### CS 170 Efficient Algorithms and Intractable Problems

# Lecture 24 Randomized Algorithms

Nika Haghtalab and John Wright

EECS, UC Berkeley

#### Announcements

End-of-semester course evaluations are open now → You can receive an additional homework drop if you fill it out (see "End-of-Semester Feedback Form" on Ed on how to receive HW drop)

# Wrapping Up Intelligent Search

End-of-semester course evaluations are open now → You can receive an additional homework drop if you fill it out (see "End-of-Semester Feedback Form" on Ed on how to receive HW drop)

# Branch-and-Bound

Rule out optimality for minimization problem:

- → We need a function *lowerbound*( $P_i$ ) that looks at a partial solution  $P_i$  and quickly gives us a lower bound on the value of any possible completion of  $P_i$ .
- → If *lowerbound*( $P_i$ ) > best-so-far, the entire branch under  $P_i$  can be eliminated.

#### **Branch-and-bound for a minimization problem**

```
Start with problem P_0 and let S = \{P_0\}, the set of active subproblems best-so-far = \infty
```

```
Repeat while S \neq \emptyset:
```

**<u>Choose</u>** a subproblem (partial solution)  $P \in S$  and remove it from S

**Expand** the problem into smaller subproblems  $P_1, P_2, \dots, P_k$ 

```
For each P_i:
```

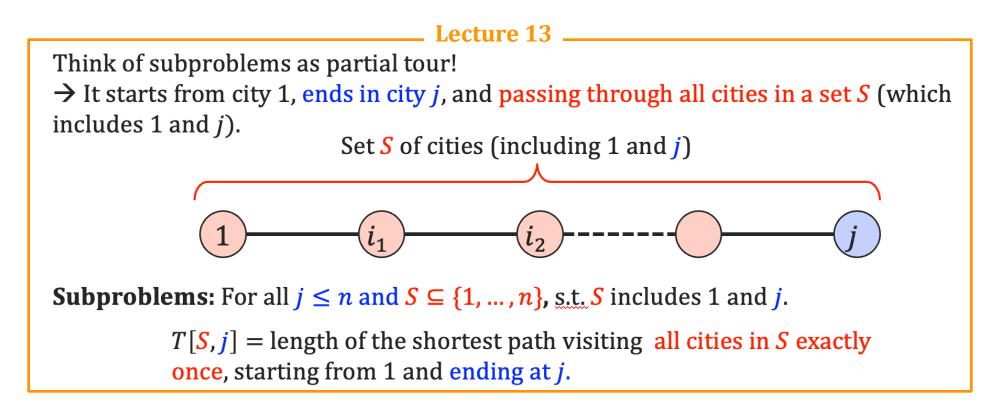
If  $P_i$  is a complete solution, update best-so-far if it's the best value so far Else if *lowerbound*( $P_i$ ) < best-so-far, add  $P_i$  to *S*.

Return best-so-far

# Branch-and-Bound for TSP

**Recall:** TSP(graph G = ([n], E) and edge lengths  $d_e > 0$  for all  $e \in E$ , returns a tour (a cycle passing through all nodes) of the smallest length.

**Partial Solutions:** Same subproblems as in our DP algorithm for TSP.



### Lower-Bounding Value of Partial TSP

**Subproblems:** For all  $j \le n$  and  $S \subseteq \{1, ..., n\}$ , s.t. *S* includes 1 and *j*.

T[S, j] = the shortest path visiting all cities in *S* exactly once, starting from 1 and ending at *j*.

*lowerbound*(T[S, j]) needs to lower bound the completion of this tour.

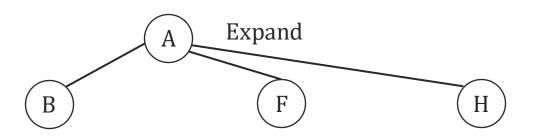
# Lower-Bounding Value of Partial TSP (cont.)

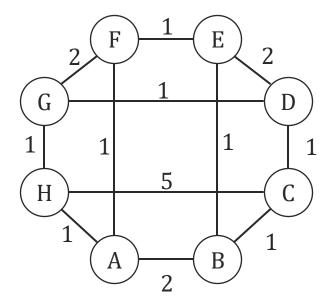
**Lemma:** Let *lowerbound*(T[S, j]) = MST( $V \setminus S$ ) +  $\min_{x \in V \setminus S} d_{1x} + \min_{x \in V \setminus S} d_{jx} + T[S, j]$ .

