
CS170: Lecture 2

Last Time: Place value is democratizing!
Like the printing press!
Reading, writing, arithmetic!

Input size/representation really matters!

Today: Chapter 2.
Divide and Conquer ≡ Recursive.
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Lecture in one minute!

Integer Multiplication: Gauss plus recursion is magic!
O(n2)→ O(nlog2 3)≈O(n1.58..)

Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
T (n) = aT ( n

b ) + f (n).
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogb a, Work: ∑i ai f ( n
bi ).

Recursive (Divide and Conquer) Matrix Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).
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Chapter 2.

Divide and conquer.



Definition of Multiplication.
n-bit numbers: x , y .

xkxk−1

x

× y

y1y0

xy

k th “place” of xy : coefficient of 2k :

ak = ∑
i≤k

xiyk−i .

x ∗y = ∑
2n
k=0 2kak .

Number of “basic operations”:

∑
k≤2n

min(k ,2n−k) = Θ(n2).
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Recursive Algorithm for Multiplication.
Two n-bit numbers: x , y .

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

Multiplying out

x×y = (2n/2xL + xR)(2n/2yL + yR)

= 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Four n/2-bit multiplications: xLyL, xLyR, xRyL, xRyR.
Recurrence:

T (n) = 4T (
n
2

) + O(n)
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Recurrence for recursive algorithm.

Recurrence:

T (n) = 4T (
n
2

) + Θ(n)

T (n) is

(A) Θ(n).
(B) Θ(n2).
(C) Θ(n3).

Idea: Think about recursion tree.
A degree 4 tree of depth log2 n.
Θ(n2) leaves or base cases.

One for each pair of digits!

Really? Unfolded recursion in my head?!?!
How did I really obtain bound? Soon a formula.
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Demo

As number of bits double:

Elementary School Multiply:

O(n2)
n→ 2n

Runtime: T = cn2→ T ′ = c(2n)2 = 4(cn2) = 4T

Python multiply:

n→ 2n
Runtime: T → 3T .

Asymptotics: T = cnw → c((2n)w ) = T ′ = 3T = 3(cnw ).
.... → 2w = 3. or w = log2 3≈ 1.58.

Python multiply: O(nlog2 3)

Much better than grade school.
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Multiply Complex Numbers

(3 + 2 i)(4 + 5 i) = 12 + (15 + 8) i + 10 i2

Recall, i2 =−1, so simplifying

(12−10) + 22 i = 2 + 22 i.

What about (32765 + 219898 i)(413764 + 511110 i)?
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Gauss’s trick.

(a + b i)(c + d i)

= (ac−bd) + (ad + bc) i.

Four multiplications: ac, bd , ad , bd .

Drop the i :

P1 = (a + b)(c + d) = ac + ad + bc + bd .

Four multiplications from one! ..but all added up.

Two more multiplications: P2 = ac, P3 = bd .

(ac−bd) = P2−P3.

(ad + bc) = P1−P2−P3.

Only three multiplications. An extra addition though!
Which is harder of multiplication or addition?
Multiplication!
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Faster Algorithm for Multiplication.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Used four n
2 -bit multiplications: xLyL, xLyR, xRyL, xRyR.

Can you compute three terms with 3 multiplications?

(A) Yes.
(B) No

(A) Yes.
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Three multiplications and faster algorithm.

Two n-bit numbers: x , y .

x = 2n/2xL + xR ; y = 2n/2yL + yR

x×y = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Need 3 terms: xLyL, xLyR + xRyL, xRyR.

Compute
P1 = (xL + xR)(yL + yR) = xLyL + xLyR + xRyL + xRyR.

Two more: P2 = xLyL, P3 = xRyR. (xLyR + xRyL) = P1−P2−P3
3 multiplications!

T (n) = 3T (
n
2

) + Θ(n)

Technically: n
2 + 1 bit multiplication. Don’t worry.
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Analysis of runtime.
Recurrence for “fast algorithm”.

T (n) = 3T (
n
2

) + Θ(n)

Runtime is

(A) Θ(n)

(B) Θ(n2)

(C) Θ(nlog2 3)

(C) Idea: number of base cases is nlog2 3.
More soon.

So multiplication algorithm with ..

T (n) = 3T (
n
2

) + Θ(n) = Θ(nlog2 3) = Θ(n1.58...)!!!!

But: all digits have to multiply each other!
They do! (a + b)(c + d) = ac + ac + bc + bd
4 products from one multiplication!
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Master’s Theorem

Depth: logb n.

Level i work:
(

a
bd )ind .

Total:

nd
logb n

∑
i=0

(
a
bd )i

Geometric series: If a
bd < 1 (d > logb a), first term dominates

O(nd ),
if a

bd > 1 (d < logb a), last term dominates.

O(nlogb a),

and if a
bd = 1 (d = logb a), then all terms are the same

O(nd logb n).
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Master’s Theorem: examples.

For a recurrence T (n) = aT (n/b) + O(nd )
We have
d > logb a T (n) = O(nd )

d < logb a T (n) = O(nlogb a)

d = logb a T (n) = O(nd logb n).

T (n) = 4T (n
2 ) + O(n) a = 4, b = 2, and d = 1.

d = 1 < 2 = log2 4 = logb a =⇒ T (n) =O(nlogb a)= O(n2).

T (n) = T (n
2 ) + O(n) a = 1, b = 2, and d = 1.

1 > log2 1 = 0 =⇒ T (n) = O(n)

T (n) = 2T (n
2 ) + O(n) a = 2, b = 2, and d = 1.

1 = log2 2 =⇒ T (n) = O(n logn)
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P1 = A(F −H) P5 = (A + D)(E + H)
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P3 = (C + D)E P7 = (A−C)(E + F )
P4 = D(G−E)

[
AE + BG = P5 + P4−P2 + P6 AF + BH = P1 + P2

CE + DG = P3 + P4 AF + BH = P1 + P5−P3 + P7

]
7 multiplies! Recurrence?

T (n) = 7T ( n
2 ) + O(n2)

From Masters:
(A) O(n2)? (B) O(nlog2 7 logn)? (C) T (n) = O(nlog2 7)?

Leaf subproblems dominate runtime!

(C) O(nlog2 7) = O(n2.81...) Way better than O(n3).

Commonly used in practice!
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Current State of the Art: Matrix multiplication.

k ×k multiplication in kω multiplications where ω = 2.36....

E.g., Strassen: 2×2 multiplication in 2log2 7 = 7 multiplications.

T (n) = kωT ( n
k ) + O(n2)

Masters: O(nlogk kω

) = O(nω logk k ) = O(nω )

State of the art: k is very very large... e.g., 10100 ...but still a
constant.

Based on complicated recursive constructions.

Improvement for constant + recursion gives better algorithm!

Example:
Gauss + recursion =⇒ faster multiplication.
Strassen’s 7 multiplies + recursion =⇒ faster matrix
multiplication.
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Lecture in five!

Gauss plus recursion is magic!

O(n2)→ O(nlog2 3)≈O(n1.58..)
Double size, time grows by a factor of 3.

Master’s theorem: understand the recursion tree!
Branching by a
diminishing by b
working by O(f (n)).

Leaves: nlogba, Work: ∑i ai f ( n
bi ).

Recursive (Divide and Conquer) Multiplication:
8 subroutine calls of size n/2×n/2
→O(n3).

Strassen:
7 subroutine calls of size n/2×n/2
→O(nlog2 7)≈O(n2.8).
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