CS 170: Algorithms
Lecture in a Minute

Simplex Implementation:

Start at a (feasible) vertex.
Lecture in a Minute

Simplex Implementation:
Start at a (feasible) vertex.
(defined by linear system \(A'x = [b', 0, \cdots, 0] \)).
Begin at origin. Move to better neighboring vertex.
Coordinate system: distance from tight constraints.
Vertex at origin in coordinate system.
\(O(mn) \) time to update linear system.
Until no better neighboring vertex.
Objective function in coordinate system is non-positive.
Dual Variables: new objective function!
Lecture in a Minute

Simplex Implementation:
Start at a (feasible) vertex.
(defined by linear system $A'x = [b', 0, \cdots, 0]$).

Begin at origin. Move to better neighboring vertex.
Coordinate system: distance from tight constraints.
Vertex at origin in coordinate system.
$O(mn)$ time to update linear system.

Until no better neighboring vertex.
Objective function in coordinate system is non-positive.
Dual Variables: new objective function!

Maximum flow.
“Greedy” augment path...
Except reverse old decisions..
Reverse residual capacities.
(Friday): Optimality?
No augmenting path \implies
$s - t$ cut size = flow value.
Find flow and $s - t$ cut with equal value!
Simplex algorithm.

Two tasks:

1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\text{max} & \quad c^T x \\
Ax & \leq b \\
x & \geq 0
\end{align*}
\]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).

Optimal? If all \(c_i \leq 0 \) \(\Rightarrow \) increasing any \(x_i \) decreases value \(\Rightarrow \) optimal!

if there is \(c_i > 0 \) increasing \(x_i \) increases value \(\Rightarrow \) not optimal.

Done with task 1.
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\max & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}
\]

Start at origin, supposing it is feasible.
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\max & \quad c^T x \\
\text{subject to} & \quad Ax \leq b \\
& \quad x \geq 0
\end{align*}
\]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[\max c^T x \]
\[Ax \leq b \]
\[x \geq 0 \]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).

Optimal?
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\max & \quad c^T x \\
Ax & \leq b \\
& \quad x \geq 0
\end{align*}
\]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).

Optimal?
If all \(c_i \leq 0 \)
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

$$\begin{align*}
\max & \quad c^T x \\
Ax & \leq b \\
& \quad x \geq 0
\end{align*}$$

Start at origin, supposing it is feasible.

Vertex since intersection of n constraints of form $x_i = 0$.

Optimal?

If all $c_i \leq 0 \implies$ increasing any x_i decreases value
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\text{max } & \mathbf{c}^T \mathbf{x} \\
\text{subject to } & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{align*}
\]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).

Optimal?

If all \(c_i \leq 0 \) \(\implies \) increasing any \(x_i \) decreases value \(\implies \) optimal!
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\max & \quad c^T x \\
Ax & \leq b \\
x & \geq 0
\end{align*}
\]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).

Optimal?
If all \(c_i \leq 0 \) \(\implies \) increasing any \(x_i \) decreases value \(\implies \) optimal!

if there is \(c_i > 0 \)
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\max & \quad c^T x \\
A x & \leq b \\
x & \geq 0
\end{align*}
\]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).

Optimal?
If all \(c_i \leq 0 \) \(\implies \) increasing any \(x_i \) decreases value \(\implies \) optimal!

if there is \(c_i > 0 \) increasing \(x_i \) increases value
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

$$\max c^T x$$
$$Ax \leq b$$
$$x \geq 0$$

Start at origin, supposing it is feasible.

Vertex since intersection of n constraints of form $x_i = 0$.

Optimal?
If all $c_i \leq 0 \implies$ increasing any x_i decreases value \implies optimal!
if there is $c_i > 0$ increasing x_i increases value \implies not optimal.
Simplex algorithm.

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

Canonical LP.

\[
\begin{align*}
\max \ & c^T x \\
A x & \leq b \\
x & \geq 0
\end{align*}
\]

Start at origin, supposing it is feasible.

Vertex since intersection of \(n \) constraints of form \(x_i = 0 \).

Optimal?

If all \(c_i \leq 0 \) \(\implies \) increasing any \(x_i \) decreases value \(\implies \) optimal!

if there is \(c_i > 0 \) increasing \(x_i \) increases value \(\implies \) not optimal.

Done with task 1.
Going to a better place..

Two tasks:

1. Check optimality of vertex?
2. Where to go next?

At origin, there is positive c_i, so increase x_i. ...until you hit another constraint. $x_i \geq 0$ is no longer tight, but new constraint is. n constraints! At vertex!
Going to a better place..

Two tasks:
1. Check optimality of vertex?
2. Where to go next?
Two tasks:
1. Check optimality of vertex?
2. Where to go next?

At origin, there is positive \(c_i \), so increase \(x_i \).
Two tasks:
1. Check optimality of vertex?
2. Where to go next?

At origin, there is positive c_i, so increase x_i.
...until you hit another constraint.
Two tasks:
1. Check optimality of vertex?
2. Where to go next?

At origin, there is positive c_i, so increase x_i.

...until you hit another constraint.

$x_i \geq 0$ is no longer tight, but new constraint is.
Two tasks:
1. Check optimality of vertex?
2. Where to go next?

At origin, there is positive c_i, so increase x_i.

...until you hit another constraint.

$x_i \geq 0$ is no longer tight, but new constraint is.

$\implies n$ constraints!
Going to a better place..

Two tasks:
1. Check optimality of vertex?
2. Where to go next?

At origin, there is positive c_i, so increase x_i.
...until you hit another constraint.

$x_i \geq 0$ is no longer tight, but new constraint is.
⇒ n constraints!

At vertex!
Example.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]
Example.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)} \\
\end{align*}
\]

Origin: feasible, value 0.
Example.

\[\text{max } 2x_1 + 5x_2 \]
\[2x_1 - x_2 \leq 4 \] \hspace{1cm} 1
\[x_1 + 2x_2 \leq 9 \] \hspace{1cm} 2
\[-x_1 + x_2 \leq 3 \] \hspace{1cm} 3
\[x_1 \geq 0 \] \hspace{1cm} 4
\[x_2 \geq 0 \] \hspace{1cm} 5

Origin: feasible, value 0. Inequalities 4 and 5 are tight.
Example.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 & 1 \\
x_1 + 2x_2 & \leq 9 & 2 \\
-x_1 + x_2 & \leq 3 & 3 \\
x_1 & \geq 0 & 4 \\
x_2 & \geq 0 & 5
\end{align*}
\]

Origin: feasible, value 0.
Inequalities 4 and 5 are tight.
Relax constraint \(x_2 = 0 \).
Example.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

Origin: feasible, value 0.
Inequalities (4) and (5) are tight.

Relax constraint \(x_2 = 0 \).
Increase \(x_2 \) until
Example.

\[
\begin{align*}
\text{max} & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
 x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

Origin: feasible, value 0.
Inequalities (4) and (5) are tight.

Relax constraint \(x_2 = 0 \).
Increase \(x_2 \) until
...Inequality (3) becomes tight constraint.
Example.

\[
\text{max } 2x_1 + 5x_2 \\
2x_1 - x_2 \leq 4 \\
x_1 + 2x_2 \leq 9 \\
-x_1 + x_2 \leq 3 \\
x_1 \geq 0 \\
x_2 \geq 0
\]

Origin: feasible, value 0. Inequalities 4 and 5 are tight.

Relax constraint \(x_2 = 0 \).
Increase \(x_2 \) until
...Inequality 3 becomes tight constraint.
...Tight constraints: 3 and 4.
Example.

\[
\begin{align*}
\text{max } & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

Origin: feasible, value 0.
Inequalities (4) and (5) are tight.

Relax constraint \(x_2 = 0\).
Increase \(x_2\) until
...Inequality (3) becomes tight constraint.
...Tight constraints: (3) and (4).
...new vertex: \((0,3)\) with value 15.
Example.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad (1) \\
x_1 + 2x_2 & \leq 9 \quad (2) \\
-x_1 + x_2 & \leq 3 \quad (3) \\
x_1 & \geq 0 \quad (4) \\
x_2 & \geq 0 \quad (5)
\end{align*}
\]

Origin: feasible, value 0.
Inequalities (4) and (5) are tight.

Relax constraint \(x_2 = 0\).
Increase \(x_2\) until
...Inequality (3) becomes tight constraint.
...Tight constraints: (3) and (4).
...new vertex: \((0,3)\) with value 15.

Easy process from origin:
Example.

\[\text{max } 2x_1 + 5x_2 \]
\[2x_1 - x_2 \leq 4 \quad 1 \]
\[x_1 + 2x_2 \leq 9 \quad 2 \]
\[-x_1 + x_2 \leq 3 \quad 3 \]
\[x_1 \geq 0 \quad 4 \]
\[x_2 \geq 0 \quad 5 \]

Origin: feasible, value 0.
Inequalities 4 and 5 are tight.

Relax constraint \(x_2 = 0 \).
Increase \(x_2 \) until
...Inequality 3 becomes tight constraint.
...Tight constraints: 3 and 4.
...new vertex: (0,3) with value 15.