This is a valid lower bound, i.e., any tour that uses T[S, j] as a partial tour, has a length that is at least *lowerbound*(T[S, j])

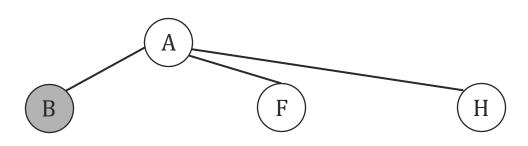
**Proof:** 

Best-so-far =  $\infty$ 

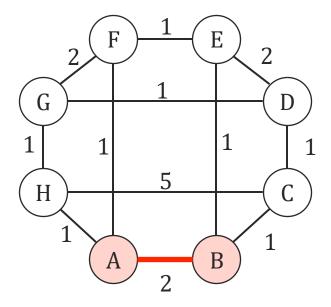




Best-so-far =  $\infty$ 

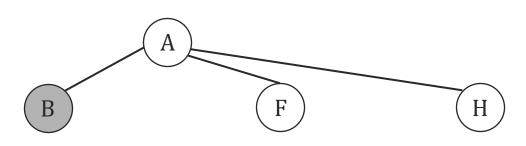


Discard?

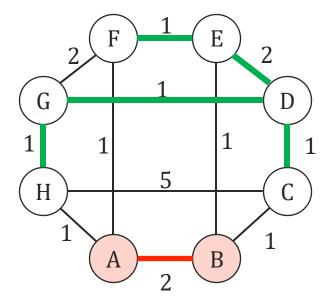


#### Current partial solution shown in red.

Best-so-far =  $\infty$ 

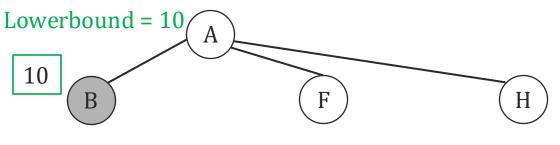


Discard?

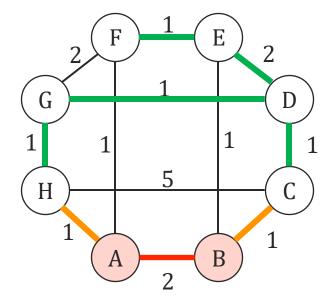


Current partial solution shown in red. MST of the complement set shown in green.

Best-so-far =  $\infty$ 

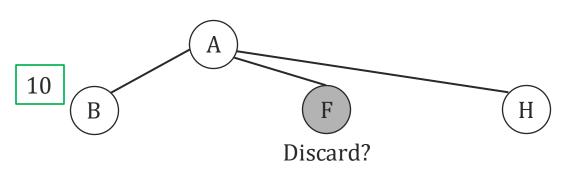


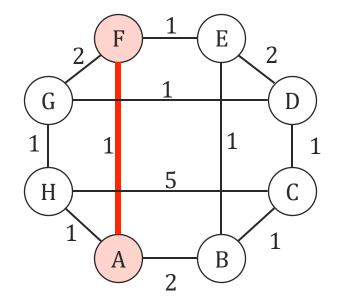
Discard?



Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

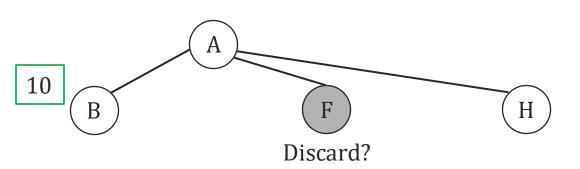
Best-so-far =  $\infty$ 

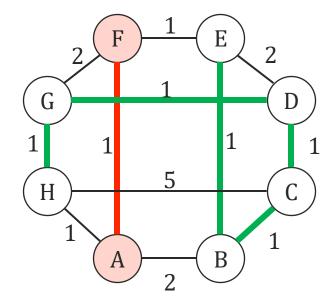




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

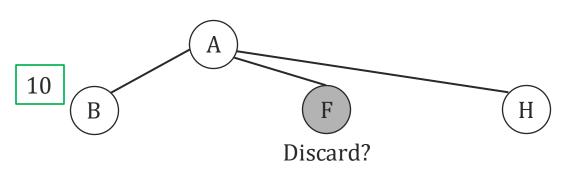
Best-so-far =  $\infty$ 

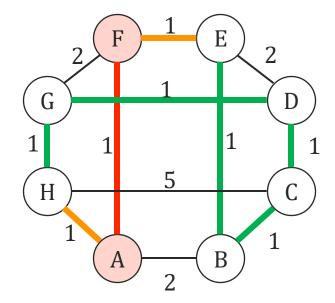




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

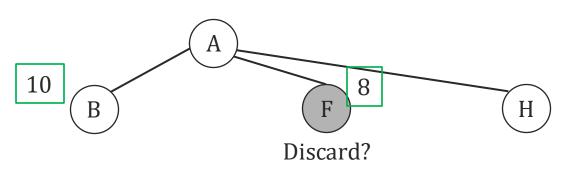
Best-so-far =  $\infty$ 

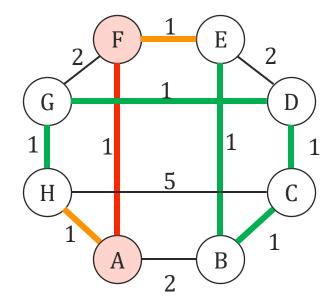




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

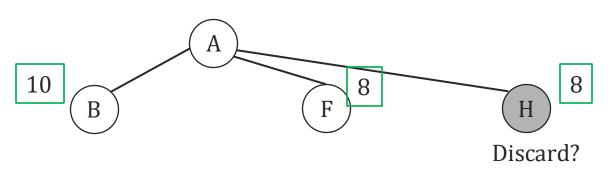
Best-so-far =  $\infty$ 

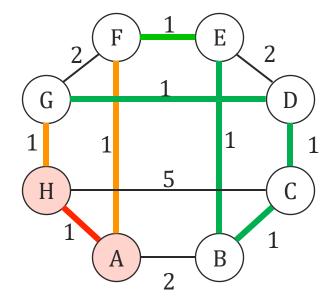




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

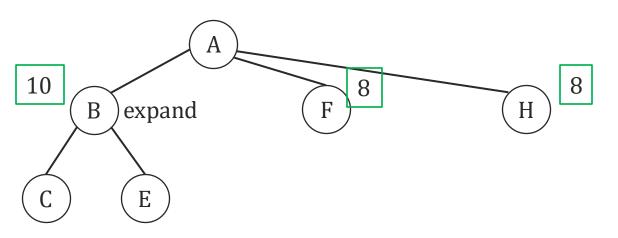
Best-so-far =  $\infty$ 

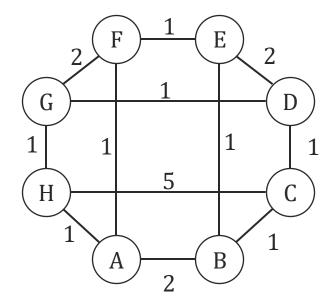




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

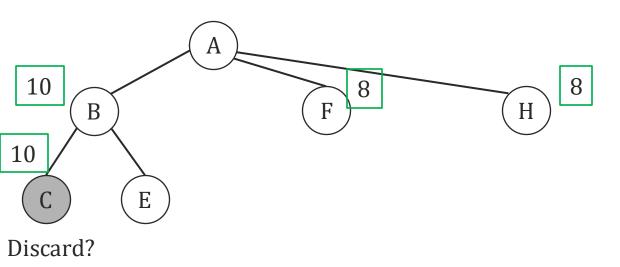
Best-so-far =  $\infty$ 





Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

Best-so-far =  $\infty$ 

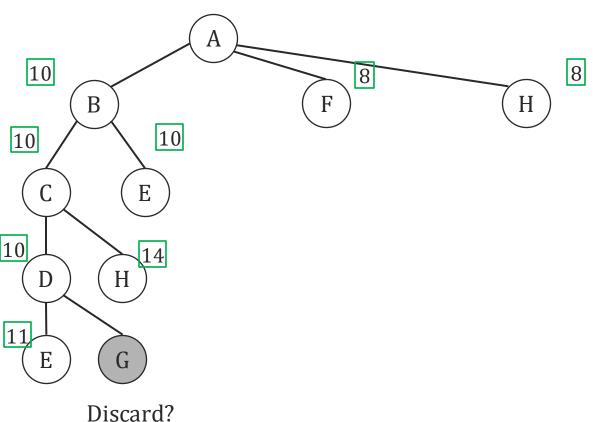


 $\begin{array}{c|cccc}
2 & F & 1 & E & 2 \\
\hline
G & 1 & D \\
1 & 1 & 1 & 1 \\
\hline
H & 5 & C \\
1 & A & 2 & B & 1 \\
\end{array}$ 

Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

### Skipping forward a few steps

Best-so-far =  $\infty$ 

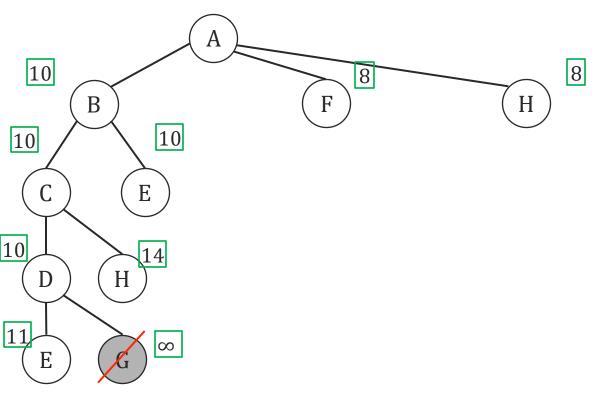


 $\begin{array}{c|cccc}
2 & F & I & E & 2 \\
\hline
G & 1 & D \\
1 & 1 & 1 & 1 \\
\hline
H & 5 & C \\
\hline
1 & A & B & 1 \\
\end{array}$ 

lu:

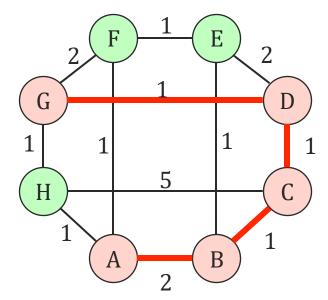
Example from Sec 9 of the textbook

Best-so-far =  $\infty$ 



Discard! Never expand

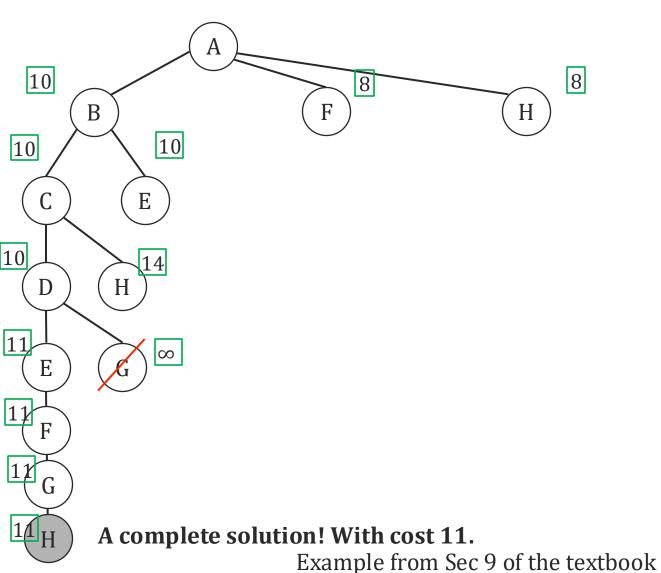
Example from Sec 9 of the textbook

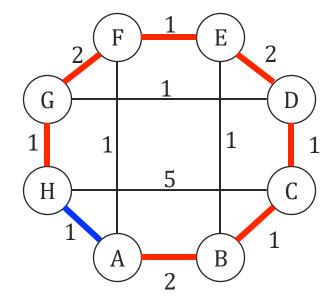


The complement set is not connected! MST has  $\infty$  weight.

