
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 24
Randomized Algorithms

Announcements

End-of-semester course evaluations are open now
→ You can receive an additional homework drop if you fill it out (see “End-of-
Semester Feedback Form” on Ed on how to receive HW drop)

Wrapping Up Intelligent Search

End-of-semester course evaluations are open now
→ You can receive an additional homework drop if you fill it out (see “End-of-
Semester Feedback Form” on Ed on how to receive HW drop)

Branch-and-Bound

Start with problem 𝑃0 and let 𝑆 = {𝑃0}, the set of active subproblems
best-so-far = ∞
Repeat while 𝑆 ≠ ∅:
 Choose a subproblem (partial solution) 𝑃 ∈ 𝑆 and remove it from 𝑆
 Expand the problem into smaller subproblems 𝑃1, 𝑃2, … , 𝑃𝑘

 For each 𝑃𝑖:
 If 𝑃𝑖 is a complete solution, update best-so-far if it’s the best value so far
 Else if 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 < best-so-far, add 𝑃𝑖 to 𝑆.
Return best-so-far

Branch-and-bound for a minimization problem

Rule out optimality for minimization problem:
→We need a function 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 that looks at a partial solution 𝑃𝑖 and quickly

gives us a lower bound on the value of any possible completion of 𝑃𝑖 .
→ If 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 > best-so-far, the entire branch under 𝑃𝑖 can be eliminated.

Branch-and-Bound for TSP
Recall: TSP(graph 𝐺 = [𝑛], 𝐸 and edge lengths 𝑑𝑒 > 0 for all 𝑒 ∈ 𝐸, returns a tour (a
cycle passing through all nodes) of the smallest length.
Partial Solutions: Same subproblems as in our DP algorithm for TSP.

Lecture 13

Lower-Bounding Value of Partial TSP
Subproblems: For all 𝑗 ≤ 𝑛 and 𝑆 ⊆ {1, … , 𝑛}, s.t. 𝑆 includes 1 and 𝑗.

𝑇 𝑆, 𝑗 = the shortest path visiting all cities in 𝑆 exactly once,
starting from 1 and ending at 𝑗.

𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑(𝑇 𝑆, 𝑗) needs to lower bound the completion of this tour.

Lower-Bounding Value of Partial TSP (cont.)
Lemma: Let 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑇 𝑆, 𝑗 = MST 𝑉 ∖ 𝑆 + min

𝑥∈𝑉∖𝑆
 𝑑1𝑥 + min

𝑥∈𝑉∖𝑆
𝑑𝑗𝑥 + 𝑇 𝑆, 𝑗 .

This is a valid lower bound, i.e., any tour that uses 𝑇 𝑆, 𝑗 as a partial tour, has a
length that is at least 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑇 𝑆, 𝑗

Proof:

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2
1

2

1

11

1

1

11

2

5

B F H

A

Example from Sec 9 of the textbook

Best-so-far = ∞

Expand

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2
1

2

1

11

1

1

11

2

5

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.

Discard?

Best-so-far = ∞

2
1

2

11

1

11
5

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

11

2

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.

Best-so-far = ∞

Discard?

11

2
1

2

11

1

11
5

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

Lowerbound = 10

10

Discard?

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2
1

2

1

11

1

1

11

2

5

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10

Discard?

1

1

2

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2
1

2

1

1

1

11
5

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10

Discard?

1

1

1

2

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2 2

1

1

1

11
5

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10

Discard?

1

1

1

2

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2 2

1

1

1

11
5

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8

Discard?

1

1

1

2

Example of Branch-and-Bound TSP

A B

C

D

EF

G

H

2 2

1

1

1

11
5

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8 8

Discard?

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10
expand

8 8

A B

C

D

EF

G

H

2
1

2

1

11

1

1

11

2

5
C E

1

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10

Discard?

8 8

A B

C

D

EF

G

H

2
1

2

11

1

1

11

2

5
C E

10

Skipping forward a few steps

1

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8 8

A B

C

D

EF

G

H

2
1

2

11

1

1

11

2

5
C E

10 10

D H
10 14

E G
11

Discard?

1

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8 8

A B

C

D

EF

G

H

2
1

2

11

1

1

11

2

5
C E

10 10

D H
10

∞

14

E G
11

Discard! Never expand

The complement set is not connected!
MST has ∞ weight.

