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Announcements

Nika’s OH as usual on Tuesdays (today) after class
→Meet at the podium or the lecture hall entrance.

End-of-semester course evaluations are open now
→ You can receive an additional homework drop if you fill it out (see “End-of-
Semester Feedback Form” on Ed on how to receive HW drop)

Midterm 2 regrade requests will be resolved by end of the week



Strategies for coping with NP-Completeness!
1. Approximation Algorithms:
→ You’ve seen 2-approx. for Vertex Cover
→ You’ve seen 2-approx. for Metric TSP
→ You’ve seen log(n)-approx. for Set-Cover
→ Today: 1 − 𝜖-approx. for Knapsack problems. 

2. Exact algorithms that are fast in practice (even if exponential time in theory!)
o Intelligent exhaustive search
→ Backtracking (for decision problems)
→ Branch-and-bound (for optimization problems)

3. Heuristics
o Local search algorithms, etc.

Last lecture!

Lecture 10 on greedy algs!

We won’t cover in class



Knapsack



Recall Knapsack (no repetition)
Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.

Output: Most valuable subset of items (no repetition), whose total weight is ≤W.

Algorithm: 
→Fill out the array of size 𝑛𝑊,
→each cell take max over 2 values

Runtime: Pseudo-polynomial time O(𝑛𝑊)
→The input size is O 𝑛 log 𝑊  so this is not truly a polynomial time algorithm.

Step1: Subproblems: For all 𝑐 ≤ 𝑊 and all 𝑗 ≤ 𝑛

𝐾 𝑗, 𝑐 = best value achievable for knapsack of capacity 𝑐 using only items 1, … , 𝑗

𝐾 𝑗, 𝑐 = max  𝐾 𝑗 − 1, 𝑐  , 𝑣𝑗 + 𝐾 𝑗 − 1, 𝑐 − 𝑤𝑗



Is there a truly polynomial time 
algorithm for knapsack? 

For any 0 < 𝜖 < 1, we will give an approximation algorithm that runs in 
time 𝑂(𝑛3/𝜖) and finds a subset of items of value Val where  

Val ≥ OPT 1 − 𝜖 ,

Where OPT is the value of the optimal solution to the knapsack.



An Approach: Rounding Down Item Values
Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.

Output: Most valuable subset of items (no repetition), whose total weight is ≤W.

Idea: Solve for the optimal solution of a slightly approximated instance.
→Using the exact numerical value of an item doesn’t seem to be too important.
→Round them down 

→ For this to work, we need an algorithm for exact knapsack that would run faster 
than 𝑂(𝑛𝑊) when the item values are small. 

When item values (𝑣𝑖s are integers), there is a DP algorithm (call it Knapsack-II ) that 
finds the optimal knapsack solution in 𝑂(𝑛𝑉), where V = σ𝑖=1

𝑛 𝑣𝑖 .  

Alternative exact Alg for Knapsack

Values: 126,378,210 and 538,943,121, … become: 126 and 538



Knapsack Approximation Algorithm

Knapsack-approx(𝑊, 𝑤1, 𝑣1 , … , 𝑤𝑛 , 𝑣𝑛 , 𝜖)

    𝑚 ← ?                                                  // We’ll discuss the choice of 𝑚 later

    For 𝑖 = 1, … , 𝑛, ො𝑣𝑖 ← ⌊𝑣𝑖/𝑚⌋

    Run Knapsack-II with values ො𝑣𝑖  (not changing the capacity or the weights), output the 
resulting choice of items.

Plan for our analysis:

1. (Feasibility) Verify that Knapsack-approx. returns a feasible solution, i.e., its total 

weight is less than 𝑊.

2.  (Approximation factor) Verify that for a good choice of 𝑚, Knapsack-approx. has a 

value that’s at least 1 − 𝜖 × value of the optimal solution in the original instance. 

3.  (Runtime) Verify that for the choice of  𝑚 discussed in step 2, the runtime of 

Knapsack-approx is polynomial time.

Assume no item with 𝑤𝑛 > 𝑊 (or 
just remove them before you start) 



Analysis of the Approximation Factor

Knapsack-approx(𝑊, 𝑤1, 𝑣1 , … , 𝑤𝑛 , 𝑣𝑛 , 𝜖)

    𝑚 ←                                                  // We’ll discuss the choice of 𝑚

    For 𝑖 = 1, … , 𝑛, ො𝑣𝑖 ← ⌊𝑣𝑖/𝑚⌋

    Run Knapsack-II with values ො𝑣𝑖  (not changing the capacity or the weights), output the 
resulting choice of items.