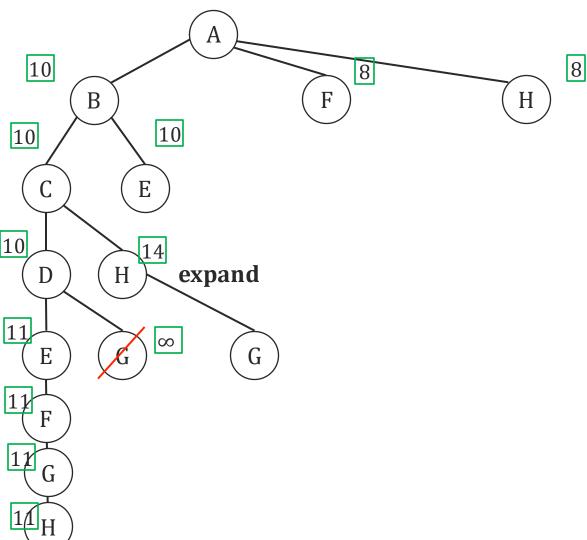
### Skipping forward a few steps

Best-so-far = 🔊 , 11

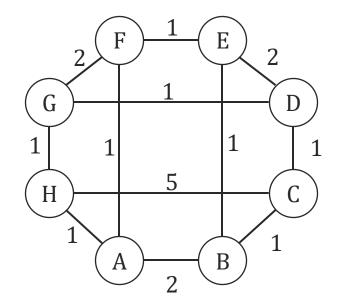




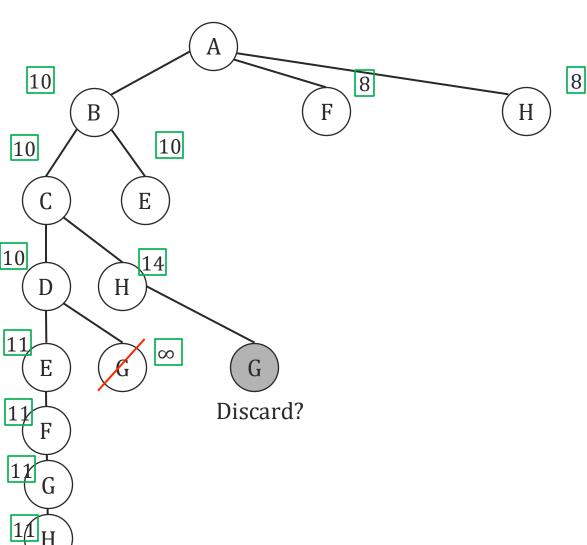
Best-so-far = 🔊 , 11



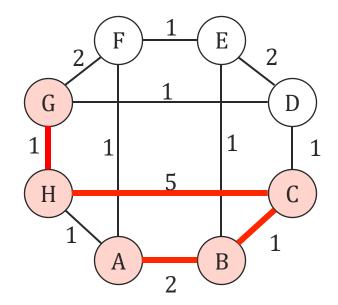
Example from Sec 9 of the textbook



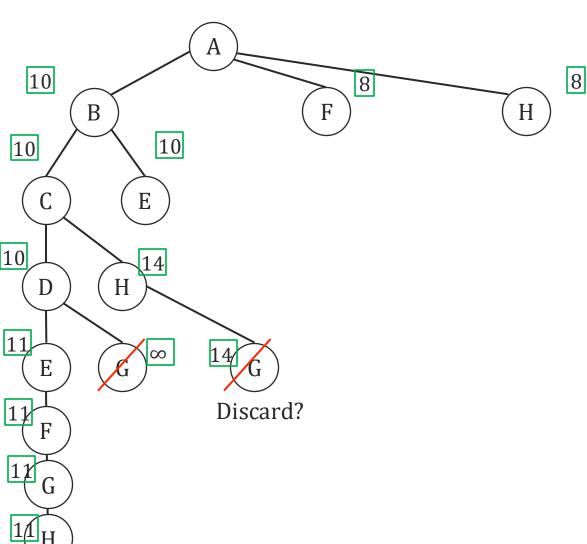
Best-so-far = 🔊 , 11



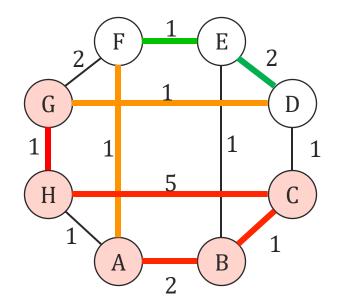
Example from Sec 9 of the textbook



Best-so-far = 🔊 , 11



Example from Sec 9 of the textbook



Lowerbound =14 > best-so-far

# See textbook for the complete run of the algorithm

### Randomized Algorithms

# Deterministic Versus Randomized Algorithms

So far, almost all algorithms we've discussed in this class have been deterministic algorithms.

Deterministic algorithms:

- $\rightarrow$  Take input
- $\rightarrow$  Do read/write computation to memory
- $\rightarrow$  Write the output



Randomized Algorithms:

- $\rightarrow$  Everything a deterministic algorithm does
- $\rightarrow$  And an infinite sequence of random coin flips



The <u>output</u> and <u>computation path</u> of a randomized algorithm are **random variables** 

Statements we'd like to make about randomized algorithms  $\rightarrow$  Accuracy/correctness: for all inputs *x*, there is a reasonable c > 0

 $\Pr[ALG(x, r_1, r_2 \dots) \text{ is correct}] \ge c$ 

 $\rightarrow$  **Runtime:** for all inputs *x*, there is a reasonable *C* 

E[runtime of  $ALG(x, r_1, r_2 \dots)$ ]  $\leq C$  or Var[runtime of  $ALG(x, r_1, r_2 \dots)$ ]  $\leq C$ 

*c* and *C* could be a function of the input size.

# Two Types of Randomized Algorithms

Las-Vegas Algorithms:

- They always output the correct answer (output is deterministic).
- Their runtime is random variable. We usually talk about E[*runtime*].
- E.g. QuickSort, QuickSelect.

