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Announcements

End-of-semester course evaluations are open now
→ You can receive an additional homework drop if you fill it out (see “End-of-
Semester Feedback Form” on Ed on how to receive HW drop)



Wrapping Up Intelligent Search

End-of-semester course evaluations are open now
→ You can receive an additional homework drop if you fill it out (see “End-of-
Semester Feedback Form” on Ed on how to receive HW drop)



Branch-and-Bound

Start with problem 𝑃0 and let 𝑆 = {𝑃0}, the set of active subproblems
best-so-far = ∞
Repeat while 𝑆 ≠ ∅:
     Choose a subproblem (partial solution) 𝑃 ∈ 𝑆 and remove it from 𝑆
     Expand the problem into smaller subproblems 𝑃1, 𝑃2, … , 𝑃𝑘

     For each 𝑃𝑖:
            If 𝑃𝑖  is a complete solution, update best-so-far if it’s the best value so far
            Else if 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 < best-so-far, add 𝑃𝑖  to 𝑆.
Return best-so-far

Branch-and-bound for a minimization problem

Rule out optimality for minimization problem:
→We need a function 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖  that looks at a partial solution 𝑃𝑖   and quickly 

gives us a lower bound on the value of any possible completion of 𝑃𝑖 .
→ If 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑃𝑖 > best-so-far, the entire branch under 𝑃𝑖  can be eliminated.



Branch-and-Bound for TSP
Recall: TSP(graph 𝐺 = [𝑛], 𝐸  and edge lengths 𝑑𝑒 > 0 for all 𝑒 ∈ 𝐸, returns a tour (a 
cycle passing through all nodes) of the smallest length.
Partial Solutions: Same subproblems as in our DP algorithm for TSP. 

Lecture 13



Lower-Bounding Value of Partial TSP 
Subproblems: For all 𝑗 ≤ 𝑛 and 𝑆 ⊆ {1, … , 𝑛}, s.t. 𝑆 includes 1 and 𝑗.  

𝑇 𝑆, 𝑗 = the shortest path visiting  all cities in 𝑆 exactly once, 
starting from 1 and ending at 𝑗. 

𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑(𝑇 𝑆, 𝑗 ) needs to lower bound the completion of this tour.



Lower-Bounding Value of Partial TSP (cont.) 
Lemma: Let 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑇 𝑆, 𝑗 = MST 𝑉 ∖ 𝑆 + min

𝑥∈𝑉∖𝑆
 𝑑1𝑥 + min

𝑥∈𝑉∖𝑆
𝑑𝑗𝑥 +  𝑇 𝑆, 𝑗 . 

This is a valid lower bound, i.e., any tour that uses 𝑇 𝑆, 𝑗  as a partial tour, has a 
length that is at least 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 𝑇 𝑆, 𝑗

Proof:
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See textbook for the complete 
run of the algorithm



Randomized Algorithms



Deterministic Versus Randomized Algorithms
So far, almost all algorithms we’ve discussed in this class have been 
deterministic algorithms.

Deterministic algorithms:
→ Take input
→ Do read/write computation to memory
→ Write the output

Randomized Algorithms:
→ Everything a deterministic algorithm does
→ And an infinite sequence of random coin flips



Talking about Randomized Algorithms

The output and computation path of a randomized algorithm are random variables

Statements we’d like to make about randomized algorithms 
→Accuracy/correctness: for all inputs 𝑥, there is a reasonable 𝑐 > 0  

→Runtime: for all inputs 𝑥, there is a reasonable 𝐶

Pr 𝐴𝐿𝐺(𝑥, 𝑟1, 𝑟2 … )is correct ≥ 𝑐 

E runtime of 𝐴𝐿𝐺(𝑥, 𝑟1, 𝑟2 … ) ≤ 𝐶  or Var runtime of 𝐴𝐿𝐺(𝑥, 𝑟1, 𝑟2 … ) ≤ 𝐶

𝑐 and 𝐶 could be a function of the input size. 

𝐴𝐿𝐺( 𝑥,  𝑟1 ,  𝑟2 … )
Deterministic input 𝑥 Random coin flips 𝑟1, 𝑟2 ….

Or uniformly random number in [𝑎, 𝑏]



Two Types of Randomized Algorithms
Las-Vegas Algorithms:
• They always output the correct answer (output is deterministic). 
• Their runtime is random variable. We usually talk about E 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 .
• E.g. QuickSort, QuickSelect.

Monte Carlo Algorithms:
• They could be wrong (output is randomized) and we talk about Pr[correctness].
• Their runtime is bounded deterministically.
• E.g. Randomized Min Cut algorithm, randomized Primality testing.

Lecture 4

This lecture!



Probability of Correctness
We said that the Monte Carlo Algorithm can be incorrect (or suboptimal) occasionally.
There are two types of error tolerance that are acceptable for Monte Carlo algs.

One-sided error:
• If the answer is “Yes”, then the ALG 

says “Yes” with probability 1. 
• If the answer is “No”, then ALG 

says “No” with probability 𝑝 > 0 .

Two-sided error:
• ALG is correct with probability 1

2
+ 𝜖. 