Discuss:  How does the value of 𝑚 affect the approximate values? 
Choose the correct answer:

1. ො𝑣𝑖 ∈ 𝑣𝑖 − 𝑚, 𝑣𝑖

2. ො𝑣𝑖 ∈ 𝑣𝑖 , 𝑣𝑖 + 𝑚
3. 𝑚 ො𝑣𝑖 ∈ 𝑣𝑖 − 𝑚, 𝑣𝑖

4. 𝑚 ො𝑣𝑖 ∈ 𝑣𝑖 , 𝑣𝑖 + 𝑚

Assume no item with 𝑤𝑛 > 𝑊 (or 
just remove them before you start) 



Step 2: Analysis of the Approximation Factor
Let መ𝑆 be the outcome of Knapsack-approx Alg, and let 𝑆∗ be the optimal knapsack 
solution to the original problem. We will prove that


𝑖∈ መ𝑆

𝑣𝑖 ≥ 
𝑖∈𝑆∗

𝑣𝑖 − 𝑛𝑚

Val OPT



Step 2: Analysis of the Approximation Factor
We proved that σ𝑖∈ መ𝑆 𝑣𝑖 ≥ σ𝑖∈𝑆∗ 𝑣𝑖 − 𝑛𝑚 already. How should we set 𝑚 so that this 

gives Val ≥ 1 − 𝜖 𝑂𝑃𝑇?



Step 3: Analysis of the Runtime

Knapsack-approx(𝑊, 𝑤1, 𝑣1 , … , 𝑤𝑛 , 𝑣𝑛 , 𝜖)

    𝑚 ←                                                  // We’ll discuss the choice of 𝑚

    For 𝑖 = 1, … , 𝑛, ො𝑣𝑖 ← ⌊𝑣𝑖/𝑚⌋

    Run Knapsack-II with values ො𝑣𝑖  (not changing the capacity or the weights), output the 
resulting choice of items.

What is the runtime of Knapsack-approx.?

Assume no item with 𝑤𝑛 > 𝑊 (or 
just remove them before you start) 



The making of Knapsack-II Algorithm
So far we assumed that when item values (𝑣𝑖s are integers), there is a DP algorithm (call 
it Knapsack-II ) 1that finds the optimal knapsack solution in 𝑂(𝑛𝑉), where V = σ𝑖=1

𝑛 𝑣𝑖 . 

Let’s see this algorithm 

  
𝐾 𝑗, 𝑐 = best value achievable using 
subset of only items 1, … , 𝑗 with total 
weights at most 𝑐.
(0 if no such subset)

𝐴 𝑗, 𝑣 = lightest weight 
achievable by a set of items 1, … , 𝑗 
whose value is at least value 𝑣. 
(∞ if no such subset exists)

Return 𝐾 𝑛, 𝑊  

𝐾 𝑗, 𝑐 = max
𝐾 𝑗 − 1, 𝑐 ,

𝑣𝑗 + 𝐾 𝑗 − 1, 𝑐 − 𝑤𝑗

Lec 13 Alg



Knapsack-II Pseudo-code
Input: A weight capacity 𝑊, and 𝑛 items 𝑤1, 𝑣1 , ⋯ , (𝑤𝑛, 𝑣𝑛). All integers.

Output: Most valuable subset of items (no repetition), whose total weight is ≤W.

𝐴 𝑗, 𝑣 = lightest weight 
achievable by a set of items 1, … , 𝑗 
whose value is at least value 𝑣. 

Maximum 𝑣 to consider is 𝑉 =
σ𝑖=1

𝑛 𝑣𝑖  (can’t get a higher value)

Runtime:
→ # subproblems: O(𝑛𝑉)
→ Runtime per subproblem:O(1) 

Knapsack-II(𝑊, 𝑤1, 𝑣1 , … , (𝑤𝑛 , 𝑣𝑛))

   An array 𝐴 of size (𝑛 + 1) × 𝑉 initialized to ∞

   A 0, 0 ← 0 

   For 𝑗 = 1, … , 𝑛: 

       For 𝑣 = 1, … , 𝑉, 

          IF 𝑣𝑖 > 𝑣, then 𝐴 𝑗, 𝑣 = 𝐴 𝑗 − 1, 𝑣

          ELSE 𝐴 𝑗, 𝑣 = min
𝐴 𝑗 − 1, 𝑣 ,

𝑤𝑗 + 𝐾 𝑗 − 1, 𝑣 − 𝑣𝑗

return max 𝐾 𝐴 𝑛, 𝐾 ≤ 𝑊

Can also track 𝑆 𝑗, 𝑣  the corresponding item set



Overview of Approximation Algorithms so far!
Constant approx. is pretty good! Sometimes that’s the best you can do (unless P=NP)

→E.g., It is hard to approximate Vertex Cover to better than 2-approximation and set-
cover to better than O(log(n))-approximation.

