CS 170 Efficient Algorithms and Intractable Problems

Lecture 23 Coping with NP_Completeness II

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Nika's OH as usual on Tuesdays (today) after class \rightarrow Meet at the podium or the lecture hall entrance.

End-of-semester course evaluations are open now → You can receive an additional homework drop if you fill it out (see "End-of-Semester Feedback Form" on Ed on how to receive HW drop)

Midterm 2 regrade requests will be resolved by end of the week

Strategies for coping with NP-Completeness!

- 1. Approximation Algorithms:
- 1. Approximation Algorithms:
 → You've seen 2-approx. for Vertex Cover
 Last lecture!
- \rightarrow You've seen 2-approx. for Metric TSP
- \rightarrow You've seen log(n)-approx. for Set-Cover \longrightarrow Lecture 10 on greedy algs!
- \rightarrow Today: 1 ϵ -approx. for Knapsack problems.

2. Exact algorithms that are fast in practice (even if exponential time in theory!)

- Intelligent exhaustive search
 - \rightarrow Backtracking (for decision problems)
 - \rightarrow Branch-and-bound (for optimization problems)
- 3. Heuristics
- Heuristics Local search algorithms, etc. We won't cover in class

Knapsack

Recall Knapsack (no repetition)

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers</u>. <u>Output</u>: Most valuable <u>subset of items (no repetition</u>), whose total weight is $\leq W$.

Step1: Subproblems: For all $c \leq W$ and all $j \leq n$

K(j, c) = best value achievable for knapsack of capacity c using only items 1, ..., j

$$K(j,c) = \max\{K(j-1,c), v_j + K(j-1,c-w_j)\} \leftarrow$$

$$hot use \qquad 1 use j + iton$$

Algorithm:

 \rightarrow Fill out the array of size nW,

 \rightarrow each cell take max over 2 values

Runtime: Pseudo-polynomial time O(nW)

 \rightarrow The input size is $O(n \log(W))$ so this is not truly a polynomial time algorithm.

Is there a truly polynomial time algorithm for knapsack?

For any $0 < \epsilon < 1$, we will give an approximation algorithm that runs in time $O(n^3/\epsilon)$ and finds a subset of items of value Val where

Val
$$\geq$$
 OPT $(1 - \epsilon)$,

Where **OPT** is the value of the optimal solution to the knapsack.

An Approach: Rounding Down Item Values

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers</u>. <u>Output</u>: Most valuable <u>subset of items (no repetition</u>), whose total weight is $\leq W$.

Idea: Solve for the optimal solution of a slightly approximated instance.
→ Using the exact numerical value of an item doesn't seem to be too important.
→ Round them down 126,00 - - 0 ,536,000 - 126,538
Values: 126,378,210 and 538,943,121, ... become: 126 and 538

→ For this to work, we need an algorithm for exact knapsack that would run faster than O(nW) when the item values are small.

Alternative exact Alg for Knapsack

When item values (v_i s are integers), there is a DP algorithm (call it Knapsack-II) that finds the optimal knapsack solution in O(nV), where $V = \sum_{i=1}^{n} v_i$.

Knapsack Approximation Algorithm v= 22

Knapsack-approx(W, (w_1, v_1) , ..., (w_n, v_n) , ϵ)

→ $m \leftarrow ?$ // We'll discuss the choice of m later

For i = 1, ..., n, $\hat{v}_i \leftarrow \lfloor v_i/m \rfloor$ wis \hat{v}_i (not changing the capacity or the weights), output the resulting choice of items.

2.2

Assume no item with $w_n > W$

just remove them before you start)

Plan for our analysis:

- 1. (Feasibility) Verify that Knapsack-approx. returns a feasible solution, i.e., its total weight is less than W. Knapsack-1 will $\omega_1 \cdots \omega_n$ $W \ll$
- ? 2. (Approximation factor) Verify that for a good choice of *m*, Knapsack-approx. has a value that's at least $(1 \epsilon) \times$ value of the optimal solution in the original instance.
- ? 3. (Runtime) Verify that for the choice of *m* discussed in step 2, the runtime of Knapsack-approx is polynomial time.

Analysis of the Approximation Factor

Knapsack-approx(W, (w_1, v_1) , ..., (w_n, v_n) , ϵ)

Assume no item with $w_n > W$ (or just remove them before you start)

// We'll discuss the choice of *m*

For i = 1, ..., n, $\hat{v}_i \leftarrow \lfloor v_i / m \rfloor$

 $m \leftarrow$

Run Knapsack-II with values \hat{v}_i (not changing the capacity or the weights), output the resulting choice of items.