Both can be boosted to give 
correctness with probability 0.99! 



Boosting Correctness via Repeated Trials
One-sided error:
• If the answer is “Yes”, then the ALG says “Yes” with probability 1. 
• If the answer is “No”, then ALG says “No” with probability 𝑝 > 0 

For t = 1, … , 10
𝑝

         If ALG=”No”, return No.     // Using fresh randomness
return “Yes”

What’s the probability of error?



Boosting Correctness via Repeated Trials

For t = 1, … , Θ 1
𝜖2

         Run ALG            // Using fresh randomness
return Majority vote of the runs.

The probability of correctness is also 0.999.

Two-sided error: ALG is correct with probability 1
2

+ 𝜖. 



Minimum Cut Problem (Recall)
Input: Given an undirected graph 𝐺 = 𝑉, 𝐸
Output: Return the minimum cut (i..e, a partition of vertices to two sets, with minimum 
number of edges crossing it.)  Min Cut

A Cut

Deterministic Algorithm: We saw Min-
cut / Max flow as an LP

Today: We will see a beautiful randomized 
Alg for it! We assume unweighted graphs, 
though it works for weighted ones too.



Karger’s Algorithm (randomized contraction)

Rand-contraction(𝐺 = 𝑉, 𝐸 )
    Repeat until 2 vertices are left 
         Take a uniformly random 𝑒
         Contract 𝑒
    Return the cut that corresponds 
to the 2 vertices

A

C

B

D

Contraction of edge (𝑢, 𝑣): Merge 𝑢 and 𝑣 into 
one giant node. All other edges adjacent to 𝑢 
and 𝑣 come out the giant node
(keep the parallel edges but delete self loops)

B

Contract

Contract

Runtime of this alg: 𝑂(𝑚)
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D



Correctness of Karger’s Algorithm
Theorem: The probability that Karger’s algorithm returns a minimum cut in a 
graph with 𝑛 vertices is 2/𝑛(𝑛 − 1).

This is great actually!
→ There are ≈ 2𝑛 cuts
→ So, this algorithm does significantly better than picking a random cut.

This is like a 1-sided error. Boost the prob of success by repeat this ALG 
Θ 𝑛2  times and returning the smallest cut you see. The success prob 
becomes 0.999!



High-level Intuition
When does Karger’s Algorithm return the wrong cut?
→ It is wrong if and only if it contracts an edge that crosses the min cut.

Min Cut

Luckily, there aren’t many edges in the minimum cut! So, it is not very likely that 
we’d pick one of them.



Analysis of Karger’s Algorithm
Theorem: The probability that Karger’s algorithm returns a minimum cut in a 
graph with 𝑛 vertices is 2/𝑛(𝑛 − 1).
Proof: Let 𝐶 be a minimum cut, and assume that Karger’s algorithm contracts 
edges 𝑒1, 𝑒2, … , 𝑒𝑛−2.

Let 𝐺𝑖  be the “good” event, where the selected 𝑒𝑖  doesn’t cross the cut.

Pr ALG is correct = Pr 𝐺1 ∧ 𝐺2 ∧ ⋯ ∧ 𝐺𝑛−2 . 
 = Pr 𝐺1 ⋅ Pr 𝐺2|𝐺1 … Pr 𝐺𝑛−2|𝐺1, 𝐺2, … , 𝐺𝑛−3 



Analysis of a single step of Karger’s Algorithm
We will show that Pr 𝐺𝑖|𝐺1, 𝐺2, … , 𝐺𝑖−1 ≥ 𝑛−𝑖−1

𝑛−𝑖+𝑖

2 non-cut edges have been contracted.



Analysis of Karger’s Algorithm
Theorem: The probability that Karger’s algorithm returns a minimum cut in a 
graph with 𝑛 vertices is 2/𝑛(𝑛 − 1).
Proof: Let 𝐶 be a minimum cut, and assume that Karger’s algorithm contracts 
edges 𝑒1, 𝑒2, … , 𝑒𝑛−2.

Let 𝐺𝑖  be the “good” event, where the selected 𝑒𝑖  doesn’t cross the cut.
Pr ALG is correct = Pr 𝐺1 ∧ 𝐺2 ∧ ⋯ ∧ 𝐺𝑛−2 . 

 = Pr 𝐺1 ⋅ Pr 𝐺2|𝐺1 … Pr 𝐺𝑛−2|𝐺1, 𝐺2, … , 𝐺𝑛−3 

Pr 𝐺𝑖|𝐺1, 𝐺2, … , 𝐺𝑖−1 ≥
𝑛 − 𝑖 − 1
𝑛 − 𝑖 + 𝑖

From last slide



Wrap up Karger’s Algorithm
Runtime:
• One round of Karger’s Alg can be done in 𝑂(𝑚) runtime
• It has success probability of Ω(1/𝑛2), so we need to repeating it 𝑂(𝑛2) 

rounds to boost the correctness probability to 0.999
• Total runtime: 𝑂(𝑚 𝑛2) 
→ Actually, this can be improved to ≈ 𝑂(𝑛2) since not all computation needs 

to be repeated. (not in scope for this class) 
• The linear programming solution, while deterministic, can be slower.