Getting (1 − 𝜖)-approximation with runtime 𝑝𝑜𝑙𝑦
1

𝜖
 is really great!

→This is called a Fully Polynomial Time Approximation Algorithm (FPTAS).

→ If the runtime is not 𝑝𝑜𝑙𝑦
1

𝜖
, this is still quite nice. It is called having a Polynomial 

Time Approximation Algorithm (PTAS).

→There is a PTAS for metric TSP!

What if we are not satisfied with the approximation guarantees of polynomial time 
algorithms? Let’s see after the break!



Intelligent Exhaustive Search; Backtracking
We can do an exhaustive search but in a smart way.

→ It is often possible to reject one style of solutions by looking only at a small part of it.

Backtracking for SAT.

→Start with the entire formula (root of the tree)

→Grow the tree: In each node, branch out on the value of one variable.

→If you can verify quickly that there is no way to satisfy the formula with the current 
partial solution, don’t expand.



Backtracking on SAT Instances

𝑦 ∨ 𝑧  ∧  ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒  ∧ 𝑦 ∨ ҧ𝑧  

𝑧  ∧ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝒘 ∨ 𝑥 ∨ 𝑦 ∨ 𝑧  ∧ 𝒘 ∨ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧 ∨ ഥ𝒘  ∧ ഥ𝒘 ∨ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧  ∧ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ (𝐹𝑎𝑙𝑠𝑒) 𝑥 ∨ ത𝑦  ∧ 𝑦 ∧ (𝐹𝑎𝑙𝑠𝑒)

𝑥 ∨ 𝑦 ∨ 𝑧  ∧ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  

𝒘 = 𝟎 𝒘 = 𝟏

𝑥 = 0 𝑥 = 1

𝑦 = 0 𝑦 = 1

𝑧 = 0 𝑧 = 1

𝑧 = 0 𝑧 = 1



Backtracking on SAT Instances

𝑦 ∨ 𝑧  ∧  ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒  ∧ 𝑦 ∨ ҧ𝑧  

𝑧  ∧ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝒘 ∨ 𝑥 ∨ 𝑦 ∨ 𝑧  ∧ 𝒘 ∨ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧 ∨ ഥ𝒘  ∧ ഥ𝒘 ∨ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧  ∧ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ (𝐹𝑎𝑙𝑠𝑒) 𝑥 ∨ ത𝑦  ∧ 𝑦 ∧ (𝐹𝑎𝑙𝑠𝑒)

𝑥 ∨ 𝑦 ∨ 𝑧  ∧ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  

𝒘 = 𝟎 𝒘 = 𝟏

𝑥 = 0 𝑥 = 1

𝑦 = 0 𝑦 = 1

𝑧 = 0 𝑧 = 1

𝑧 = 0 𝑧 = 1

If a clause is satisfied, just remove it. 
Eg. When 𝑤 = 0, clauses 𝑧 ∨ ഥ𝒘  and ഥ𝒘 ∨ ҧ𝑧  are already satisfied! 

So they are removed from the left branch



Backtracking on SAT Instances

𝑦 ∨ 𝑧  ∧  ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒  ∧ 𝑦 ∨ ҧ𝑧  

𝑧  ∧ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝑤 ∨ 𝑥 ∨ 𝑦 ∨ 𝑧  ∧ 𝑤 ∨ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧 ∨ ഥ𝑤  ∧ ഥ𝑤 ∨ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ത𝒛  ∧ 𝒛  ∧ ത𝒛

𝑥 ∨ ത𝑦  ∧ (𝐹𝑎𝑙𝑠𝑒) 𝑥 ∨ ത𝑦  ∧ 𝑦 ∧ (𝐹𝑎𝑙𝑠𝑒)

𝒙 ∨ 𝑦 ∨ 𝑧  ∧ ഥ𝒙  ∧ 𝒙 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  

𝑤 = 0 𝑤 = 1

𝒙 = 𝟎 𝒙 = 𝟏

𝑦 = 0 𝑦 = 1

𝑧 = 0 𝑧 = 1

𝒛 = 𝟎 𝒛 = 𝟏

Heuristically: 
We chose subproblem that includes the smallest clause and 
expanded on the variable in the smallest clause