Discuss: How does the value of *m* affect the approximate values? **Choose the correct answer:**

1.
$$\hat{v}_i \in [v_i - m, v_i]$$

2. $\hat{v}_i \in [v_i, v_i + m]$
3. $m\hat{v}_i \in [v_i - m, v_i]$
4. $m\hat{v}_i \in [v_i, v_i + m]$

$$\left|\frac{v_i}{m}\right|$$
 at most i shaves. $v_i \in v_i \leq v_i < v$

Step 2: Analysis of the Approximation Factor

Let \hat{S} be the outcome of Knapsack-approx Alg, and let S^* be the optimal knapsack solution to the original problem. We will prove that

Step 3: Analysis of the Runtime

Knapsack-approx(W, (w_1, v_1) , ..., (w_n, v_n) , ϵ)

 $m \leftarrow \frac{\mathcal{E}}{\mathcal{V}} \qquad // \text{We'll discuss the choice of } m$ For $i = 1, ..., n, \hat{v}_i \leftarrow \lfloor v_i / m \rfloor$

Assume no item with $w_n > W$ (or

just remove them before you start)

Run Knapsack-II with values \hat{v}_i (not changing the capacity or the weights), output the resulting choice of items.

What is the runtime of Knapsack-approx.? $\underbrace{\bigvee_{i=1}^{N}}_{i=1} = \underbrace{\sum_{i=1}^{N}}_{m} \underbrace{\sum_{i$ Total Rutine O(n3/E)

The making of Knapsack-II Algorithm

So far we assumed that when item values (v_i s are integers), there is a DP algorithm (call it **Knapsack-II**) 1that finds the optimal knapsack solution in O(nV), where $V = \sum_{i=1}^{n} v_i$. Let's see this algorithm

 $A(\mathbf{j}, \mathbf{v}) =$ lightest weight $K(\mathbf{j}, \mathbf{c}) =$ best value achievable using achievable by a set of items 1, ..., j subset of only items 1, ..., *j* with total whose value is at least value v. weights at most *c*. (∞ if no such subset exists) (0 if no such subset) $A(j,v) = \min \{ \{A(j-1,v)\}, w_j + A(j-1,v_j) \}$ $K(j,c) = \max \left\{ \begin{array}{c} K(j-1,c), \\ v_i + K(j-1,c-w_i) \end{array} \right\}$ Return: highest value acheivable by KW using n itms. max {K, A(n, K) < w} < Return K(n, W)

Knapsack-II Pseudo-code

<u>Input</u>: A weight capacity W, and n items $(w_1, v_1), \dots, (w_n, v_n)$. <u>All integers</u>. <u>Output</u>: Most valuable <u>subset of items (no repetition</u>), whose total weight is $\leq W$.

A(j, v) =lightest weight achievable by a set of items 1, ..., j whose value is at least value v.

Maximum v to consider is $V = \sum_{i=1}^{n} v_i$ (can't get a higher value) Runtime:

 \rightarrow # subproblems: O(nV)

 \rightarrow Runtime per subproblem:O(1)

Knapsack-II(W, (w_1 , v_1), ..., (w_n , v_n)) An array *A* of size $(n + 1) \times V$ initialized to ∞ $A[0,0] \leftarrow 0$ For j = 1, ..., n: For v = 1, ..., V, IF $v_i > v$, then A[j, v] = A[j - 1, v]ELSE $A[j, v] = \min \begin{cases} A(j-1, v), \\ W_i + K(j-1, v - v_j) \end{cases}$ return max { $K \mid A(n, K) \leq W$ }

Can also track S[j, v] the corresponding item set

Overview of Approximation Algorithms so far!

 Constant approx. is pretty good! Sometimes that's the best you can do (unless P=NP)
 →E.g., It is hard to approximate Vertex Cover to better than 2-approximation and setcover to better than O(log(n))-approximation.

Getting $(1 - \epsilon)$ -approximation with runtime $poly\left(\frac{1}{\epsilon}\right)$ is really great!

- \rightarrow This is called a Fully Polynomial Time Approximation Algorithm (FPTAS).
- → If the runtime is not $poly\left(\frac{1}{\epsilon}\right)$, this is still quite nice. It is called having a Polynomial Time Approximation Algorithm (PTAS).
- \rightarrow There is a PTAS for metric TSP!