Skipping forward a few steps

1

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8 8

A B

C

D

EF

G

H

2
1

2

11

1

1

11

2

5
C E

10 10

D H
10 14

E G
11 ∞

F

G

H

11

11

11 A complete solution! With cost 11.

, 11

1

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8 8

A B

C

D

EF

G

H

2
1

2

11

1

1

11

2

5
C E

10 10

D H
10 14

E G
11 ∞

F

G

H

11

11

11

, 11

expand

G

1

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8 8

A B

C

D

EF

G

H

2
1

2

11

1

1

11

2

5
C E

10 10

D H
10 14

E G
11

Discard?

∞

F

G

H

11

11

11

, 11

G

1

Example of Branch-and-Bound TSP

B F H

A

Example from Sec 9 of the textbook

Current partial solution shown in red.
MST of the complement set shown in green.
Lightest edges connecting the blue tour to the
complement are shown in orange.

Best-so-far = ∞

10 8 8

A B

C

D

EF

G

H

2
1

2

11

1

1

11

2

5
C E

10 10

D H
10 14

E G
11

Discard?

∞

F

G

H

11

11

11

, 11

G
Lowerbound =14 > best-so-far

14

See textbook for the complete
run of the algorithm

Randomized Algorithms

Deterministic Versus Randomized Algorithms
So far, almost all algorithms we’ve discussed in this class have been
deterministic algorithms.

Deterministic algorithms:
→ Take input
→ Do read/write computation to memory
→ Write the output

Randomized Algorithms:
→ Everything a deterministic algorithm does
→ And an infinite sequence of random coin flips

Talking about Randomized Algorithms

The output and computation path of a randomized algorithm are random variables

Statements we’d like to make about randomized algorithms
→Accuracy/correctness: for all inputs 𝑥, there is a reasonable 𝑐 > 0

→Runtime: for all inputs 𝑥, there is a reasonable 𝐶

Pr 𝐴𝐿𝐺(𝑥, 𝑟1, 𝑟2 …)is correct ≥ 𝑐

E runtime of 𝐴𝐿𝐺(𝑥, 𝑟1, 𝑟2 …) ≤ 𝐶 or Var runtime of 𝐴𝐿𝐺(𝑥, 𝑟1, 𝑟2 …) ≤ 𝐶

𝑐 and 𝐶 could be a function of the input size.

𝐴𝐿𝐺(𝑥, 𝑟1 , 𝑟2 …)
Deterministic input 𝑥 Random coin flips 𝑟1, 𝑟2 ….

Or uniformly random number in [𝑎, 𝑏]

Two Types of Randomized Algorithms
Las-Vegas Algorithms:
• They always output the correct answer (output is deterministic).
• Their runtime is random variable. We usually talk about E 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 .
• E.g. QuickSort, QuickSelect.

Monte Carlo Algorithms:
• They could be wrong (output is randomized) and we talk about Pr[correctness].
• Their runtime is bounded deterministically.
• E.g. Randomized Min Cut algorithm, randomized Primality testing.

Lecture 4

This lecture!

Probability of Correctness
We said that the Monte Carlo Algorithm can be incorrect (or suboptimal) occasionally.
There are two types of error tolerance that are acceptable for Monte Carlo algs.

One-sided error:
• If the answer is “Yes”, then the ALG

says “Yes” with probability 1.
• If the answer is “No”, then ALG

says “No” with probability 𝑝 > 0 .

Two-sided error:
• ALG is correct with probability 1

2
+ 𝜖.

Both can be boosted to give
correctness with probability 0.99!

Boosting Correctness via Repeated Trials
One-sided error:
• If the answer is “Yes”, then the ALG says “Yes” with probability 1.
• If the answer is “No”, then ALG says “No” with probability 𝑝 > 0

For t = 1, … , 10
𝑝

 If ALG=”No”, return No. // Using fresh randomness
return “Yes”

What’s the probability of error?

Boosting Correctness via Repeated Trials

For t = 1, … , Θ 1
𝜖2

 Run ALG // Using fresh randomness
return Majority vote of the runs.

The probability of correctness is also 0.999.

Two-sided error: ALG is correct with probability 1
2

+ 𝜖.