Easy process from origin: just increase one variable with positive \(c \).
Example.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
 x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

Origin: feasible, value 0. Inequalities (4) and (5) are tight.

Relax constraint \(x_2 = 0\). Increase \(x_2\) until... Inequality (3) becomes tight constraint. ...Tight constraints: (3) and (4). ...new vertex: (0,3) with value 15.

Easy process from origin: just increase one variable with positive \(c\).
Now what?
A new coordinate system.

New coordinates: Distance from new tight constraints.
A new coordinate system.

New coordinates: Distance from new tight constraints.

Constraint 1 Constraint 2

\[y_1 \] \[y_2 \]

\[x \]
A new coordinate system.

New coordinates: Distance from new tight constraints.

Constraint 1

Constraint 2

y_1 is distance from constraint i

y_i is distance from constraint i
A new coordinate system.

New coordinates: Distance from new tight constraints.

Constraint 1

Constraint 2

y_1 is distance from constraint i

x is at (y_1, y_2) in new coordinate system.
A new coordinate system.

New coordinates: Distance from new tight constraints.

Constraint 1

Constraint 2

y_i is distance from constraint i

x is at (y_1, y_2) in new coordinate system.

For constraint i: $y_i = b_i - a_i x$
A new coordinate system.

New coordinates: Distance from new tight constraints.

Constraint 1

Constraint 2

y_i is distance from constraint i

x is at (y_1, y_2) in new coordinate system.

For constraint i: $y_i = b_i - a_i x$

Recall that for origin: x_i was distance from constraint $x_i \geq 0$.
A new coordinate system.

New coordinates: Distance from new tight constraints.

Constraint 1

Constraint 2

y_i is distance from constraint i

x is at (y_1, y_2) in new coordinate system.

For constraint i: $y_i = b_i - a_i x$

Recall that for origin: x_i was distance from constraint $x_i \geq 0$.

At origin in new coordinate system!
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max} & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1 \), \(y_2 = 3 + x_1 - x_2 \).
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max } & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1 \), \(y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)’s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
\begin{align*}
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)}
\end{align*} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1, \ y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \):
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max} & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1 \), \(y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \): objective function
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max } & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1, \ y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \): objective function

\[
\begin{align*}
\text{max } & \quad 2x_1 + 5x_2 \\
\text{max } & \quad 2y_1 + 5(3 + y_1 - y_2 + y_1) \\
\end{align*}
\]
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\text{max } 2x_1 + 5x_2
\]
\[
2x_1 - x_2 \leq 4 \tag{1}
\]
\[
x_1 + 2x_2 \leq 9 \tag{2}
\]
\[
-x_1 + x_2 \leq 3 \tag{3}
\]
\[
x_1 \geq 0 \tag{4}
\]
\[
x_2 \geq 0 \tag{5}
\]

New variables: \(y_1 = x_1\), \(y_2 = 3 + x_1 - x_2\).

Solve for \(x_i\)'s: \(x_1 = y_1\) and \(x_2 = 3 - y_2 + y_1\).

Plug in for \(x_1\) and \(x_2\): objective function
\[
\text{max } 2x_1 + 5x_2
\]
\[
\text{max } 2(y_1) + 5(3 - y_2 + y_1)
\]

Are we optimal? Yes!

Maybe not!

No.

Positive coefficient for increasing \(y_1\).
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max} & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1, \ y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \): objective function

\[
\begin{align*}
\text{max} & \quad 2x_1 + 5x_2 \\
\text{max} & \quad 2(y_1) + 5(3 - y_2 + y_1) \\
\text{max} & \quad 15 + 7y_1 - 5y_2
\end{align*}
\]
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1 \), \(y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \): objective function

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
\text{max } & 2(y_1) + 5(3 - y_2 + y_1) \\
\text{max } & 15 + 7y_1 - 5y_2 \text{ Are we optimal?}
\end{align*}
\]
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1\), \(y_2 = 3 + x_1 - x_2\).

Solve for \(x_i\)'s: \(x_1 = y_1\) and \(x_2 = 3 - y_2 + y_1\).

Plug in for \(x_1\) and \(x_2\): objective function

\[
\begin{align*}
\text{max } & 2x_1 + 5x_2 \\
\text{max } & 2(y_1) + 5(3 - y_2 + y_1) \\
\text{max } & 15 + 7y_1 - 5y_2 \text{ Are we optimal? Yes!}
\end{align*}
\]
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max} & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1 \), \(y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \): objective function

\[
\begin{align*}
\text{max} & \quad 2x_1 + 5x_2 \\
\text{max} & \quad 2(y_1) + 5(3 - y_2 + y_1) \\
\text{max} & \quad 15 + 7y_1 - 5y_2 \quad \text{Are we optimal? Yes! Maybe not!}
\end{align*}
\]
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\text{max } & \quad 2x_1 + 5x_2 \\
2x_1 - x_2 & \leq 4 \quad \text{(1)} \\
x_1 + 2x_2 & \leq 9 \quad \text{(2)} \\
-x_1 + x_2 & \leq 3 \quad \text{(3)} \\
x_1 & \geq 0 \quad \text{(4)} \\
x_2 & \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1, \ y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \): objective function

\[
\begin{align*}
\text{max } & \quad 2x_1 + 5x_2 \\
\text{max } & \quad 2(y_1) + 5(3 - y_2 + y_1) \\
\text{max } & \quad 15 + 7y_1 - 5y_2 \quad \text{Are we optimal? Yes! Maybe not! No.}
\end{align*}
\]
Rewrite linear program.

Rewrite linear program with new coordinates.

\[
\begin{align*}
\max & \quad 2x_1 + 5x_2 \\
& \quad 2x_1 - x_2 \leq 4 \quad \text{(1)} \\
& \quad x_1 + 2x_2 \leq 9 \quad \text{(2)} \\
& \quad -x_1 + x_2 \leq 3 \quad \text{(3)} \\
\end{align*}
\]

\[
\begin{align*}
&\quad x_1 \geq 0 \quad \text{(4)} \\
&\quad x_2 \geq 0 \quad \text{(5)}
\end{align*}
\]

New variables: \(y_1 = x_1, \ y_2 = 3 + x_1 - x_2 \).

Solve for \(x_i \)'s: \(x_1 = y_1 \) and \(x_2 = 3 - y_2 + y_1 \).

Plug in for \(x_1 \) and \(x_2 \): objective function
\[
\begin{align*}
\max & \quad 2x_1 + 5x_2 \\
& \quad 2(y_1) + 5(3 - y_2 + y_1) \\
& \quad 15 + 7y_1 - 5y_2 \quad \text{Are we optimal? Yes! Maybe not! No.}
\end{align*}
\]

Positive coefficient for increasing \(y_1 \).
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
 & \quad y_1 + y_2 \leq 7 \quad \text{①} \\
 & \quad 3y_1 - 2y_2 \leq 3 \quad \text{②} \\
 & \quad y_2 \geq 0 \quad \text{③} \\
 & \quad y_1 \geq 0 \quad \text{④} \\
 & \quad -y_1 + y_2 \leq 3 \quad \text{⑤}
\end{align*}
\]
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad (1) \\
3y_1 - 2y_2 & \leq 3 \quad (2) \\
y_2 & \geq 0 \quad (3)
\end{align*}
\]

\[
\begin{align*}
y_1 & \geq 0 \quad (4) \\
y_1 - y_2 & \leq 3 \quad (5)
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)
Rewriting example..

\[\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad \text{①} \\
3y_1 - 2y_2 & \leq 3 \quad \text{②} \\
y_2 & \geq 0 \quad \text{③} \\
y_1 & \geq 0 \quad \text{④} \\
-y_1 + y_2 & \leq 3 \quad \text{⑤}
\end{align*} \]

\(y_1, y_2 \) are non-negative just like \(x_i \)'s. (Constraints are satisfied!)

Improve by increasing \(y_1 \).
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
\text{subject to} & \quad y_1 + y_2 \leq 7 \quad \text{(1)} \\
& \quad 3y_1 - 2y_2 \leq 3 \quad \text{(2)} \\
& \quad y_2 \geq 0 \quad \text{(3)} \\
& \quad y_1 \geq 0 \quad \text{(4)} \\
& \quad -y_1 + y_2 \leq 3 \quad \text{(5)}
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight?
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad (1) \\
3y_1 - 2y_2 & \leq 3 \quad (2) \\
y_2 & \geq 0 \quad (3) \\
y_1 & \geq 0 \quad (4) \\
-y_1 + y_2 & \leq 3 \quad (5)
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? \(\circlearrowleft\)?
Rewriting example..

\[
\begin{align*}
\text{max } & \quad 15 + 7y_1 - 5y_2 \\
& y_1 + y_2 \leq 7 \quad \textcircled{1} \\
& 3y_1 - 2y_2 \leq 3 \quad \textcircled{2} \\
& y_2 \geq 0 \quad \textcircled{3} \\
& y_1 \geq 0 \quad \textcircled{4} \\
& -y_1 + y_2 \leq 3 \quad \textcircled{5}
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? \textcircled{1}? \textcircled{2}?
Rewriting example..

$$\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
& y_1 + y_2 \leq 7 \quad (1) \\
& 3y_1 - 2y_2 \leq 3 \quad (2) \\
& y_2 \geq 0 \quad (3) \\
& y_1 \geq 0 \quad (4) \\
& -y_1 + y_2 \leq 3 \quad (5)
\end{align*}$$

$$y_1, y_2$$ are non-negative just like $$x_i$$’s. (Constraints are satisfied!)