#### Lecture 4

Monte Carlo Algorithms:

- They could be wrong (output is randomized) and we talk about Pr[correctness].
- Their runtime is bounded deterministically.
- E.g. Randomized **Min Cut** algorithm, randomized **Primality testing.**

#### This lecture!

# Probability of Correctness

We said that the Monte Carlo Algorithm can be incorrect (or suboptimal) occasionally. There are two types of error tolerance that are acceptable for Monte Carlo algs.

#### **One-sided error:**

- If the answer is "Yes", then the ALG says "Yes" with probability 1.
- If the answer is "No", then ALG says "No" with probability p > 0.

#### **Two-sided error:**

• ALG is correct with probability  $\frac{1}{2} + \epsilon$ .

Both can be boosted to give correctness with probability 0.99!

# **Boosting Correctness via Repeated Trials**

#### **One-sided error:**

- If the answer is "Yes", then the ALG says "Yes" with probability 1.
- If the answer is "No", then ALG says "No" with probability p > 0

For 
$$t = 1, ..., \frac{10}{p}$$
  
If ALG="No", return No. // Using fresh randomness return "Yes"

What's the probability of error?

### **Boosting Correctness via Repeated Trials**

**Two-sided error:** ALG is correct with probability  $\frac{1}{2} + \epsilon$ .

**For** t = 1, ...,  $\Theta\left(\frac{1}{\epsilon^2}\right)$ Run ALG // Using fresh randomness **return** Majority vote of the runs.



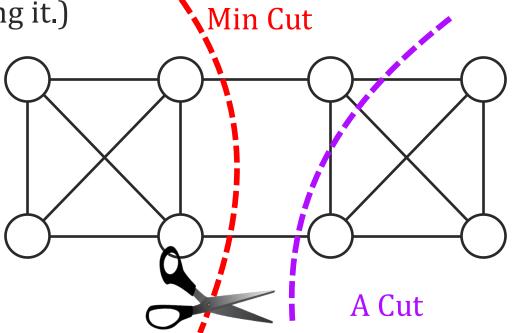
The probability of correctness is also 0.999.

# Minimum Cut Problem (Recall)

**Input:** Given an undirected graph G = (V, E)

**Output**: Return the minimum cut (i..e, a partition of vertices to two sets, with minimum

number of edges crossing it.)



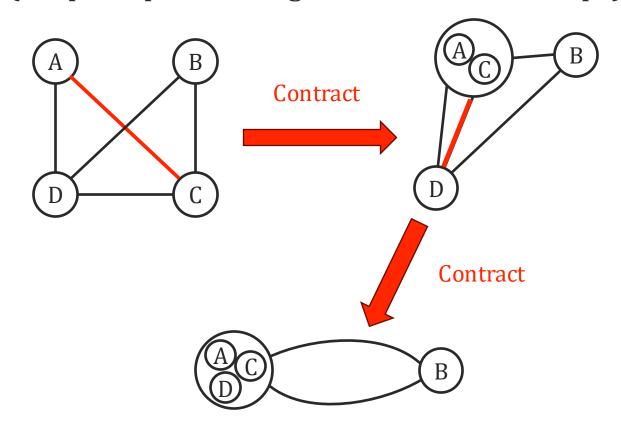
**Deterministic Algorithm:** We saw Mincut / Max flow as an LP **Today:** We will see a beautiful randomized Alg for it! We assume unweighted graphs, though it works for weighted ones too.

# Karger's Algorithm (randomized contraction)

Rand-contraction(G = (V, E)) **Repeat** until 2 vertices are left Take a uniformly random eContract e

**Return** the <u>cut that corresponds</u> to the 2 vertices

**Contraction of edge** (*u*, *v*): Merge *u* and *v* into one giant node. All other edges adjacent to *u* and *v* come out the giant node (keep the parallel edges but delete self loops)



Runtime of this alg: O(m)

## Correctness of Karger's Algorithm

**Theorem:** The probability that Karger's algorithm returns a minimum cut in a graph with *n* vertices is 2/n(n-1).

This is great actually!

- $\rightarrow$  There are  $\approx 2^n$  cuts
- $\rightarrow$  So, this algorithm does significantly better than picking a random cut.

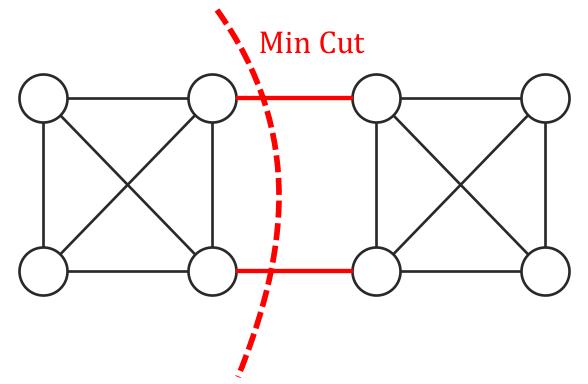
This is like a 1-sided error. Boost the prob of success by repeat this ALG  $\Theta(n^2)$  times and returning the smallest cut you see. The success prob becomes 0.999!



