
CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!

Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!

Reading, writing, arithmetic!
Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.

Divide and Conquer ≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer

≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.

CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.

Lecture in one minute!

Integer Multiplication: Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)

Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
T (n) = aT (n

b) + f (n).
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogb a, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Matrix Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in one minute!

Integer Multiplication: Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
T (n) = aT (n

b) + f (n).
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogb a, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Matrix Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in one minute!

Integer Multiplication: Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
T (n) = aT (n

b) + f (n).
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogb a, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Matrix Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Chapter 2.

Divide and conquer.

Definition of Multiplication.
n-bit numbers: x , y .

xkxk−1

x

× y

y1y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Definition of Multiplication.
n-bit numbers: x , y .

xkxk−1

x

× y

y1y0

xy

k th “place” of xy :

coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Definition of Multiplication.
n-bit numbers: x , y .

xk

xk−1

x

× y

y1

y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Definition of Multiplication.
n-bit numbers: x , y .

xk

xk−1 x

× y y1

y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Definition of Multiplication.
n-bit numbers: x , y .

xk

xk−1 x

× y y1

y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Definition of Multiplication.
n-bit numbers: x , y .

xk

xk−1 x

× y y1

y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Definition of Multiplication.
n-bit numbers: x , y .

xk

xk−1 x

× y y1

y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Definition of Multiplication.
n-bit numbers: x , y .

xk

xk−1 x

× y y1

y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR

= 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR

= 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y

= (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.

Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.

A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.

Θ(n2) leaves or base cases.
One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really?

Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!

How did I really obtain bound? Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound?

Soon a formula.

Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n

Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).

.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3.

or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w) = T ′ = 3T = 3(cnw).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.

Multiply Complex Numbers

(3 + 2 i)(4 + 5 i) = 12 + (15 + 8) i + 10 i2

Recall, i2 =−1, so simplifying

(12−10) + 22 i = 2 + 22 i.

What about (32765 + 219898 i)(413764 + 511110 i)?

Multiply Complex Numbers

(3 + 2 i)(4 + 5 i) = 12 + (15 + 8) i + 10 i2

Recall, i2 =−1, so simplifying

(12−10) + 22 i = 2 + 22 i.

What about (32765 + 219898 i)(413764 + 511110 i)?

Multiply Complex Numbers

(3 + 2 i)(4 + 5 i) = 12 + (15 + 8) i + 10 i2

Recall, i2 =−1, so simplifying

(12−10) + 22 i = 2 + 22 i.

What about (32765 + 219898 i)(413764 + 511110 i)?

Multiply Complex Numbers

(3 + 2 i)(4 + 5 i) = 12 + (15 + 8) i + 10 i2

Recall, i2 =−1, so simplifying

(12−10) + 22 i = 2 + 22 i.

What about (32765 + 219898 i)(413764 + 511110 i)?

Gauss’s trick.

(a + b i)(c + d i)

= (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one!

..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications.

An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!

Which is harder of multiplication or addition?
Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?

Multiplication!

Gauss’s trick.

(a + b i)(c + d i) = (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR

; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR)

= xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR.

(xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3

3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication.

Don’t worry.

Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C)

Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.

More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n)

= Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)

!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!

!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!

!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!

!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!

They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do!

(a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd

4 products from one multiplication!

Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c

= abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc

= acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb

= (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log:

a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n

= (blogb a)logb n = (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n

= (blogb n)logb a = nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a

= nlogb a

Logarithms reminder.

Exponents Quiz: (ab)c = (ac)b?

Yes? No?

Yes. (ab)c = abc = acb = (ac)b.

Definition of log: a = blogb a

Logarithm Quiz: alogb n = nlogb a?

Yes!

alogb n = (blogb a)logb n = (blogb n)logb a = nlogb a

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n

=⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.

4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn

= 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn

= n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems.

size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1.

Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c

Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.

Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work:

cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn

+ 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn

+ 4cn + · · · + cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · ·

+ cn2 = O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2

= O(n2). Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2).

Geometric series.

Solving recurrences.
T (n) = 4T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) T (n

2) 4 n
2 c(n

2) 2cn

T (n
4)· · · T (n

4) T (n
4) · · ·T (n

4) 42 n
4 c(n

4) 4cn

...
...