Improve by increasing $$y_1$$.

Which is tight? (1)? (2)? (3)?
Rewriting example..

\[
\text{max } 15 + 7y_1 - 5y_2
\]

\[
y_1 + y_2 \leq 7 \quad \text{(1)}
\]
\[
3y_1 - 2y_2 \leq 3 \quad \text{(2)}
\]
\[
y_2 \geq 0 \quad \text{(3)}
\]
\[
y_1 \geq 0 \quad \text{(4)}
\]
\[
-y_1 + y_2 \leq 3 \quad \text{(5)}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? ①? ②? ③? ④?
Rewriting example..

$$\text{max } 15 + 7y_1 - 5y_2$$

$$y_1 + y_2 \leq 7 \quad ①$$

$$3y_1 - 2y_2 \leq 3 \quad ②$$

$$y_2 \geq 0 \quad ③$$

$$y_1 \geq 0 \quad ④$$

$$-y_1 + y_2 \leq 3 \quad ⑤$$

y_1, y_2 are non-negative just like x_i’s. (Constraints are satisfied!)

Improve by increasing y_1.

Which is tight? ①? ②? ③? ④? ⑤?
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
\phantom{\text{max} } & \quad y_1 + y_2 \leq 7 \quad \text{(1)} \\
\phantom{\text{max} } & \quad 3y_1 - 2y_2 \leq 3 \quad \text{(2)} \\
\phantom{\text{max} } & \quad y_2 \geq 0 \quad \text{(3)} \\
\phantom{\text{max} } & \quad y_1 \geq 0 \quad \text{(4)} \\
\phantom{\text{max} } & \quad -y_1 + y_2 \leq 3 \quad \text{(5)}
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? ①? ②? ③? ④? ⑤?

Note: \(y_2 = 0\).
Rewriting example..

\[\max \quad 15 + 7y_1 - 5y_2 \]
\[y_1 + y_2 \leq 7 \quad \text{(1)} \]
\[3y_1 - 2y_2 \leq 3 \quad \text{(2)} \]
\[y_2 \geq 0 \quad \text{(3)} \]
\[y_1 \geq 0 \quad \text{(4)} \]
\[-y_1 + y_2 \leq 3 \quad \text{(5)} \]

\(y_1, y_2 \) are non-negative just like \(x_i \)'s. (Constraints are satisfied!)

Improve by increasing \(y_1 \).

Which is tight? ①? ②? ③? ④? ⑤?

Note: \(y_2 = 0 \).

Smallest right hand side divided by (positive) coefficient of \(y_2 \)!
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad (1) \\
3y_1 - 2y_2 & \leq 3 \quad (2) \\
y_2 & \geq 0 \quad (3) \\
y_1 & \geq 0 \quad (4) \\
-y_1 + y_2 & \leq 3 \quad (5)
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? 1? 2? 3? 4? 5?

Note: \(y_2 = 0\).

Smallest right hand side divided by (positive) coefficient of \(y_2\)!
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
& \quad y_1 + y_2 \leq 7 \\
& \quad 3y_1 - 2y_2 \leq 3 \\
& \quad y_2 \geq 0 \\
& \quad y_1 \geq 0 \\
& \quad -y_1 + y_2 \leq 3
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? ①? ②? ③? ④? ⑤?

Note: \(y_2 = 0\).

Smallest right hand side divided by (positive) coefficient of \(y_2\)!

Inequality ②!
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
& \quad y_1 + y_2 \leq 7 \quad (1) \\
& \quad 3y_1 - 2y_2 \leq 3 \quad (2) \\
& \quad y_2 \geq 0 \quad (3) \\
& \quad y_1 \geq 0 \quad (4) \\
& \quad -y_1 + y_2 \leq 3 \quad (5)
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? \(1\)? \(2\)? \(3\)? \(4\)? \(5\)?

Note: \(y_2 = 0\).

Smallest right hand side divided by (positive) coefficient of \(y_2\)!

Inequality \(2\)!

New vertex: tight constraints \(3\) and \(2\).
Rewriting example..

max \quad 15 + 7y_1 - 5y_2

\begin{align*}
 y_1 + y_2 & \leq 7 \\
 3y_1 - 2y_2 & \leq 3 \\
 y_2 & \geq 0 \\
 y_1 & \geq 0 \\
 -y_1 + y_2 & \leq 3
\end{align*}

\(y_1, y_2 \) are non-negative just like \(x_i \)'s. (Constraints are satisfied!)

Improve by increasing \(y_1 \).

Which is tight? ①? ②? ③? ④? ⑤?

Note: \(y_2 = 0 \).

Smallest right hand side divided by (positive) coefficient of \(y_2 \)!

Inequality ②!

New vertex: tight constraints ③ and ②.

New solution: \(y_1 = 1, y_2 = 0 \).
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad (1) \\
3y_1 - 2y_2 & \leq 3 \quad (2) \\
y_2 & \geq 0 \quad (3) \\
y_1 & \geq 0 \quad (4) \\
-y_1 + y_2 & \leq 3 \quad (5)
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)’s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? ①? ②? ③? ④? ⑤?

Note: \(y_2 = 0\).

Smallest right hand side divided by (positive) coefficient of \(y_2\)!

Inequality ②!

New vertex: tight constraints ③ and ②.

New solution: \(y_1 = 1, y_2 = 0\). New Objective Value:
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
& \quad y_1 + y_2 \leq 7 \quad (1) \\
& \quad 3y_1 - 2y_2 \leq 3 \quad (2) \\
& \quad y_2 \geq 0 \quad (3) \\
& \quad y_1 \geq 0 \quad (4) \\
& \quad -y_1 + y_2 \leq 3 \quad (5)
\end{align*}
\]

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? ①? ②? ③? ④? ⑤?

Note: \(y_2 = 0\).

Smallest right hand side divided by (positive) coefficient of \(y_2\)!

Inequality ②!

New vertex: tight constraints ③ and ②.

New solution: \(y_1 = 1, y_2 = 0\). New Objective Value:
\[12 + 7(1) - 5(0)\]
Rewriting example..

$$\text{max} \quad 15 + 7y_1 - 5y_2$$

$$y_1 + y_2 \leq 7 \quad \textcircled{1}$$

$$3y_1 - 2y_2 \leq 3 \quad \textcircled{2}$$

$$y_2 \geq 0 \quad \textcircled{3}$$

$$y_1 \geq 0 \quad \textcircled{4}$$

$$-y_1 + y_2 \leq 3 \quad \textcircled{5}$$

\(y_1, y_2\) are non-negative just like \(x_i\)'s. (Constraints are satisfied!)

Improve by increasing \(y_1\).

Which is tight? \(\textcircled{1}\)? \(\textcircled{2}\)? \(\textcircled{3}\)? \(\textcircled{4}\)? \(\textcircled{5}\)?

Note: \(y_2 = 0\).

Smallest right hand side divided by (positive) coefficient of \(y_2\)!

Inequality \(\textcircled{2}\)!

New vertex: tight constraints \(\textcircled{3}\) and \(\textcircled{2}\).

New solution: \(y_1 = 1, y_2 = 0\). New Objective Value:

\(12 + 7(1) - 5(0) = 22\).
Rewriting example..

\[
\begin{align*}
\text{max } & 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \\
3y_1 - 2y_2 & \leq 3 \\
y_2 & \geq 0 \\
y_1 & \geq 0 \\
-y_1 + y_2 & \leq 3 \\
\end{align*}
\]

Optimal? Yes! Maybe not! Optimal point!

Increasing \(z_1, z_2\) makes things worse.
Rewriting example.