## High-level Intuition

When does Karger's Algorithm return the wrong cut?

→ It is wrong if and only if it **contracts an edge that crosses the min cut**.



Luckily, there aren't many edges in the minimum cut! So, it is not very likely that we'd pick one of them.

## Analysis of Karger's Algorithm

**Theorem:** The probability that Karger's algorithm returns a minimum cut in a graph with *n* vertices is 2/n(n-1).

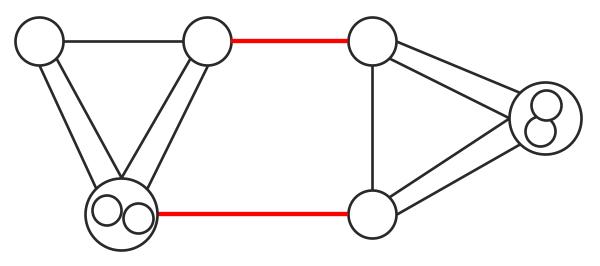
**Proof:** Let *C* be a minimum cut, and assume that Karger's algorithm contracts edges  $e_1, e_2, ..., e_{n-2}$ .

Let  $G_i$  be the "good" event, where the selected  $e_i$  doesn't cross the cut.

$$Pr[ALG \text{ is correct}] = Pr[G_1 \land G_2 \land \dots \land G_{n-2}].$$
  
= 
$$Pr[G_1] \cdot Pr[G_2|G_1] \dots Pr[G_{n-2}|G_1, G_2, \dots, G_{n-3}]$$

### Analysis of a single step of Karger's Algorithm

We will show that  $\Pr[G_i | G_1, G_2, \dots, G_{i-1}] \ge \frac{n-i-1}{n-i+i}$ 



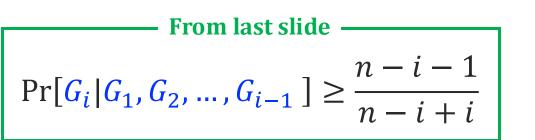
2 non-cut edges have been contracted.

## Analysis of Karger's Algorithm

**Theorem:** The probability that Karger's algorithm returns a minimum cut in a graph with *n* vertices is 2/n(n-1).

**Proof:** Let *C* be a minimum cut, and assume that Karger's algorithm contracts edges  $e_1, e_2, ..., e_{n-2}$ .

Let  $G_i$  be the "good" event, where the selected  $e_i$  doesn't cross the cut. Pr[ALG is correct] = Pr[ $G_1 \land G_2 \land \dots \land G_{n-2}$ ]. = Pr[ $G_1$ ] · Pr[ $G_2$ | $G_1$ ] ... Pr[ $G_{n-2}$ | $G_1, G_2, \dots, G_{n-3}$ ]



# Wrap up Karger's Algorithm

**Runtime:** 

- One round of Karger's Alg can be done in O(m) runtime
- It has success probability of  $\Omega(1/n^2)$ , so we need to repeating it  $O(n^2)$  rounds to boost the correctness probability to 0.999
- Total runtime:  $O(m n^2)$ 
  - → Actually, this can be improved to  $\approx O(n^2)$  since not all computation needs to be repeated. (not in scope for this class)
- The linear programming solution, while deterministic, can be slower.

#### **Prime Numbers**

Prime numbers: 2, 3, 5, 7, 11, 13, ...

Prime numbers are super useful!

 $\rightarrow$ e.g., In cryptography you want to produce large (128bits, 256bit, ....) primes

There are lots of prime numbers!

→ If you pick 100 random 128-bit numbers, very likely that at least 1 of them is prime.

To generate primes effectively, it's enough to be able to <u>test whether a number is prime</u>.

**Primality Testing:** given a number, determine if it is a prime number.

## **Primality Testing**

**Primality Testing:** Given a number *N*, is it a prime number?

A straight-forward algorithms:

- → For all  $z = 1, ..., \sqrt{N}$ , see if z divides N?
- $\rightarrow$  Runtime is poly(N) ....
- $\rightarrow$  But, this is not pseudo-polynomial time algorithm, not polynomial time!
- → For it to be polynomial time, it needs to be poly(#bits of N) or polylog(N).

#### Fermat's Little Theorem

All prime numbers satisfy a neat little test!