Backtracking on SAT Instances

𝒚 ∨ 𝑧  ∧  ഥ𝒚  ∧ 𝒚 ∨ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒  ∧ 𝑦 ∨ ҧ𝑧  

𝑧  ∧ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝑤 ∨ 𝑥 ∨ 𝑦 ∨ 𝑧  ∧ 𝑤 ∨ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧 ∨ ഥ𝑤  ∧ ഥ𝑤 ∨ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧  ∧ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ (𝐹𝑎𝑙𝑠𝑒) 𝑥 ∨ ത𝑦  ∧ 𝑦 ∧ (𝐹𝑎𝑙𝑠𝑒)

𝑥 ∨ 𝑦 ∨ 𝑧  ∧ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  

𝑤 = 0 𝑤 = 1

𝑥 = 0 𝑥 = 1

𝒚 = 𝟎 𝒚 = 𝟏

𝑧 = 0 𝑧 = 1

𝑧 = 0 𝑧 = 1

Heuristically: 
We chose subproblem that includes the smallest clause and 
expanded on the variable in the smallest clause



Backtracking on SAT Instances

𝑦 ∨ 𝑧  ∧  ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒  ∧ 𝑦 ∨ ҧ𝑧  

𝑧  ∧ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝑤 ∨ 𝑥 ∨ 𝑦 ∨ 𝑧  ∧ 𝑤 ∨ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧 ∨ ഥ𝑤  ∧ ഥ𝑤 ∨ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧  ∧ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ (𝐹𝑎𝑙𝑠𝑒) 𝑥 ∨ ത𝑦  ∧ 𝑦 ∧ (𝐹𝑎𝑙𝑠𝑒)

𝑥 ∨ 𝑦 ∨ 𝑧  ∧ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  

𝑤 = 0 𝑤 = 1

𝑥 = 0 𝑥 = 1

𝑦 = 0 𝑦 = 1

𝒛 = 𝟎 𝒛 = 𝟏

𝑧 = 0 𝑧 = 1

Heuristically: 
We chose subproblem that includes the smallest clause and 
expanded on the variable in the smallest clause



Backtracking on SAT Instances

𝑦 ∨ 𝑧  ∧  ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒  ∧ 𝑦 ∨ ҧ𝑧  

𝑧  ∧ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝑤 ∨ 𝑥 ∨ 𝑦 ∨ 𝑧  ∧ 𝑤 ∨ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧 ∨ ഥ𝑤  ∧ ഥ𝑤 ∨ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ത𝒛  ∧ 𝒛  ∧ ത𝒛

𝑥 ∨ ത𝑦  ∧ (𝐹𝑎𝑙𝑠𝑒) 𝑥 ∨ ത𝑦  ∧ 𝑦 ∧ (𝐹𝑎𝑙𝑠𝑒)

𝑥 ∨ 𝑦 ∨ 𝑧  ∧ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  

𝑤 = 0 𝑤 = 1

𝑥 = 0 𝑥 = 1

𝑦 = 0 𝑦 = 1

𝑧 = 0 𝑧 = 1

𝒛 = 𝟎 𝒛 = 𝟏

Heuristically: 
We chose subproblem that includes the smallest clause and 
expanded on the variable in the smallest clause



Backtracking on SAT Instances

𝑦 ∨ 𝑧  ∧  ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒  ∧ 𝑦 ∨ ҧ𝑧  

𝑧  ∧ ҧ𝑧  𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

𝑤 ∨ 𝑥 ∨ 𝑦 ∨ 𝑧  ∧ 𝑤 ∨ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧 ∨ ഥ𝑤  ∧ ഥ𝑤 ∨ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  ∧ 𝑧  ∧ ҧ𝑧

𝑥 ∨ ത𝑦  ∧ (𝐹𝑎𝑙𝑠𝑒) 𝑥 ∨ ത𝑦  ∧ 𝑦 ∧ (𝐹𝑎𝑙𝑠𝑒)

𝑥 ∨ 𝑦 ∨ 𝑧  ∧ ҧ𝑥  ∧ 𝑥 ∨ ത𝑦  ∧ 𝑦 ∨ ҧ𝑧  

𝑤 = 0 𝑤 = 1

𝑥 = 0 𝑥 = 1

𝑦 = 0 𝑦 = 1

𝑧 = 0 𝑧 = 1

𝑧 = 0 𝑧 = 1

We verified that the instance is not satisfiable, without 
looking at all the 24 assignments of the variable.