...
...

... 4i n
2i c(n

2i) 2icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
4logn = 22logn = n2 base case problems. size 1. Work/Prob: c
Work: cn2.
Total Work: cn + 2cn + 4cn + · · · + cn2 = O(n2). Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n

=⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.

3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n

= nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems.

size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1.

Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c.

Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work:

cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn

+ (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn

+ · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · ·

+ cnlog2 3 = O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3

= O(nlog2 3) Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3)

Geometric series.

Fast multiplication.
T (n) = 3T (

n
2

) + cn; T (1) = c

Recursion Tree # probs sz time/prob time/level
T (n) 1 n cn cn

T (n
2) T (n

2) T (n
2) 3 n

2 c(n
2) (3

2)cn

T (n
4)· · ·T (n

4) T (n
4)· · ·T (n

4) 32 n
4 c(n

4) (3
2)2cn

...
...

...
...

... 3i n
2i c(n

2i) (3
2)icn

· · · · · · · · ·

... ...
...

...

n
2i = 1 when i = log2 n =⇒ Depth: d = log2 n.
3log2 n = nlog2 3 base case problems. size 1. Work/Prob: c. Work:
cnlog2 3.

Total Work: cn + (3
2)cn + · · · + cnlog2 3 = O(nlog2 3) Geometric series.

Divide and Conquer: In general.

T (n) = aT (
n
b

) + O(nd); T (1) = c

Recursion Tree # probs sz time/prob time/lvl
T (n) 1 n cnd cnd

T (n
b) T (n

b) T (n
b) a n

b c(n
b)d (a

bd)cnd

T (n
b2)· · ·T (n

b2) T (n
b2)· · ·T (n

b2) a2 n
b2 c(n

b2)d (a
bd)2cnd

...
...

...
...

... ai n
bi c(n

bi)d (a
bd)icnd

· · · · · · · · ·

... ...
...

...

n
bi = 1 when i = logb n =⇒ Depth: k = logb n.
Level i work: (a

bd)ind .

Divide and Conquer: In general.

T (n) = aT (
n
b

) + O(nd); T (1) = c

Recursion Tree # probs sz time/prob time/lvl
T (n) 1 n cnd cnd

T (n
b) T (n

b) T (n
b) a n

b c(n
b)d (a

bd)cnd

T (n
b2)· · ·T (n

b2) T (n
b2)· · ·T (n

b2) a2 n
b2 c(n

b2)d (a
bd)2cnd

...
...

...
...

... ai n
bi c(n

bi)d (a
bd)icnd

· · · · · · · · ·

... ...
...

...

n
bi = 1 when i = logb n =⇒ Depth: k = logb n.
Level i work: (a

bd)ind .

Divide and Conquer: In general.

T (n) = aT (
n
b

) + O(nd); T (1) = c

Recursion Tree # probs sz time/prob time/lvl
T (n) 1 n cnd cnd

T (n
b) T (n

b) T (n
b) a n

b c(n
b)d (a

bd)cnd

T (n
b2)· · ·T (n

b2) T (n
b2)· · ·T (n

b2) a2 n
b2 c(n

b2)d (a
bd)2cnd

...
...

...
...

... ai n
bi c(n

bi)d (a
bd)icnd

· · · · · · · · ·

... ...
...

...

n
bi = 1 when i = logb n

=⇒ Depth: k = logb n.
Level i work: (a

bd)ind .

Divide and Conquer: In general.

T (n) = aT (
n
b

) + O(nd); T (1) = c

Recursion Tree # probs sz time/prob time/lvl
T (n) 1 n cnd cnd

T (n
b) T (n

b) T (n
b) a n

b c(n
b)d (a

bd)cnd

T (n
b2)· · ·T (n

b2) T (n
b2)· · ·T (n

b2) a2 n
b2 c(n

b2)d (a
bd)2cnd

...
...

...
...

... ai n
bi c(n

bi)d (a
bd)icnd

· · · · · · · · ·

... ...
...

...

n
bi = 1 when i = logb n =⇒ Depth: k = logb n.

Level i work: (a
bd)ind .

Divide and Conquer: In general.