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad (1) \\
3y_1 - 2y_2 & \leq 3 \quad (2) \\
y_2 & \geq 0 \quad (3) \\
y_1 & \geq 0 \quad (4) \\
-y_1 + y_2 & \leq 3 \quad (5)
\end{align*}
\]

Rewrite: \(z_2 = y_2 \)
\(z_1 = 3 - 3y_1 + 2y_2 \)
Rewriting example..

\[
\begin{align*}
\text{max } & 15 + 7y_1 - 5y_2 \\
& y_1 + y_2 \leq 7 \quad \text{(1)} \\
& 3y_1 - 2y_2 \leq 3 \quad \text{(2)} \\
& y_2 \geq 0 \quad \text{(3)} \\
& y_1 \geq 0 \quad \text{(4)} \\
& -y_1 + y_2 \leq 3 \quad \text{(5)}
\end{align*}
\]

Rewrite: \(z_2 = y_2 \)
\(z_1 = 3 - 3y_1 + 2y_2 \rightarrow \)
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad (1) \\
3y_1 - 2y_2 & \leq 3 \quad (2) \\
y_2 & \geq 0 \quad (3) \\
y_1 & \geq 0 \quad (4) \\
-y_1 + y_2 & \leq 3 \quad (5)
\end{align*}
\]

Rewrite: \(z_2 = y_2 \)
\[
z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1
\]

Objective function.
Rewriting example..

\[\text{max } 15 + 7y_1 - 5y_2 \]
\[y_1 + y_2 \leq 7 \] ①
\[3y_1 - 2y_2 \leq 3 \] ②
\[y_2 \geq 0 \] ③
\[y_1 \geq 0 \] ④
\[-y_1 + y_2 \leq 3 \] ⑤

Rewrite: \(z_2 = y_2 \)
\(z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1 \)
Objective function.
\[\text{max } 15 + 7(\frac{-1}{3}z_1 + \frac{2}{3}z_2 + 1) - 5z_2 \]
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \\
3y_1 - 2y_2 & \leq 3 \\
y_2 & \geq 0 \\
y_1 & \geq 0 \\
-y_1 + y_2 & \leq 3
\end{align*}
\]

\[
\text{Rewrite: } z_2 = y_2 \\
z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1
\]

Objective function.

\[
\begin{align*}
\text{max} & \quad 15 + 7(-\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1) - 5z_2 \\
\text{max} & \quad 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2
\end{align*}
\]
Rewriting example..

\[
\begin{align*}
\max & \quad 15 + 7y_1 - 5y_2 \\
& \quad y_1 + y_2 \leq 7 \\
& \quad 3y_1 - 2y_2 \leq 3 \\
& \quad y_2 \geq 0 \\
& \quad y_1 \geq 0 \\
& \quad -y_1 + y_2 \leq 3
\end{align*}
\]

Rewrite: \(z_2 = y_2 \)
\[z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1\]

Objective function.
\[
\begin{align*}
\max & \quad 15 + 7(-\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1) - 5z_2 \\
\max & \quad 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \text{ Optimal?}
\end{align*}
\]
Rewriting example..

\[
\begin{align*}
\text{max} & \quad 15 + 7y_1 - 5y_2 \\
& y_1 + y_2 \leq 7 \quad \text{①} \\
& 3y_1 - 2y_2 \leq 3 \quad \text{②} \\
& y_2 \geq 0 \quad \text{③} \\
& y_1 \geq 0 \quad \text{④} \\
& -y_1 + y_2 \leq 3 \quad \text{⑤}
\end{align*}
\]

Rewrite: \(z_2 = y_2 \)
\(z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1 \)

Objective function.
\[
\begin{align*}
\text{max} & \quad 15 + 7(-\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1) - 5z_2 \\
\text{max} & \quad 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \quad \text{Optimal? Yes!}
\end{align*}
\]
Rewriting example..

\[
\begin{align*}
\text{max } & 15 + 7y_1 - 5y_2 \\
y_1 + y_2 & \leq 7 \quad (1) \\
3y_1 - 2y_2 & \leq 3 \quad (2) \\
y_2 & \geq 0 \quad (3) \\
y_1 & \geq 0 \quad (4) \\
-y_1 + y_2 & \leq 3 \quad (5)
\end{align*}
\]

Rewrite: \(z_2 = y_2 \)
\[
\begin{align*}
z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1 \\
\text{Objective function.}
\end{align*}
\]

\[
\begin{align*}
\text{max } & 15 + 7(-\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1) - 5z_2 \\
\text{max } & 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \text{ Optimal? Yes! Maybe not!}
\end{align*}
\]
Rewriting example..

\[
\begin{align*}
\text{max } & 15 + 7y_1 - 5y_2 \\
& y_1 + y_2 \leq 7 \quad \text{(1)} \\
& 3y_1 - 2y_2 \leq 3 \quad \text{(2)} \\
& y_2 \geq 0 \quad \text{(3)} \\
& y_1 \geq 0 \quad \text{(4)} \\
& -y_1 + y_2 \leq 3 \quad \text{(5)}
\end{align*}
\]

Rewrite: \(z_2 = y_2 \)

\(z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1 \)

Objective function.

\[
\begin{align*}
\text{max } & 15 + 7(-\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1) - 5z_2 \\
& 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \quad \text{Optimal? Yes! Maybe not! Optimal point!}
\end{align*}
\]
Rewriting example.

\[\text{max } 15 + 7y_1 - 5y_2 \]
\[y_1 + y_2 \leq 7 \quad (1) \]
\[3y_1 - 2y_2 \leq 3 \quad (2) \]
\[y_2 \geq 0 \quad (3) \]
\[y_1 \geq 0 \quad (4) \]
\[-y_1 + y_2 \leq 3 \quad (5) \]

Rewrite: \(z_2 = y_2 \)
\[z_1 = 3 - 3y_1 + 2y_2 \rightarrow y_1 = -\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1 \]

Objective function.
\[\text{max } 15 + 7\left(-\frac{1}{3}z_1 + \frac{2}{3}z_2 + 1\right) - 5z_2 \]
\[\text{max } 22 - \frac{7}{3}z_1 - \frac{1}{3}z_2 \text{ Optimal? Yes! Maybe not! Optimal point!} \]
Increasing \(z_1, z_2 \) makes things worse.
Review.

In each step:

\[
\begin{align*}
&\max 15 + 7y_1 - 5y_2 \\
&3y_1 - 2y_2 \leq 3
\end{align*}
\]
In each step:

LP in coordinate system from tight constraints.
In each step:
LP in coordinate system from tight constraints.
Optimal?

\[
\begin{align*}
\max & \quad 15 + 7y_1 - 5y_2 \\
\text{s.t.} & \quad 3y_1 - 2y_2 \leq 3
\end{align*}
\]
In each step:
LP in coordinate system from tight constraints.
Optimal?
Does objective function have nonnegative multiplier?
In each step:
LP in coordinate system from tight constraints.
Optimal?
Does objective function have nonnegative multiplier?

\[
\max 15 + 7y_1 - 5y_2.
\]
In each step:
LP in coordinate system from tight constraints.
Optimal?
Does objective function have nonnegative multiplier?
\[\max 15 + 7y_1 - 5y_2. \]
Go to tight constraint along improving coordinate.
In each step:
LP in coordinate system from tight constraints.
Optimal?
Does objective function have nonnegative multiplier?
\[
\max 15 + 7y_1 - 5y_2.
\]
Go to tight constraint along improving coordinate.
\[
3y_1 - 2y_2 \leq 3.
\]
In each step:
LP in coordinate system from tight constraints.
Optimal?
Does objective function have nonnegative multiplier?
\[
\max 15 + 7y_1 - 5y_2.
\]
Go to tight constraint along improving coordinate.
\[
3y_1 - 2y_2 \leq 3.
\]
Express LP in coordinate system for new tight constraints.
In each step:
LP in coordinate system from tight constraints.
Optimal?
Does objective function have nonnegative multiplier?
\[\max 15 + 7y_1 - 5y_2. \]
Go to tight constraint along improving coordinate.
\[3y_1 - 2y_2 \leq 3. \]
Express LP in coordinate system for new tight constraints.
See previous slides!
Review.

In each step:
LP in coordinate system from tight constraints.
Optimal?
Does objective function have nonnegative multiplier?
\[\max 15 + 7y_1 - 5y_2. \]
Go to tight constraint along improving coordinate.
\[3y_1 - 2y_2 \leq 3. \]
Express LP in coordinate system for new tight constraints.
See previous slides!
Repeat.
Details: getting started.

What if origin is not feasible?
Details: getting started.

What if origin is not feasible?

How do you find a feasible vertex?
What if origin is not feasible?
How do you find a feasible vertex?
An x where $Ax \leq b$ and at vertex.
Details: getting started.

What if origin is not feasible?
How do you find a feasible vertex?
An x where $Ax \leq b$ and at vertex.
Make a new linear program.
What if origin is not feasible?

How do you find a feasible vertex?

An x where $Ax \leq b$ and at vertex.

Make a new linear program.

Introduce positive variables z_i for inequality i.
Details: getting started.

What if origin is not feasible?
How do you find a feasible vertex?
An x where $Ax \leq b$ and at vertex.
Make a new linear program.
Introduce positive variables z_i for inequality i.
Constraints: $a_i x - z_i \leq b_i$.
What if origin is not feasible?
How do you find a feasible vertex?
An x where $Ax \leq b$ and at vertex.
Make a new linear program.
Introduce positive variables z_i for inequality i.
Constraints: $a_i x - z_i \leq b_i$.

$$\max \sum -z_i.$$
What if origin is not feasible?

How do you find a feasible vertex?

An x where $Ax \leq b$ and at vertex.

Make a new linear program.

Introduce positive variables z_i for inequality i.

