y; +30-y, +60-y;
Primal LP Opt < Dual LP Opt

Primal LP

max [¢!]

s.t.

and

Thm: (Weak duality) all feasible solutions < all feasible solutions

Pf: | CT][
x

Cor: Primal LP OPT < Dual LP OPT

<

it

X

|

=0

Dual LP

max [bT]

S.t.
AT

and

x to primal LP

y']

A

x]S[yT]

y

=

g

=0

y to dual LP

b

|

bT]

d

Primal Dual

Weak duality: } - >_»

“duality gap”

Objective value

Thm: (Strong duality)

If the Primal LP Opt is bounded,
then Primal LP Opt = Dual LP Opt

-~ duality gap =0

Example: Max-Flow = Min-Cut (in recitation)

LP «<—» LP
dual

LP duality history

George Dantzig

<+— Was taking a statistics class

Professor wrote two of the most famous unsolved
problems in statistics on the board
.Co—/nventor.of LPs, But Dantzig arrived late, mistook them for homework
inventor of simplex, . .
Berkeley grad student Turned in solutions a few days later,
and faculty said they “seemed to be a little harder than usual”

LP duality history

George Dantzig/[Let me tell you about my newest } John von Neumann

invention: linear programming”

(”Oh that!”

(Lectures Dantzig about linear
programming for 1.5 hours,
invents linear program duality)

A

“It's equivalent to zero-sum games, which | All-time great
\have also recently invented”) mathematician