Minimum Cut Problem (Recall)
Input: Given an undirected graph 𝐺 = 𝑉, 𝐸
Output: Return the minimum cut (i..e, a partition of vertices to two sets, with minimum
number of edges crossing it.) Min Cut

A Cut

Deterministic Algorithm: We saw Min-
cut / Max flow as an LP

Today: We will see a beautiful randomized
Alg for it! We assume unweighted graphs,
though it works for weighted ones too.

Karger’s Algorithm (randomized contraction)

Rand-contraction(𝐺 = 𝑉, 𝐸)
 Repeat until 2 vertices are left
 Take a uniformly random 𝑒
 Contract 𝑒
 Return the cut that corresponds
to the 2 vertices

A

C

B

D

Contraction of edge (𝑢, 𝑣): Merge 𝑢 and 𝑣 into
one giant node. All other edges adjacent to 𝑢
and 𝑣 come out the giant node
(keep the parallel edges but delete self loops)

B

Contract

Contract

Runtime of this alg: 𝑂(𝑚)

B

D

A
C

A C
D

Correctness of Karger’s Algorithm
Theorem: The probability that Karger’s algorithm returns a minimum cut in a
graph with 𝑛 vertices is 2/𝑛(𝑛 − 1).

This is great actually!
→ There are ≈ 2𝑛 cuts
→ So, this algorithm does significantly better than picking a random cut.

This is like a 1-sided error. Boost the prob of success by repeat this ALG
Θ 𝑛2 times and returning the smallest cut you see. The success prob
becomes 0.999!

High-level Intuition
When does Karger’s Algorithm return the wrong cut?
→ It is wrong if and only if it contracts an edge that crosses the min cut.

Min Cut

Luckily, there aren’t many edges in the minimum cut! So, it is not very likely that
we’d pick one of them.

Analysis of Karger’s Algorithm
Theorem: The probability that Karger’s algorithm returns a minimum cut in a
graph with 𝑛 vertices is 2/𝑛(𝑛 − 1).
Proof: Let 𝐶 be a minimum cut, and assume that Karger’s algorithm contracts
edges 𝑒1, 𝑒2, … , 𝑒𝑛−2.

Let 𝐺𝑖 be the “good” event, where the selected 𝑒𝑖 doesn’t cross the cut.

Pr ALG is correct = Pr 𝐺1 ∧ 𝐺2 ∧ ⋯ ∧ 𝐺𝑛−2 .
 = Pr 𝐺1 ⋅ Pr 𝐺2|𝐺1 … Pr 𝐺𝑛−2|𝐺1, 𝐺2, … , 𝐺𝑛−3

Analysis of a single step of Karger’s Algorithm
We will show that Pr 𝐺𝑖|𝐺1, 𝐺2, … , 𝐺𝑖−1 ≥ 𝑛−𝑖−1

𝑛−𝑖+𝑖

2 non-cut edges have been contracted.

Analysis of Karger’s Algorithm
Theorem: The probability that Karger’s algorithm returns a minimum cut in a
graph with 𝑛 vertices is 2/𝑛(𝑛 − 1).
Proof: Let 𝐶 be a minimum cut, and assume that Karger’s algorithm contracts
edges 𝑒1, 𝑒2, … , 𝑒𝑛−2.

Let 𝐺𝑖 be the “good” event, where the selected 𝑒𝑖 doesn’t cross the cut.
Pr ALG is correct = Pr 𝐺1 ∧ 𝐺2 ∧ ⋯ ∧ 𝐺𝑛−2 .

 = Pr 𝐺1 ⋅ Pr 𝐺2|𝐺1 … Pr 𝐺𝑛−2|𝐺1, 𝐺2, … , 𝐺𝑛−3

Pr 𝐺𝑖|𝐺1, 𝐺2, … , 𝐺𝑖−1 ≥
𝑛 − 𝑖 − 1
𝑛 − 𝑖 + 𝑖

From last slide

Wrap up Karger’s Algorithm
Runtime:
• One round of Karger’s Alg can be done in 𝑂(𝑚) runtime
• It has success probability of Ω(1/𝑛2), so we need to repeating it 𝑂(𝑛2)

rounds to boost the correctness probability to 0.999
• Total runtime: 𝑂(𝑚 𝑛2)
→ Actually, this can be improved to ≈ 𝑂(𝑛2) since not all computation needs

to be repeated. (not in scope for this class)
• The linear programming solution, while deterministic, can be slower.