Constraints: $a_i x - z_i \leq b_i$.

$$\max \sum -z_i.$$

Vertex solution (x, z) of value zero
What if origin is not feasible?
How do you find a feasible vertex?
An x where $Ax \leq b$ and at vertex.
Make a new linear program.
Introduce positive variables z_i for inequality i.
Constraints: $a_i x - z_i \leq b_i$.

$$\max \sum -z_i.$$

Vertex solution (x, z) of value zero
\[\Rightarrow\text{ all } z\text{'s are zero}\]
What if origin is not feasible?
How do you find a feasible vertex?
An x where $Ax \leq b$ and at vertex.
Make a new linear program.
Introduce positive variables z_i for inequality i.
Constraints: $a_i x - z_i \leq b_i$.
$$\max \sum -z_i.$$
Vertex solution (x, z) of value zero
\implies all z’s are zero
\implies all inequalities are satisfied
What if origin is not feasible?
How do you find a feasible vertex?
An x where $Ax \leq b$ and at vertex.
Make a new linear program.
Introduce positive variables z_i for inequality i.
Constraints: $a_i x - z_i \leq b_i$.
$$\max \sum -z_i.$$
Vertex solution (x, z) of value zero
\implies all z’s are zero
\implies all inequalities are satisfied
\implies x is a feasible vertex of $Ax \leq b$.
Degeneracy.

Degenerate vertices.
Degeneracy.

Degenerate vertices.
Intersection of more than \(n \) constraints.

Feasible
Degeneracy.

Degenerate vertices.
Intersection of more than n constraints.

Problem: all neighboring vertices are no better.
Degeneracy.

Degenerate vertices. Intersection of more than n constraints.

Problem: all neighboring vertices are no better.

Infinite looping: Bland's anticycling rule.
Degeneracy.

Degenerate vertices.
Intersection of more than n constraints.

Problem: all neighboring vertices are no better.
Infinite looping: Bland’s anticycling rule.
Or Perturb problem a bit.
Degeneracy.

Degenerate vertices.
Intersection of more than n constraints.

Problem: all neighboring vertices are no better.
Infinite looping: Bland’s anticycling rule.
Or Perturb problem a bit. Unlikely to intersect!
Unboundedness.

Simplex can tell difference. From X: either unbounded improvement or optimal.
Unboundedness.

Unbounded value.
Unboundedness.

Simplex can tell difference.
From X: either unbounded improvement or optimal.
Running Time

Check optimality? $O(n)$.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
Running Time

Check optimality? $O(n)$.
Find tight constraint:
$O(m)$ constraints.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.
Recall $y_i = b_i - a_i x$.
Rewrite in terms of y_i.
Solve for x_i in terms of y_i.
Plug in.
Naively: $O(n^3)$ time.
Only one new constraint.
Have x_i in terms of $y_1, ... , y_n$.
Only one y_i goes to y_i'.
$O(nm)$ time to update LP. (Like backsolving.)
How many simplex steps?
Could be large.
Exponential in worst case!
Fast, in practice!
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint. $O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 - Solve for x_i in terms of y_i.
 - Plug in.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.

Only one new constraint.
Running Time

Check optimality? \(O(n) \).

Find tight constraint:
\(O(m) \) constraints. \(O(1) \) time per constraint. \(O(m) \) total.

Find new coordinate system, rewrite LP.

Recall \(y_i = b_i - a_i x \)

Rewrite in terms of \(y_i \).
- Solve for \(x_i \) in terms of \(y_i \).
- Plug in.

Naively: \(O(n^3) \) time.

Only one new constraint. Have \(x \) in terms of \(y_1, \ldots, y_n \).
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint. $O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.

Only one new constraint. Have x in terms of y_1, \ldots, y_n.
Only one y_i goes to y'_i.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.

Only one new constraint. Have x in terms of y_1, \ldots, y_n.
Only one y_i goes to y'_i.
$O(nm)$ time to update LP. (Like backsolving.)
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.

Only one new constraint. Have x in terms of y_1, \ldots, y_n.
Only one y_i goes to y'_i.
$O(nm)$ time to update LP. (Like backsolving.)

How many simplex steps?
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.

Only one new constraint. Have x in terms of y_1, \ldots, y_n.
Only one y_i goes to y'_i.
$O(nm)$ time to update LP. (Like backsolving.)

How many simplex steps?
Could be large.
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.

Only one new constraint. Have x in terms of y_1, \ldots, y_n.
Only one y_i goes to y'_i.
$O(nm)$ time to update LP. (Like backsolving.)

How many simplex steps?
Could be large. Exponential in worst case!
Running Time

Check optimality? $O(n)$.

Find tight constraint:
$O(m)$ constraints. $O(1)$ time per constraint.
$O(m)$ total.

Find new coordinate system, rewrite LP.

Recall $y_i = b_i - a_i x$

Rewrite in terms of y_i.
 Solve for x_i in terms of y_i.
 Plug in.

Naively: $O(n^3)$ time.

Only one new constraint. Have x in terms of y_1, \ldots, y_n.
Only one y_i goes to y'_i.
$O(nm)$ time to update LP. (Like backsolving.)

How many simplex steps?
Could be large. Exponential in worst case!
Fast, in practice!
Extra: Where’s the dual?

The negations of coefficients of new function!
Extra: Where’s the dual?

The negations of coefficients of new function!
Let A' be matrix of “tight constraints.”
Extra: Where’s the dual?

The negations of coefficients of new function!
Let A' be matrix of “tight constraints.”
Coordinate System: $y = b' - A'x$.
Extra: Where’s the dual?

The negations of coefficients of new function!
Let A' be matrix of “tight constraints.”
Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$
The negations of coefficients of new function!

Let A' be matrix of “tight constraints.”

Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$

$max cx = max c((A')^{-1})(b' - y) = max c((A')^{-1})b') - (c(A')^{-1})y$.
Extra: Where’s the dual?

The negations of coefficients of new function!
Let A' be matrix of “tight constraints.”
Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$
$max cx = max c((A')^{-1})(b' - y) = max c((A')^{-1})b' - (c(A')^{-1})y.$
$z = ((A')^{-1})^T c$ gives coefficients of new objective function.
Extra: Where’s the dual?

The negations of coefficients of new function!

Let A' be matrix of “tight constraints.”

Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$

$\max cx = \max c((A')^{-1})(b' - y) = \max c((A')^{-1})b' - (c(A')^{-1})y$.

$z = ((A')^{-1})^Tc$ gives coefficients of new objective function.

All positive at optimal!
Extra: Where’s the dual?

The negations of coefficients of new function!

Let A' be matrix of “tight constraints.”

Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$

$max \ c x = max \ c((A')^{-1})(b' - y) = max \ c((A')^{-1})b' - (c(A')^{-1})y$.

$z = ((A')^{-1})^T c$ gives coefficients of new objective function.

All positive at optimal! $\rightarrow z \geq 0$
Extra: Where’s the dual?

The negations of coefficients of new function!

Let A' be matrix of “tight constraints.”

Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$

$$\max c x = \max c((A')^{-1}) (b' - y) = \max c((A')^{-1}) b' - (c(A')^{-1}) y.$$

$z = ((A')^{-1})^T c$ gives coefficients of new objective function.

All positive at optimal! $\rightarrow z \geq 0$

$$A'^T z = A^T((A')^{-1})^T c = c$$ for subset of tight equations.
The negations of coefficients of new function!

Let A' be matrix of “tight constraints.”

Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$

$\max cx = \max c((A')^{-1})(b' - y) = \max c((A')^{-1})b' - (c(A')^{-1})y$.

$z = ((A')^{-1})^Tc$ gives coefficients of new objective function.

All positive at optimal! $\rightarrow z \geq 0$

$A'^Tz = A^T((A')^{-1})^Tc = c$ for subset of tight equations.
Extra: Where’s the dual?

The negations of coefficients of new function!
Let A' be matrix of “tight constraints.”
Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$
$max cx = \max c((A')^{-1})(b' - y) = \max c((A')^{-1})b') - (c(A')^{-1})y.$
$z = ((A')^{-1})^{T} c$ gives coefficients of new objective function.
All positive at optimal! $\rightarrow z \geq 0$
$A'^{T}z = A^{T}((A')^{-1})^{T} c = c$ for subset of tight equations.
$\rightarrow A'^{T}z \geq c.$
Extra: Where’s the dual?

The negations of coefficients of new function!
Let A' be matrix of “tight constraints.”
Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$
$max cx = max c((A')^{-1})(b' - y) = max c((A')^{-1})b' - (c(A')^{-1})y.$
$z = ((A')^{-1})^T c$ gives coefficients of new objective function.
All positive at optimal! $\rightarrow z \geq 0$
$A'^T z = A^T ((A')^{-1})^T c = c$ for subset of tight equations.
$\rightarrow A'^T z \geq c.$
Set all other dual variables to 0. $\implies A^T z \geq c.$
The negations of coefficients of new function!

Let A' be matrix of “tight constraints.”

Coordinate System: $y = b' - A'x$. $x = (A')^{-1}(b' - y)$

$max cx = max c((A')^{-1})(b' - y) = max c((A')^{-1})b' - (c(A')^{-1})y.$

$z = ((A')^{-1})^T c$ gives coefficients of new objective function.

All positive at optimal! $\rightarrow z \geq 0$

$A'^T z = A^T ((A')^{-1})^T c = c$ for subset of tight equations.

$\rightarrow A'^T z \geq c.$

Set all other dual variables to 0. $\implies A^T z \geq c.$

Feasible!
Next Up: Maximum Flow.

