Two-player Zero-Sum

Games

Announcements

- · Midterm on Thursday!
- · Review session today 4-6
- · No lecture Thursday
- · No discussions this week

Zero - Sum games Input: A payoff matrix M		Rock	Paper	Scissors					
		0							
Kow player: picks row r \ Win + A[r,c]	Paper		0	-\					
Col player: picks colc Win-A[r,c]	Scissors	-		δ					
Types of strategies:					_				
"Pure strategy": a single row/column									
e.g. row player always picks rock (beaten by paper col)									
"Mixed strategy": probability distribution over pu	re strat	cgies							
eg, Pr[Rock]= 3, Pr[Paper]=3, Pr			,						
Note: average score =0 (no matter	what o	ol pl	ayer d	ocs)					

 $P_1 = P_r[Row 1]$ | 3 -1 $P_2 = P_r[Row 2]$ | 2 -2 | Game 1 Turn . 1. Row glayer announces Order mixed strat P = (P1,P2)

2. Col player responds

w/mixed strat 2=(21,22) Def: Row player's average score is Score(p, e) = 3-p.e. -1-p.e.z

-2-p.e. +1-p.e.z

Col player's best strat: minimize { Score(p,e)} col 1 score col 2 score

(should pick best col) = min { Score(p,e)} = min { 3-p.-2-p., -1-p.+1-p.z }

pure strate

Row player's best strat: maximize { min {3.p. -2-p, -1.p+1.pz}}
mixed stat p

Fact: Can calculate maximize [min []. p. -2-p, -1.p+1.pz] with LP.
mixed start p

Pf: Maximize Z

subject to Z & 3 P1-2P2

2 5 - P1 + P2

P1+P2=1 P130, P230.

Note: 2 = min & 3p, -2pz, -p, +pz3.

Same as Game 1, except col player goes 1st and row player goes 2nd Payoff of row 1: 3.21 - 1.22 Payoff of row 2: -2.21 + 1.92 Row player's best stat = max { 38, - 92, -29, + 92} " = minimize { max { 391-92, -22,+22}}
mixed strat 9

-29, +92 = Z 9,+92=1, 9,70,9230.

1 2 Came 1 1. Row player first Came 2 1. Col player first 1 3 -1 2. Col player second 2. Row player second max {min { Scorelp,q)}} \(\text{min } \{ \text{min } \{ \text{prox} \} \} \) LP, (dual) :. Strong duality => LP,=LP2 = Value (Game) (Petnilia) (Min-Max Theorem) =) order of play doesn't change value => I optimal start for ROW, irrespective of COL

Minimax strats

Example problem

Suppose row player goes 1st and plays $P_1 = \frac{1}{2}$ $P_2 = \frac{1}{2}$ $P_3 = \frac{3}{10}$

If the col player's optimal response is not unique, what is X?

Extra stuff

Def: Nash equilibrium = pair of mixed strats (p, e) s.t. if
row player plays p, col player plays e,
neither player has incentive to deviate

In 2P2S6, Nash equilibria = minimax strats

Non zero-sum game		Cooperate	detect	col payoff
"Prisoner's dilemma"	Cooperate	(-1,-1)	(-10,0)	(a, b)
Nash equilibria = both players defect	defect	(0,-10)	(-5,-5)	row's payoff