Prime Numbers
Prime numbers: 2, 3, 5, 7, 11, 13, …

Prime numbers are super useful!
→e.g., In cryptography you want to produce large (128bits, 256bit, ….) primes

There are lots of prime numbers!
→ If you pick 100 random 128-bit numbers, very likely that at least 1 of them is prime.

To generate primes effectively, it’s enough to be able to test whether a number is prime.

Primality Testing: given a number, determine if it is a prime number.

Primality Testing
Primality Testing: Given a number 𝑁, is it a prime number?

A straight-forward algorithms:

→For all 𝑧 = 1, … , 𝑁 , see if 𝑧 divides 𝑁?

→Runtime is poly(N) ….

→But, this is not pseudo-polynomial time algorithm, not polynomial time!

→ For it to be polynomial time, it needs to be poly #bits 𝑜𝑓 𝑁 or polylog N .

Fermat’s Little Theorem
All prime numbers satisfy a neat little test!

If 𝑝 is a prime, then for all 𝑥 = 1, … , 𝑝 − 1 we have that 𝑥𝑝−1 ≡ 1 (mod 𝑝)

Fermat’s Little Theorem

This suggests that we might be able to deduce whether 𝑁 is a prime by looking at
whether 𝑥𝑝−1 ≢ 1 (mod N) for some choice of 𝑥. Let’s choose 𝑥 at random!

Choose 𝑥 uniformly at random from all 𝑥 = 1, … , 𝑁 − 1.
Return “prime” if 𝑥𝑁−1 ≡ 1 (mod 𝑁) , otherwise return “composite”

Fermat’s Primality Test

What if 𝑁 is composite?
Let’s say input was composite number 𝑁 = 9. All arithmetic here is mod 9.

18 ≡ 1

28 ≡ 4 ≢ 1

38 ≡ 0 ≢ 1

48 ≡ 7 ≢ 1

58 ≡ 7 ≢ 1

68 ≡ 0 ≢ 1

78 ≡ 4 ≢ 1

88 ≡ 1

Out of 8 choices for a random 𝑥 ∈ {1, … , 8}, only 2 of
them would lead Fermat’s test to erroneously state that
9 is a prime!

Fermat’s test would have been correct with prob 0.75!

Can we say that Fermat’s test succeeds
with a reasonable probability, for all 𝑁?

The Exception: Carmichael Numbers
Unfortunately, that it not the case.

There are composite numbers 𝑁 for which 𝑥𝑁−1 ≡ 1 (mod 𝑁) for many 𝑥s.
→ For these inputs, the probability of success is too small.

Carmichael numbers:
Composite number 𝑁 for which 𝑥𝑁−1 ≡ 1 (mod 𝑁) for all 𝑥 that’s coprime with 𝑁.

There are infinitely many of these! But they are very rare and spread apart. Smallest
Carmichael number is 561 = 3 × 11 × 17.

Limited Primality-Testing non-Carmichael
In this lecture, we show that Fermat’s test is a good randomized primality, as long
as the input is not a Carmichael number.

Theorem: Assume that 𝑁 is not a Carmichael number. Then the Fermat’s test
satisfies the following requirements.
1. If 𝑁 is prime, it states “prime” with probability 1.
2. If 𝑁 is composite (but not Carmichael), it states “composite” with prob > 1/2.

Remark 2: There is an algorithm based on the same idea as Fermat’s test that
work also for all integers! We won’t cover it in class though.

Remark 1: Can boost the prob. to 0.99 by repeating the a few times (e.g. >6 times).

Correctness of the Primality Test
Theorem: Assume that 𝑁 is a composite, but not Carmichael number. Then
with prob > 1/2 Fermat’s outputs “composite”. i.e.