Maximum Flow.
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow:

1. $0 \leq f_e \leq c_e$. "Capacity constraints."

2. If u is not s or t, $\sum (w, u) \in E f_wu = \sum (u, w) \in E f_uw$.

3. $f_s + f_{sc} = 1 + 3 = 4$.

Maximize: size $(f) = \sum (s, u) \in E f_{su}$.

$4 = c_{ad} + c_{cd} + c_{et}$.

Any $s-t$ cut gives an upper bound.
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
 \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
 \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
Maximum flow

Flow network \(G = (V, E) \), source \(s \), sink \(t \in V \), capacities \(c_e > 0 \).

Find Flow: \(f_e \)

1. \(0 \leq f_e \leq c_e \). “Capacity constraints.”

2. If \(u \) is not \(s \) or \(t \)

 \[\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \]

Maximize: \(\text{size}(f) = \sum_{(s,u) \in E} f_{su}. \)
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t
 \[\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t

 $\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}$. $3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1$.

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t
 \[\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw} \cdot 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1. \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$. $f_{sa} + f_{sc} = 1 + 3 = 4$
Maximum flow

Flow network \(G = (V, E) \), source \(s \), sink \(t \in V \), capacities \(c_e > 0 \).

Find Flow: \(f_e \)

1. \(0 \leq f_e \leq c_e \). “Capacity constraints.” \(3 = f_{s,c} \leq c_{s,c} = 4 \).

2. If \(u \) is not \(s \) or \(t \)

\[
\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \quad 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.
\]

Maximize: \(\text{size}(f) = \sum_{(s,u) \in E} f_{su}. \quad f_{sa} + f_{sc} = 1 + 3 = 4 \)

Optimal?
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

![Flow network diagram]

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t

$$\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw} \cdot 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.$$

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su} \cdot f_{sa} + f_{sc} = 1 + 3 = 4$

Optimal?
Maximum flow

Flow network \(G = (V, E) \), source \(s \), sink \(t \in V \), capacities \(c_e > 0 \).

Find Flow: \(f_e \)

1. \(0 \leq f_e \leq c_e \). “Capacity constraints.” \(3 = f_{s,c} \leq c_{s,c} = 4 \).

2. If \(u \) is not \(s \) or \(t \)
 \[\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw} \cdot 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1. \]

Maximize: \(\text{size}(f) = \sum_{(s,u) \in E} f_{su} \cdot f_{sa} + f_{sc} = 1 + 3 = 4 \)

Optimal? \(c_{ad} + c_{cd} + c_{et} = 1 + 1 + 2 = 4. \)
Maximum flow

Flow network $G = (V, E)$, source s, sink $t \in V$, capacities $c_e > 0$.

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t

$$\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \quad 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.$$

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}. \quad f_{sa} + f_{sc} = 1 + 3 = 4$

Optimal? $c_{ad} + c_{cd} + c_{et} = 1 + 1 + 2 = 4$.

Any $s-t$ cut gives an upper bound.
An $s - t$ cut is a partition of V into S and T where $s \in S$ and $t \in T$. Its capacity is the total capacity of edges from S to T.
Do you know the definition?

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t
\[
\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
\]
Do you know the definition?

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t
 \[\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \]

Valid or Invalid?
Do you know the definition?

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t

 $$\sum_{(w,u)\in E} f_{wu} = \sum_{(u,w)\in E} f_{uw}.$$

Valid or Invalid?
Do you know the definition?

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
 \]

Valid or Invalid?

```
 s  b
 \downarrow  \uparrow  \downarrow  \uparrow  \downarrow  \uparrow
 3  3  2  2  2  2
 c  d  t
```

1 \neq 2
Do you know the definition?

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
 \]

Valid or Invalid?
Do you know the definition?

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. If u is not s or t
 \[\sum_{(w,u)\in E} f_{wu} = \sum_{(u,w)\in E} f_{uw}. \]

Valid or Invalid?

\[2 + 1 \neq 2 \]
FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. $\sum_{(w,u)\in E} f_{wu} = \sum_{(u,w)\in E} f_{uw}$.

3. maximize $\sum_{su} f_{su}$.
Algorithms.

FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. $\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}$.

3. maximize $\sum_{su} f_{su}$.

Linear program!
Algorithms.

FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”
2. $\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}$.
3. maximize $\sum_{su} f_{su}$.

Linear program!

Variables f_e, linear constraints, linear optimization function.
Algorithms.

FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. $\sum_{(w,u)\in E} f_{wu} = \sum_{(u,w)\in E} f_{uw}$.

3. maximize $\sum_{su} f_{su}$.

Linear program!

Variables f_e, linear constraints, linear optimization function.

Cool!
FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. $\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}$.

3. maximize $\sum_{su} f_{su}$.

Linear program!

Variables f_e, linear constraints, linear optimization function.

Cool!

Note...
Algorithms.

FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”
2. $\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}$.
3. maximize $\sum_{su} f_{su}$.

Linear program!

Variables f_e, linear constraints, linear optimization function.

Cool!

Note...

Integer? (Given integer capacities.)
Algorithms.

FindFlow: \(f_e \)

1. \(0 \leq f_e \leq c_e \). “Capacity constraints.”
2. \(\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw} \).
3. maximize \(\sum_{su} f_{su} \).

Linear program!
Variables \(f_e \), linear constraints, linear optimization function.

Cool!

Note...

Integer? (Given integer capacities.)
Yes. There is an integer vertex solution!
Algorithms.

FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”

2. $\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}$.

3. maximize $\sum_{su} f_{su}$.

Linear program!

Variables f_e, linear constraints, linear optimization function.

Cool!

Note...

Integer? (Given integer capacities.)

Yes. There is an integer vertex solution!

Constraint matrix has every subdeterminant being 1, 0, −1.
Algorithms.

FindFlow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.”
2. $\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}$.
3. maximize $\sum_{su} f_{su}$.

Linear program!
Variables f_e, linear constraints, linear optimization function.
Cool!

Note...
Integer? (Given integer capacities.)
Yes. There is an integer vertex solution!
Constraint matrix has every subdeterminant being 1, 0, -1.
Vertex solution to linear program must be integral!
Ford-Fulkerson.

“Simplex” method.
Ford-Fulkerson.

“Simplex” method.

Find s to t path with remaining capacity.
Ford-Fulkerson.

“Simplex” method.

Find \(s \) to \(t \) path with remaining capacity.

Add to flow variables along path.
Ford-Fulkerson.

“Simplex” method.

Find s to t path with remaining capacity.
Add to flow variables along path.
Update remaining capacity.
Ford-Fulkerson.

“Simplex” method.
Find s to t path with remaining capacity.
Add to flow variables along path.
Update remaining capacity.
Repeat.

```
4 X 3
1
1 X 0
2
3
4
1
1
4
```
Ford-Fulkerson.

“Simplex” method.

Find s to t path with remaining capacity.
Add to flow variables along path.
Update remaining capacity.

Repeat.
Ford-Fulkerson.

“Simplex” method.
Find s to t path with remaining capacity.
Add to flow variables along path.
Update remaining capacity.
Repeat.

![Graph](image)
Ford-Fulkerson.

“Simplex” method.

Find s to t path with remaining capacity.
Add to flow variables along path.
Update remaining capacity.
Repeat.
Residual Capacity.

Find s to t path with remaining capacity. Add to flow along path. Update remaining capacity.

Repeat.
Residual Capacity.

Find s to t path with remaining capacity.
Add to flow along path.
Update remaining capacity.

Repeat.
Residual Capacity.

Find s to t path with remaining capacity.
Add to flow along path.
Update remaining capacity.

Repeat.

![Graph with nodes labeled s, a, b, t and edges connecting them with capacities of 1. The edge from s to a, a to t, and b to t are highlighted in red.](image-url)
Residual Capacity.

Find s to t path with remaining capacity.
Add to flow along path.
Update remaining capacity.

Repeat.

Uh oh! Optimal is 2! (At most 2 due to cut.)
Add reverse arcs to indicate "reverse" capacity.
Residual Capacity.

Find s to t path with remaining capacity.
Add to flow along path.
Update remaining capacity.

Repeat.

No remaining path.
Residual Capacity.

Find s to t path with remaining capacity.
Add to flow along path.
Update remaining capacity.

Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.)
Residual Capacity.

Find \(s \) to \(t \) path with remaining capacity.
Add to flow along path.
Update remaining capacity.

Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.)
Residual Capacity.

Find s to t path with remaining capacity. Add to flow along path. Or reduce flow on reverse edge. Update remaining capacity.

Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.)
Residual Capacity.

Find s to t path with remaining capacity.
Add to flow along path. Or reduce flow on reverse edge.
Update remaining capacity.
Reduce $r_e = c_e - f_e$

Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.)
Residual Capacity.

Find s to t path with remaining capacity. Add to flow along path. Or reduce flow on reverse edge. Update remaining capacity.

Reduce $r_e = c_e - f_e$

and add reverse $r_{uv} = f_{vu}$

Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.) Add reverse arcs to indicate “reverse” capacity.
Residual Capacity.