Backtracking more Generally
Backtracking requires a “test” algorithm that runs fast and state one of 3 outcomes:

1. Failure: The subprobem has no solution

2. Success: The solution is found!

3. Uncertain

Start with problem 𝑃0 and let 𝑆 = {𝑃0}, the set of active subproblems

Repeat while 𝑆 ≠ ∅:

     Choose a subproblem 𝑃 ∈ 𝑆 and remove it from 𝑆

     Expand the problem into smaller subproblems 𝑃1, 𝑃2, … , 𝑃𝑘

     For each 𝑃𝑖:

            If 𝑡𝑒𝑠𝑡 𝑃𝑖  = success: halt and return the solution of 𝑃𝑖

            If 𝑡𝑒𝑠𝑡 𝑃𝑖 = uncertain: Add 𝑃𝑖  to 𝑆

Return that no solution exists.             // Means no subproblem was successful

Example heuristic:
Choose subproblem that includes the smallest clause. 
Expand on one of the variables in the smallest clause



Intelligent Search in Optimization Problems
Backtracking works quite well for decision problems, like SAT. How about 
optimization problems? Say, if you want to minimize or maximize solution value.

Branch-and-bound, uses backtracking on optimization problems.

We need to eliminate a branch of subproblems quickly. How?

→ Idea 0: Keep track of the value of the best solution so far

→ Idea 1: Exactly compute the optimal solution of the branch and see if it’s worse?

→ Idea 2: Give an approximate bound on the optimal solution of the branch, 

→Discard the branch if the approximate bound rules out optimality

→Keep expanding the problem if the bound is uncertain.



Branch and Bound

Start with problem 𝑃0 and let 𝑆 = {𝑃0}, the set of active subproblems

best-so-far = ∞

Repeat while 𝑆 ≠ ∅:

     Choose a subproblem (partial solution) 𝑃 ∈ 𝑆 and remove it from 𝑆

     Expand the problem into smaller subproblems 𝑃1, 𝑃2, … , 𝑃𝑘

     For each 𝑃𝑖:

            If 𝑃𝑖  is a complete solution, update best-so-far if it’s the best value so far

            Else if 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 < best-so-far, add 𝑃𝑖  to 𝑆.

Return best-so-far

Branch-an-bound for a minimization problem

Rule out optimality for minimization problem:
→We need a function 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖  that looks at a partial solution 𝑃𝑖   and quickly 

gives us a lower bound on the value of any possible completion of 𝑃𝑖 .
→ If 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 > best-so-far, the entire branch under 𝑃𝑖  can be eliminated.



Branch and Bound

Start with problem 𝑃0 and let 𝑆 = {𝑃0}, the set of active subproblems

best-so-far = ∞

Repeat while 𝑆 ≠ ∅:

     Choose a subproblem (partial solution) 𝑃 ∈ 𝑆 and remove it from 𝑆

     Expand the problem into smaller subproblems 𝑃1, 𝑃2, … , 𝑃𝑘

     For each 𝑃𝑖:

            If 𝑃𝑖  is a complete solution, update best-so-far if it’s the best value so far

            Else if 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 < best-so-far, add 𝑃𝑖  to 𝑆.

Return best-so-far

Branch-an-bound for a minimization problem

Rule out optimality for minimization problem:
→We need a function 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖  that looks at a partial solution 𝑃𝑖   and quickly 

gives us a lower bound on the value of any possible completion of 𝑃𝑖 .
→ If 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 > best-so-far, the entire branch under 𝑃𝑖  can be eliminated.



Branch and Bound for TSP
Recall: TSP(graph 𝐺 = [𝑛], 𝐸  and edge lengths 𝑑𝑒 > 0 for all 𝑒 ∈ 𝐸, returns a tour (a 
cycle passing through all nodes) of the smallest length.

Partial Solutions: Same subproblems as in our DP algorithm for TSP. 

Lecture 13



Lower-Bounding Value of Partial TSP 
Subproblems: For all 𝑗 ≤ 𝑛 and 𝑆 ⊆ {1, … , 𝑛}, s.t. 𝑆 includes 1 and 𝑗.  

𝑇 𝑆, 𝑗 = the shortest path visiting  all cities in 𝑆 exactly once, 
starting from 1 and ending at 𝑗. 

𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑(𝑇 𝑆, 𝑗 ) needs to lower bound the completion of this tour.
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