

1. Learn more about inputs
2. Heuristic
3. Approximation algorithm
$$\leftarrow today$$

Def: For a minimization problem P,
an algorithm A is an d-approximation algorithm
if for all instances I of P,
 $A(I) \leq d \cdot OPT$ (d 31)
(maximization:) $A(I) \geq d \cdot OPT$ (05451)

Vertex Cover Input: Graph G=(V,E) Solution: A vertex cover (, EV of minimal size Def: Vertex Cover = set of vertices s.t. every edge (u,v) is incident to one of them Thm: Nertex Cover is NP-hard (prove at home)

Claim: C is a vertex cover.
Pf: AFSOC that C is not a vertex cover:
Then exists
$$\bigcirc & \bigtriangledown \in E$$
 s.t. $\cup, v \notin C$.
Then could add (\cup, v) to M. But M is maximal! Contradiction.
Claim: $|C| \leq 2 \cdot OPT$, $OPT = size of minimum$
 $Pf: Any Vertex cover must cover each edge $(\cup, v) \in M$
 \Rightarrow must include either \cup or v (or both)
 $\therefore OPT \not i Mi$
So $|C| = 2 \cdot |M| \leq 2 \cdot OPT$.$

Rounding the LP
· Let Ext li=1...n} be the optimal LP solution
· Rounding rule:
$$\begin{cases} x_{i}^{*} & y \neq 2 \\ x_{i}^{*} & y \neq 2 \end{cases}$$
 include in (
 $\begin{cases} x_{i}^{*} & x_{i}^{*} & y \neq 2 \\ x_{i}^{*} & x_{i}^{*} & y \neq 2 \end{cases}$ do not include in (
Claim: C is a vertex cover
PF: $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$ $\begin{array}{c} & & \\ & & \\ \end{array}$ $\begin{array}{c} & & \\ & & \\ \end{array}$ $\begin{array}{c} & & \end{array}$ $\begin{array}{c} & & \\ \end{array}$ $\begin{array}{c} & & \end{array}$ $\begin{array}{c} & & \end{array}$ $\begin{array}{c} & & \\ \end{array}$ $\begin{array}{c} & & \end{array}$ $\begin{array}{c} & & \end{array}$ $\begin{array}{c} & & \end{array}$ $\begin{array}{c} & & \end{array}$ \\ \end{array} $\begin{array}{c} & & \end{array}$ \\ \end{array} $\begin{array}{c} & & \end{array}$ $\begin{array}{c} & & & \end{array}$ \\

C

1

Algorithm: 1.) Find the MST T Cost(T) ≤ cost (optimal TSP tour) A