Find s to t path with remaining capacity.
Add to flow along path. **Or reduce flow on reverse edge.**
Update remaining capacity.
 Reduce $r_e = c_e - f_e$
 and add reverse $r_{uv} = f_{vu}$
Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.)
Add reverse arcs to indicate “reverse” capacity.
Residual Capacity.

Find s to t path with remaining capacity. Add to flow along path. Or reduce flow on reverse edge. Update remaining capacity.

Reduce $r_e = c_e - f_e$

and add reverse $r_{uv} = f_{vu}$

Repeat.

No remaining path. Uh oh! Optimal is 2! (At most 2 due to cut.) Add reverse arcs to indicate “reverse” capacity.
Bigger Example.

Find s to t path with remaining capacity.

Add to flow along path.

Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.
Bigger Example.

Find s to t path with remaining capacity.

Add to flow along path.

Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.

Repeat.
Bigger Example.

Find s to t path with remaining capacity.
Add to flow along path.
Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.
Repeat.
Bigger Example.

Find s to t path with remaining capacity.
Add to flow along path.
Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.
Repeat.
Bigger Example.

Find s to t path with remaining capacity.

Add to flow along path.

Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.

Repeat.
Find s to t path with remaining capacity.

Add to flow along path.

Update residual capacities: $r_e = c_e - f_e$; $r_{uv} = f_{vu}$.

Repeat.
Bigger Example.

Find s to t path with remaining capacity.
Add to flow along path.
Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.
Repeat.
Bigger Example.

Find s to t path with remaining capacity.

Add to flow along path.

Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.

Repeat.
Find s to t path with remaining capacity.
Add to flow along path.
Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.
Repeat.
Bigger Example.

Find s to t path with remaining capacity.

Add to flow along path.

Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.

Repeat.
Bigger Example.

Find s to t path with remaining capacity.

Add to flow along path.

Update residual capacities: $r_e = c_e - f_e; r_{uv} = f_{vu}$.

Repeat.
Check Result...
Find Flow: f_e

1. $0 \leq f_e \leq c_e$. "Capacity constraints."

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
 \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
Check Result...

Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
 \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \quad 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.
 \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t

 $$\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.$$
 $3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1$.

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$.
 $f_{sa} + f_{sc} = 1 + 3 = 4$
Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t

 $$\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \quad 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.$$

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}. \quad f_{sa} + f_{sc} = 1 + 3 = 4$

Optimal?
Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t
 \[\sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \]
 $3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1$.

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$. $f_{sa} + f_{sc} = 1 + 3 = 4$

Optimal?
Find Flow: f_e

1. $0 \leq f_e \leq c_e$. “Capacity constraints.” $3 = f_{s,c} \leq c_{s,c} = 4$.

2. If u is not s or t
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}. \quad 3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1.
 \]

Maximize: $\text{size}(f) = \sum_{(s,u) \in E} f_{su}$. $f_{sa} + f_{sc} = 1 + 3 = 4$

Optimal? $c_{ad} + c_{cd} + c_{et} = 1 + 1 + 2 = 4$.
Find Flow: \(f_e \)

1. \(0 \leq f_e \leq c_e \). “Capacity constraints.” \(3 = f_{s,c} \leq c_{s,c} = 4 \).

2. If \(u \) is not \(s \) or \(t \)
 \[
 \sum_{(w,u) \in E} f_{wu} = \sum_{(u,w) \in E} f_{uw}.
 \]
 \(3 = f_{s,c} = f_{c,d} + f_{c,e} = 2 + 1 \).

Maximize: size(\(f \)) = \(\sum_{(s,u) \in E} f_{su} \).
 \(f_{sa} + f_{sc} = 1 + 3 = 4 \)

Optimal? \(c_{ad} + c_{cd} + c_{et} = 1 + 1 + 2 = 4 \).

Any \(s - t \) cut gives an upper bound.
Correctness.

1. Capacity Constraints: 0 \leq f \leq c.
 - Only increase flow to c.
 - Or use reverse arcs decrease to 0.
 - Flow values to be between 0 and c.

2. Conservation Constraints:
 - "flow into v = flow out of v" (if not s or t).
 - Algorithm adds flow, say f, to path from s to t.
 - Each internal node has f in, and f out.
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$.

Only increase flow to c_e. Or use reverse arcs decrease to 0. Flow values to be between 0 and c_e.

Algorithm adds flow, say f, to path from s to t. Each internal node has f in, and f out.
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$.
 Only increase flow to c_e.
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$.
 Only increase flow to c_e.
 Or use reverse arcs decrease to 0.
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$.
 Only increase flow to c_e.
 Or use reverse arcs decrease to 0.
 Flow values to be between 0 and c_e.
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$. Only increase flow to c_e. Or use reverse arcs decrease to 0. Flow values to be between 0 and c_e.

2. Conservation Constraints:
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$. Only increase flow to c_e. Or use reverse arcs decrease to 0. Flow values to be between 0 and c_e.

2. Conservation Constraints: "flow into v" = "flow out of v" (if not s or t.)
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$.
 Only increase flow to c_e.
 Or use reverse arcs decrease to 0.
 Flow values to be between 0 and c_e.

2. Conservation Constraints:
 “flow into v” = “flow out of v” (if not s or t.)
 Algorithm adds flow, say f, to path from s to t.
Correctness.

1. Capacity Constraints: $0 \leq f_e \leq c_e$.
Only increase flow to c_e.
Or use reverse arcs decrease to 0.
Flow values to be between 0 and c_e.

2. Conservation Constraints:
“flow into v” = “flow out of v” (if not s or t.)
Algorithm adds flow, say f, to path from s to t.
Each internal node has f in, and f out.
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

For valid flow:

- Flow out of (S) = Flow out of s.
- Flow into (T) = Flow into t.

For any valid flow, $f: E \rightarrow \mathbb{Z}^+$, the flow out of S (into T) is

$$\sum_{e \in S \times T} f_e - \sum_{e \in T \times S} f_e \leq \sum_{e \in S \times T} c_e - \sum_{e \in T \times S} 0 = C(S, T).$$

The value of any valid flow is at most $C(S, T)$!
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s–t cut is an upper bound on the flow.
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s – t cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any $s - t$ cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s–t cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$

For valid flow:
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s–t cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$

For valid flow:
Flow out of $(S) = \text{Flow out of } s$.
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any $s-t$ cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$

For valid flow:
Flow out of $(S) = $ Flow out of s.
Flow into $(T) = $ Flow into t.
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s – t cut is an upper bound on the flow.

\[C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e \]

For valid flow:
Flow out of $(S) = \text{Flow out of } s$.
Flow into $(T) = \text{Flow into } t$.
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s–t cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$$C(S, T) = \sum_{e = (u, v): u \in S, v \in T} c_e$$

For valid flow:

Flow out of $(S) = $ Flow out of s.

Flow into $(T) = $ Flow into t.

For any valid flow, $f : E \to \mathbb{Z}_+$, the flow out of S (into T)
Optimality: upper bound.

$s-t$ Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any $s-t$ cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$

For valid flow:
Flow out of $(S) = $ Flow out of s.
Flow into $(T) = $ Flow into t.

For any valid flow, $f : E \rightarrow Z_+$, the flow out of S (into T)
Optimality: upper bound.

s-t Cut: \(V = S \cup T \) and \(s \in S \) and \(t \in T \).

Lemma: Capacity of any \(s-t \) cut is an upper bound on the flow.

- \(C(S, T) \) - sum of capacities of all arcs from \(S \) to \(T \)
 \[
 C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e
 \]

For valid flow:
- Flow out of \((S)\) = Flow out of \(s \).
- Flow into \((T)\) = Flow into \(t \).

For any valid flow, \(f : E \to \mathbb{Z}_+ \), the flow out of \(S \) (into \(T \))
 \[
 \sum_{e \in S \times T} f_e
 \]
Optimality: upper bound.

\(s-t \) Cut: \(V = S \cup T \) and \(s \in S \) and \(t \in T \).

Lemma: Capacity of any \(s-t \) cut is an upper bound on the flow.

\[C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e \]

For valid flow:
Flow out of \((S) \) = Flow out of \(s \).
Flow into \((T) \) = Flow into \(t \).

For any valid flow, \(f : E \rightarrow \mathbb{Z}_+ \), the flow out of \(S \) (into \(T \))
\[\sum_{e \in S \times T} f_e - \sum_{e \in T \times S} f_e \]
Optimality: upper bound.

$s-t$ Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any $s-t$ cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$

For valid flow:
Flow out of $(S) = \text{Flow out of } s$.
Flow into $(T) = \text{Flow into } t$.

For any valid flow, $f : E \rightarrow Z_+$, the flow out of S (into T)

$\sum_{e \in S \times T} f_e - \sum_{e \in T \times S} f_e \leq \sum_{e \in S \times T} c_e - \sum_{e \in T \times S} 0$
Optimality: upper bound.

\[s-t \text{ Cut: } V = S \cup T \text{ and } s \in S \text{ and } t \in T. \]

Lemma: Capacity of any \(s - t \) cut is an upper bound on the flow.

\[C(S, T) - \text{sum of capacities of all arcs from } S \text{ to } T \]

\[C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e \]

For valid flow:

Flow out of \((S) \) = Flow out of \(s \).
Flow into \((T) \) = Flow into \(t \).