Fermat's Little Theorem

If *p* is a prime, then for all x = 1, ..., p - 1 we have that  $x^{p-1} \equiv 1 \pmod{p}$ 

This suggests that we might be able to deduce whether N is a prime by looking at whether  $x^{p-1} \not\equiv 1 \pmod{N}$  for some choice of x. Let's choose x at random!

**Fermat's Primality Test** 

Choose *x* uniformly at random from all x = 1, ..., N - 1. **Return** "prime" if  $x^{N-1} \equiv 1 \pmod{N}$ , otherwise return "composite"

### What if *N* is composite?

Let's say input was composite number N = 9. All arithmetic here is mod 9.

 $1^8 \equiv 1$  $2^8 \equiv 4 \not\equiv 1$  $3^8 \equiv 0 \not\equiv 1$  $4^8 \equiv 7 \not\equiv 1$  $5^8 \equiv 7 \not\equiv 1$  $6^8 \equiv 0 \not\equiv 1$  $7^8 \equiv 4 \not\equiv 1$  $8^8 \equiv 1$ 

Out of 8 choices for a random  $x \in \{1, ..., 8\}$ , only 2 of them would lead Fermat's test to erroneously state that 9 is a prime!

Fermat's test would have been correct with prob 0.75!

Can we say that Fermat's test succeeds with a reasonable probability, for all *N*?

### The Exception: Carmichael Numbers

Unfortunately, that it not the case.

There are composite numbers N for which  $x^{N-1} \equiv 1 \pmod{N}$  for many xs.  $\rightarrow$  For these inputs, the probability of success is too small.

**Carmichael numbers:** Composite number *N* for which  $x^{N-1} \equiv 1 \pmod{N}$  for all *x* that's coprime with *N*.

There are infinitely many of these! But they are very rare and spread apart. Smallest Carmichael number is  $561 = 3 \times 11 \times 17$ .

## Limited Primality-Testing non-Carmichael

In this lecture, we show that Fermat's test is a good randomized primality, as long as the input is not a Carmichael number.

Theorem: Assume that *N* is not a Carmichael number. Then the Fermat's test satisfies the following requirements.
1. If *N* is prime, it states "prime" with probability 1.
2. If *N* is composite (but not Carmichael), it states "composite" with prob > 1/2.

**Remark 1:** Can boost the prob. to 0.99 by repeating the a few times (e.g. >6 times).

**Remark 2:** There is an algorithm based on the same idea as Fermat's test that work also for all integers! We won't cover it in class though.

#### Correctness of the Primality Test

**Theorem:** Assume that *N* is a composite, but not Carmichael number. Then with prob > 1/2 Fermat's outputs "composite". i.e.

 $x^{N-1} \not\equiv 1 \pmod{N}$  for at least half of x = 1, ..., N-1

1. *N* is Not Carmichael => there is co-prime *a* such that  $a^{N-1} \not\equiv 1 \pmod{N}$ What's nice about co-primes? They have a unique inverse  $a^{-1}$ , such that  $a \times a^{-1} \equiv 1 \pmod{N}$ 

2. Take any **bad**  $b_i$  (for which  $b_i^{N-1} \equiv 1 \pmod{N}$ ), then  $b_i$  maps to a **good**  $g_i = b_i a$ :  $g_i^N = (b_i a)^{N-1} = b_i^{N-1} a^{N-1} \not\equiv 1 \pmod{N}$ 

3. Also, the mapping is one-to-one: If  $b_i \neq b_j$ , we must have  $g_i \neq g_j$ :  $g_i = g_j \implies g_i a^{-1} \equiv g_j a^{-1} \implies b_i \equiv b_j$ 

### Correctness of the Primality Test (cont.)

We proved that for every **bad**  $b_i$  (for which  $b_i^{N-1} \equiv 1 \pmod{N}$ ) there is a distinct **good**  $g_i = b_i a$  (for which  $g_i^{N-1} \not\equiv 1 \pmod{N}$ )

### Primality Testing through the ages

200 BC: Eratosthenes (Greek polymath) described the *prime number sieve* for finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what we discussed but one more idea to deal with Carmichael numbers)

1977 .... 2002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time *deterministic* algorithm for primality testing (de-randomizing one of their earlier algorithms from 1999)

## **Complexity Classes and Wrapup**

There are problems for which we know polynomial time randomized algorithms, but no deterministic polynomial time algorithms!  $\rightarrow$  E.g., Polynomial testing

Are randomized algorithms actually more powerful than deterministic algorithms?  $\rightarrow$  Major complexity theory open problem. We don't know yet!

> **Next time Online algorithms**: natural place where you want randomness.