T (n) = aT (
n
b

) + O(nd); T (1) = c

Recursion Tree # probs sz time/prob time/lvl
T (n) 1 n cnd cnd

T (n
b) T (n

b) T (n
b) a n

b c(n
b)d (a

bd)cnd

T (n
b2)· · ·T (n

b2) T (n
b2)· · ·T (n

b2) a2 n
b2 c(n

b2)d (a
bd)2cnd

...
...

...
...

... ai n
bi c(n

bi)d (a
bd)icnd

· · · · · · · · ·

... ...
...

...

n
bi = 1 when i = logb n =⇒ Depth: k = logb n.
Level i work: (a

bd)ind .

Master’s Theorem

Depth: logb n.

Level i work:
(

a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem

Depth: logb n.
Level i work:

(
a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem

Depth: logb n.
Level i work:

(
a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem

Depth: logb n.
Level i work:

(
a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem

Depth: logb n.
Level i work:

(
a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series:

If a
bd < 1 (d > logb a), first term dominates

O(nd),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem

Depth: logb n.
Level i work:

(
a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd),

if a
bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem

Depth: logb n.
Level i work:

(
a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem

Depth: logb n.
Level i work:

(
a
bd)ind .

Total:

nd
logb n

∑
i=0

(
a
bd)i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n)

a = 4, b = 2, and d = 1.
d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a

=⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n)

a = 1, b = 2, and d = 1.
1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0

=⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n)

a = 2, b = 2, and d = 1.
1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2

=⇒ T (n) = O(n logn)

Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd)
We have
d > logb a T (n) = O(nd)

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...Unite! Resist!

Strassen: Divide! conquer!

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...Unite! Resist!

Strassen: Divide! conquer!

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...

Unite! Resist!

Strassen: Divide! conquer!

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...Unite!

Resist!

Strassen: Divide! conquer!

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...Unite! Resist!

Strassen: Divide! conquer!

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...Unite! Resist!

Strassen:

Divide! conquer!

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...Unite! Resist!

Strassen: Divide!

conquer!

Strassen

Matrix multiplication.

Strassen, 1968, visiting Berkeley.

Berkeley...Unite! Resist!

Strassen: Divide! conquer!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime?

O(n2)? O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)?

O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?

O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?O(n3)!

Matrix Multiplication

X and Y are n×n matrices.

Z = XY ,

Zij is dot product of i th row with j th column.

×i
=

j

(i , j)

Zij =
n

∑
k=1

XikYkj .

Runtime? O(n2)? O(n3)?O(n3)!

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems? AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) + O(n2).

Masters: O(nlog2 8) = O(n3).

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems? AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) + O(n2).

Masters: O(nlog2 8) = O(n3).

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems?

AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) + O(n2).

Masters: O(nlog2 8) = O(n3).

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems? AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) + O(n2).

Masters: O(nlog2 8) = O(n3).

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems? AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) + O(n2).

Masters: O(nlog2 8) = O(n3).

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems? AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) +

O(n2).

Masters: O(nlog2 8) = O(n3).

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems? AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) + O(n2).

Masters: O(nlog2 8) = O(n3).

Divide and Conquer

[
A B
C D

][
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]

A,B,C, . . . ,H are n
2 ×

n
2 matrices.

Subproblems? AE ,BG,AF ,BH,CE ,DG,CF ,DH.

Recurrence?

T (n) = 8T (
n
2

) + O(n2).

Masters: O(nlog2 8) = O(n3).

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)

[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]

7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies!

Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)?

(B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)?

(C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7)

= O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...)

Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Strassen

Compute
P1 = A(F −H) P5 = (A + D)(E + H)
P2 = (A + B)H P6 = (B−D)(G + H)
P3 = (C + D)E P7 = (A−C)(E + F)
P4 = D(G−E)[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T (n
2) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

)

= O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k)

= O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large...

e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...

but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.

Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT (n
k) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k) = O(nω)

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.

Lecture in five!

Gauss plus recursion is magic!

O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)

Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem:

understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!

Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a

diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b

working by O(f (n)).
Leaves: nlogba, Work: ∑i ai f (n

bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:

8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2

→O(n3).
Strassen:

7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:

7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2

→O(nlog2 7)≈O(n2.8).

Lecture in five!

Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f (n
bi).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).