For any valid flow, \(f : E \rightarrow \mathbb{Z}_+ \), the flow out of \(S \) (into \(T \))

\[\sum_{e \in S \times T} f_e - \sum_{e \in T \times S} f_e \leq \sum_{e \in S \times T} c_e - \sum_{e \in T \times S} 0 = C(S, T). \]
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s–t cut is an upper bound on the flow.

$C(S, T) - \text{sum of capacities of all arcs from } S \text{ to } T$

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$

For valid flow:
Flow out of (S) = Flow out of s.
Flow into (T) = Flow into t.

For any valid flow, $f : E \to \mathbb{Z}^+$, the flow out of S (into T)

$\sum_{e \in S \times T} f_e - \sum_{e \in T \times S} f_e \leq \sum_{e \in S \times T} c_e - \sum_{e \in T \times S} 0 = C(S, T)$.

\rightarrow The value of any valid flow is at most $C(S, T)$!
Optimality: upper bound.

s-t Cut: $V = S \cup T$ and $s \in S$ and $t \in T$.

Lemma: Capacity of any s – t cut is an upper bound on the flow.

$C(S, T)$ - sum of capacities of all arcs from S to T

$C(S, T) = \sum_{e=(u,v): u \in S, v \in T} c_e$

For valid flow:
Flow out of (S) = Flow out of s.
Flow into (T) = Flow into t.

For any valid flow, $f : E \to Z^+$, the flow out of S (into T)

$\sum_{e \in S \times T} f_e - \sum_{e \in T \times S} f_e \leq \sum_{e \in S \times T} c_e - \sum_{e \in T \times S} 0 = C(S, T)$.

\Rightarrow The value of any valid flow is at most $C(S, T)!$
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Value of flow = min cut.

Valid flow = all that flow from source.

Optimal is ≤ min cut.

→ Flow is maximum!! Cut is minimum s–t cut too!
Optimality: \(\text{max flow} = \text{min cut} \).

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at \(s \) does not reach \(t \).
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
Optimality: max flow $= \min$ cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
No arc with positive residual capacity leaving S

Total flow leaving S is $C(S, T)$.

Valid flow \Rightarrow all that flow from source.
Value of flow equals value of $C(S, T)$.

Optimal is $\leq C(S, T)$.

\rightarrow Flow is maximum!!
Cut is minimum $s-t$ cut too!

"any flow" \leq "any cut" and this flow $=$ this cut.

\rightarrow Maximum flow and minimum $s-t$ cut!
Optimality: \(\text{max flow} = \text{min cut} \).

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at \(s \) does not reach \(t \).

\[f_e = c_e \]

\(S \) be reachable nodes.
No arc with positive residual capacity leaving \(S \)

\[\implies \text{All arcs leaving } S \text{ are full.} \]
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
 No path with residual capacity!

Depth first search only starting at s does not reach t.

s be reachable nodes.

No arc with positive residual capacity leaving S

\implies All arcs leaving S are full.
\implies No arcs into S have flow.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.

No arc with positive residual capacity leaving S

\Rightarrow All arcs leaving S are full.
\Rightarrow No arcs into S have flow.

Total flow leaving S is $C(S, T)$.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at \(s \) does not reach \(t \).

\[f_e = c_e \]

\(S \) be reachable nodes.
No arc with positive residual capacity leaving \(S \)

\[f_e = 0 \]

\[\implies \text{All arcs leaving } S \text{ are full.} \]
\[\implies \text{No arcs into } S \text{ have flow.} \]

Total flow leaving \(S \) is \(C(S, T) \).

Valid flow \(\implies \) all that flow from source.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
No arc with positive residual capacity leaving S

\Rightarrow All arcs leaving S are full.
\Rightarrow No arcs into S have flow.
Total flow leaving S is $C(S, T)$.

Valid flow \Rightarrow all that flow from source.
Value of flow equals value of $C(S, T)$.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

$s \rightarrow t$

$f_e = c_e$

$f_e = 0$

S be reachable nodes.
No arc with positive residual capacity leaving S

\Rightarrow All arcs leaving S are full.
\Rightarrow No arcs into S have flow.

Total flow leaving S is $C(S, T)$.

Valid flow \Rightarrow all that flow from source.
Value of flow equals value of $C(S, T)$. and
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.

No arc with positive residual capacity leaving S

\implies All arcs leaving S are full.
\implies No arcs into S have flow.

Total flow leaving S is $C(S, T)$.

Valid flow \implies all that flow from source.

Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.

No arc with positive residual capacity leaving S

\implies All arcs leaving S are full.
\implies No arcs into S have flow.

Total flow leaving S is $C(S, T)$.

Valid flow \implies all that flow from source.

Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.

→
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
No arc with positive residual capacity leaving S

\implies All arcs leaving S are full.
\implies No arcs into S have flow.

Total flow leaving S is $C(S, T)$.

Valid flow \implies all that flow from source.

Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.

\rightarrow Flow is maximum!!
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
No arc with positive residual capacity leaving S
\implies All arcs leaving S are full.
\implies No arcs into S have flow.
Total flow leaving S is $C(S, T)$.

Valid flow \implies all that flow from source.
Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.
\rightarrow Flow is maximum!!
Cut is minimum $s – t$ cut too!
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
No arc with positive residual capacity leaving S

\implies All arcs leaving S are full.
\implies No arcs into S have flow.

Total flow leaving S is $C(S, T)$.

Valid flow \implies all that flow from source.

Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.

\rightarrow Flow is maximum!!

Cut is minimum $s - t$ cut too!
“any flow” \leq “any cut”
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at \(s \) does not reach \(t \).

\[S \text{ be reachable nodes.} \]

No arc with positive residual capacity leaving \(S \)

\[\implies \text{All arcs leaving } S \text{ are full.} \]
\[\implies \text{No arcs into } S \text{ have flow.} \]

Total flow leaving \(S \) is \(C(S, T) \).

Valid flow \(\implies \) all that flow from source.

Value of flow equals value of \(C(S, T) \). and Optimal is \(\leq C(S, T) \).

\[\rightarrow \text{Flow is maximum!!} \]

Cut is minimum \(s - t \) cut too!
“any flow” \(\leq \) “any cut” and
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
 No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
 No arc with positive residual capacity leaving S
 \implies All arcs leaving S are full.
 \implies No arcs into S have flow.

Total flow leaving S is $C(S, T)$.

Valid flow \implies all that flow from source.

Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.
→ Flow is maximum!!

Cut is minimum $s - t$ cut too!
“any flow” \leq “any cut” and this flow = this cut.
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

$s \rightarrow t$

$f_e = c_e$

$f_e = 0$

S be reachable nodes.
No arc with positive residual capacity leaving S

\Rightarrow All arcs leaving S are full.
\Rightarrow No arcs into S have flow.
Total flow leaving S is $C(S, T)$.

Valid flow \Rightarrow all that flow from source.
Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.
\rightarrow Flow is maximum!!

Cut is minimum $s – t$ cut too!
“any flow” \leq “any cut” and this flow $=$ this cut.
\rightarrow
Optimality: max flow = min cut.

At termination of augmenting path algorithm.
No path with residual capacity!

Depth first search only starting at s does not reach t.

S be reachable nodes.
No arc with positive residual capacity leaving S

\implies All arcs leaving S are full.
\implies No arcs into S have flow.

Total flow leaving S is $C(S, T)$.

Valid flow \implies all that flow from source.

Value of flow equals value of $C(S, T)$. and Optimal is $\leq C(S, T)$.
\rightarrow Flow is maximum!!

Cut is minimum $s - t$ cut too!
“any flow” \leq “any cut” and this flow = this cut.
\rightarrow Maximum flow and minimum $s - t$ cut!
Theorem: In any flow network, the maximum s-t flow is equal to the minimum cut.
Celebrated max flow -minimum cut theorem.

Theorem: In any flow network, the maximum s-t flow is equal to the minimum cut.

Celebrate!
Simplex Implementation:
Start at a (feasible) vertex.
Lecture in a Minute

Simplex Implementation:
Start at a (feasible) vertex.
(defined by linear system $A'x = [b', 0, \cdots, 0]$).
Begin at origin. Move to better neighboring vertex.
Coordinate system: distance from tight constraints.
Vertex at origin in coordinate system.
$O(mn)$ time to update linear system.
Until no better neighboring vertex.
Objective function in coordinate system is non-positive.
Dual Variables: new objective function!
Lecture in a Minute

Simplex Implementation:
Start at a (feasible) vertex.
(defined by linear system $A'x = [b', 0, \cdots, 0]$).
Begin at origin. Move to better neighboring vertex.
Coordinate system: distance from tight constraints.
Vertex at origin in coordinate system.
$O(mn)$ time to update linear system.
Until no better neighboring vertex.
Objective function in coordinate system is non-positive.
Dual Variables: new objective function!

Maximum flow.
“Greedy” augment path...
Except reverse old decisions ..
Reverse residual capacities.
(Friday): Optimality?
No augmenting path \implies
$s – t$ cut size = flow value.
Find flow and $s – t$ cut with equal value!