What if we are not satisfied with the approximation guarantees of polynomial time algorithms? Let's see after the break!

Intelligent Exhaustive Search; Backtracking

We can do an exhaustive search but in a smart way.

 \rightarrow It is often possible to reject one style of solutions by looking only at a small part of it.

Backtracking for SAT.

- \rightarrow Start with the entire formula (root of the tree)
- \rightarrow Grow the tree: In each node, branch out on the value of one variable.
- →If you can verify quickly that there is no way to satisfy the formula with the current partial solution, don't expand.

 $(w \lor x \lor y \lor z) \land (w \lor \overline{x}) \land (x \lor \overline{y}) \land (y \lor \overline{z}) \land (z \lor \overline{w}) \land (\overline{w} \lor \overline{z})$

If a clause is satisfied, just remove it.

Eg. When w = 0, clauses $(z \lor \overline{w})$ and $(\overline{w} \lor \overline{z})$ are already satisfied! So they are removed from the left branch

Heuristically:

We chose subproblem that includes the smallest clause and expanded on the variable in the smallest clause

Heuristically:

We chose subproblem that includes the smallest clause and expanded on the variable in the smallest clause

expanded on the variable in the smallest clause

expanded on the variable in the smallest clause

Backtracking more Generally

Backtracking requires a "test" algorithm that runs fast and state one of 3 outcomes:

- 1. Failure: The subprobem has no solution
- 2. Success: The solution is found!
- 3. Uncertain

Example heuristic:Choose subproblem that includes the smallest clause.Expand on one of the variables in the smallest clause

Start with problem P_0 and let $S = \{P_0\}$, the set of active subproblems Repeat while $S \neq \emptyset$:

<u>Choose</u> a subproblem $P \in S$ and remove it from S

Expand the problem into smaller subproblems P_1, P_2, \dots, P_k

For each P_i :

If $test(P_i) = success$: halt and **return** the solution of P_i

If $test(P_i) =$ uncertain: Add P_i to S

Return that no solution exists. // Means no subproblem was successful

Intelligent Search in Optimization Problems

Backtracking works quite well for decision problems, like SAT. How about optimization problems? Say, if you want to minimize or maximize solution value.

Branch-and-bound, uses backtracking on optimization problems.

We need to eliminate a branch of subproblems quickly. How?

- → Idea 0: Keep track of the value of the best solution so far
- → Idea 1: Exactly compute the optimal solution of the branch and see if it's worse?
- → Idea 2: Give an approximate bound on the optimal solution of the branch,
 → Discard the branch if the approximate bound rules out optimality
 → Keep expanding the problem if the bound is uncertain.

Branch and Bound

Rule out optimality for minimization problem:

→ We need a function *lowerbound*(P_i) that looks at a partial solution P_i and quickly gives us a lower bound on the value of any possible completion of P_i .

→ If *lowerbound*(P_i) > best-so-far, the entire branch under P_i can be eliminated.

Branch and Bound

Rule out optimality for minimization problem:

- → We need a function *lowerbound*(P_i) that looks at a partial solution P_i and quickly gives us a lower bound on the value of any possible completion of P_i .
- → If *lowerbound*(P_i) > best-so-far, the entire branch under P_i can be eliminated.

Branch-an-bound for a minimization problem

```
Start with problem P_0 and let S = \{P_0\}, the set of active subproblems best-so-far = \infty
```

```
Repeat while S \neq \emptyset:
```

```
<u>Choose</u> a subproblem (partial solution) P \in S and remove it from S
```

Expand the problem into smaller subproblems P_1, P_2, \dots, P_k

```
For each P_i:
```

If P_i is a complete solution, update best-so-far if it's the best value so far Else if *lowerbound*(P_i) < best-so-far, add P_i to *S*.

Return best-so-far

Branch and Bound for TSP

Recall: TSP(graph G = ([n], E) and edge lengths $d_e > 0$ for all $e \in E$, returns a tour (a cycle passing through all nodes) of the smallest length.

Partial Solutions: Same subproblems as in our DP algorithm for TSP.

Lower-Bounding Value of Partial TSP

Subproblems: For all $j \leq n$ and $S \subseteq \{1, ..., n\}$, s.t. *S* includes 1 and *j*.

T[S, j] = the shortest path visiting all cities in *S* exactly once, starting from 1 and ending at *j*.

lowerbound(*T*[*S*, *j*]) needs to lower bound the completion of this tour.