1. 𝑁 is Not Carmichael => there is co-prime 𝑎 such that 𝑎𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁)

𝑥𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁) for at least half of 𝑥 = 1, … , 𝑁 − 1

2. Take any bad 𝑏𝑖 (for which 𝑏𝑖
𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁)), then 𝑏𝑖 maps to a good 𝑔𝑖=𝑏𝑖𝑎 :

𝑔𝑖
𝑁 = 𝑏𝑖𝑎 𝑁−1 = 𝑏𝑖

𝑁−1𝑎𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁)

3. Also, the mapping is one-to-one: If 𝑏𝑖 ≠ 𝑏𝑗 , we must have 𝑔𝑖 ≠ 𝑔𝑗:

What’s nice about co-primes? They have a unique
inverse 𝑎−1, such that 𝑎 × 𝑎−1 ≡ 1 (𝑚𝑜𝑑 𝑁)

𝑔𝑖 = 𝑔𝑗 𝑔𝑖𝑎−1 ≡ 𝑔𝑗𝑎−1 𝑏𝑖 ≡ 𝑏𝑗

Correctness of the Primality Test (cont.)
We proved that for every bad 𝑏𝑖 (for which 𝑏𝑖

𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁)) there is a distinct
good 𝑔𝑖=𝑏𝑖𝑎 (for which 𝑔𝑖

𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁))

Primality Testing through the ages
200 BC: Eratosthenes (Greek polymath) described the prime number sieve for
finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what
we discussed but one more idea to deal with Carmichael numbers)

1977 …. 2002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time deterministic algorithm
for primality testing (de-randomizing one of their earlier algorithms from 1999)

Next time
Online algorithms: natural place where you want
randomness.

Complexity Classes and Wrapup
There are problems for which we know polynomial time randomized algorithms,
but no deterministic polynomial time algorithms!
→ E.g., Polynomial testing

Are randomized algorithms actually more powerful than deterministic algorithms?
→ Major complexity theory open problem. We don’t know yet!

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Wrapping Up Intelligent Search
	Slide 4: Branch-and-Bound
	Slide 5: Branch-and-Bound for TSP
	Slide 6: Lower-Bounding Value of Partial TSP
	Slide 7: Lower-Bounding Value of Partial TSP (cont.)
	Slide 8: Example of Branch-and-Bound TSP
	Slide 9: Example of Branch-and-Bound TSP
	Slide 10: Example of Branch-and-Bound TSP
	Slide 11: Example of Branch-and-Bound TSP
	Slide 12: Example of Branch-and-Bound TSP
	Slide 13: Example of Branch-and-Bound TSP
	Slide 14: Example of Branch-and-Bound TSP
	Slide 15: Example of Branch-and-Bound TSP
	Slide 16: Example of Branch-and-Bound TSP
	Slide 17: Example of Branch-and-Bound TSP
	Slide 18: Example of Branch-and-Bound TSP
	Slide 19: Skipping forward a few steps
	Slide 20: Example of Branch-and-Bound TSP
	Slide 21: Example of Branch-and-Bound TSP
	Slide 22: Skipping forward a few steps
	Slide 23: Example of Branch-and-Bound TSP
	Slide 24: Example of Branch-and-Bound TSP
	Slide 26: Example of Branch-and-Bound TSP
	Slide 27: Example of Branch-and-Bound TSP
	Slide 28: See textbook for the complete run of the algorithm
	Slide 29: Randomized Algorithms
	Slide 30: Deterministic Versus Randomized Algorithms
	Slide 31: Talking about Randomized Algorithms
	Slide 32: Two Types of Randomized Algorithms
	Slide 33: Probability of Correctness
	Slide 34: Boosting Correctness via Repeated Trials
	Slide 35: Boosting Correctness via Repeated Trials
	Slide 36: Minimum Cut Problem (Recall)
	Slide 37: Karger’s Algorithm (randomized contraction)
	Slide 38: Correctness of Karger’s Algorithm
	Slide 39: High-level Intuition
	Slide 40: Analysis of Karger’s Algorithm
	Slide 41: Analysis of a single step of Karger’s Algorithm
	Slide 42: Analysis of Karger’s Algorithm
	Slide 43: Wrap up Karger’s Algorithm
	Slide 44: 3 Min Break and Attendance
	Slide 45: Prime Numbers
	Slide 46: Primality Testing
	Slide 47: Fermat’s Little Theorem
	Slide 48: What if N is composite?
	Slide 49: The Exception: Carmichael Numbers
	Slide 50: Limited Primality-Testing non-Carmichael
	Slide 51: Correctness of the Primality Test
	Slide 52: Correctness of the Primality Test (cont.)
	Slide 53: Primality Testing through the ages
	Slide 54: Complexity Classes and Wrapup