Prime Numbers
Prime numbers: 2, 3, 5, 7, 11, 13, …

Prime numbers are super useful!
→e.g., In cryptography you want to produce large (128bits, 256bit, ….) primes

There are lots of prime numbers!
→ If you pick 100 random 128-bit numbers, very likely that at least 1 of them is prime.

To generate primes effectively, it’s enough to be able to test whether a number is prime.

Primality Testing: given a number, determine if it is a prime number.



Primality Testing
Primality Testing: Given a number 𝑁, is it a prime number? 

A straight-forward algorithms:

→For all 𝑧 = 1, … , 𝑁 , see if 𝑧 divides 𝑁?

→Runtime is poly(N) ….

→But, this is not pseudo-polynomial time algorithm, not polynomial time!

→ For it to be polynomial time, it needs to be poly #bits 𝑜𝑓 𝑁  or polylog N .



Fermat’s Little Theorem
All prime numbers satisfy a neat little test! 

If 𝑝 is a prime, then for all 𝑥 = 1, … , 𝑝 − 1 we have that 𝑥𝑝−1 ≡ 1 (mod 𝑝)

Fermat’s Little Theorem

This suggests that we might be able to deduce whether 𝑁 is a prime by looking at 
whether 𝑥𝑝−1 ≢ 1 (mod N) for some choice of 𝑥. Let’s choose 𝑥 at random!

Choose 𝑥 uniformly at random from all 𝑥 = 1, … , 𝑁 − 1. 
Return “prime” if 𝑥𝑁−1 ≡ 1 (mod 𝑁) , otherwise return “composite”

Fermat’s Primality Test



What if 𝑁 is composite?
Let’s say input was composite number 𝑁 = 9. All arithmetic here is mod 9. 

18 ≡ 1 

28 ≡ 4 ≢ 1 

38 ≡ 0 ≢ 1 

48 ≡ 7 ≢ 1 

58 ≡ 7 ≢ 1 

68 ≡ 0 ≢ 1 

78 ≡ 4 ≢ 1 

88 ≡ 1 

Out of 8 choices for a random 𝑥 ∈ {1, … , 8}, only 2 of 
them would lead Fermat’s test to erroneously state that 
9 is a prime!

Fermat’s test would have been correct with prob 0.75!

Can we say that Fermat’s test succeeds 
with a reasonable probability, for all 𝑁?



The Exception: Carmichael Numbers
Unfortunately, that it not the case. 

There are composite numbers 𝑁 for which 𝑥𝑁−1 ≡ 1 (mod 𝑁) for many 𝑥s.
→ For these inputs, the probability of success is too small.  

Carmichael numbers:
Composite number 𝑁 for which 𝑥𝑁−1 ≡ 1 (mod 𝑁) for all 𝑥 that’s coprime with 𝑁. 

There are infinitely many of these! But they are very rare and spread apart. Smallest 
Carmichael number is 561 = 3 × 11 × 17.



Limited Primality-Testing non-Carmichael
In this lecture, we show that Fermat’s test is a good randomized primality, as long 
as the input is not a Carmichael number.

Theorem: Assume that 𝑁 is not a Carmichael number. Then the Fermat’s test 
satisfies the following requirements.
1. If 𝑁 is prime, it states “prime” with probability 1.
2. If 𝑁 is composite (but not Carmichael), it states “composite” with prob > 1/2.

Remark 2: There is an algorithm based on the same idea as Fermat’s test that 
work also for all integers! We won’t cover it in class though. 

Remark 1: Can boost the prob. to 0.99 by repeating the a few times (e.g. >6 times). 



Correctness of the Primality Test
Theorem: Assume that 𝑁 is a composite, but not Carmichael number. Then 
with prob > 1/2 Fermat’s outputs “composite”. i.e.

1. 𝑁 is Not Carmichael => there is co-prime 𝑎 such that 𝑎𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁)  

𝑥𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁) for at least half of 𝑥 = 1, … , 𝑁 − 1

2. Take any bad 𝑏𝑖  (for which 𝑏𝑖
𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁)), then 𝑏𝑖  maps to a good 𝑔𝑖=𝑏𝑖𝑎 :

𝑔𝑖
𝑁 = 𝑏𝑖𝑎 𝑁−1 = 𝑏𝑖

𝑁−1𝑎𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁) 

3. Also, the mapping is one-to-one: If 𝑏𝑖 ≠ 𝑏𝑗 , we must have 𝑔𝑖 ≠ 𝑔𝑗:

What’s nice about co-primes? They have a unique 
inverse 𝑎−1, such that 𝑎 × 𝑎−1 ≡ 1 (𝑚𝑜𝑑 𝑁) 

𝑔𝑖 = 𝑔𝑗               𝑔𝑖𝑎−1 ≡ 𝑔𝑗𝑎−1          𝑏𝑖 ≡ 𝑏𝑗         



Correctness of the Primality Test (cont.)
We proved that for every bad 𝑏𝑖  (for which 𝑏𝑖

𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁)) there is a distinct 
good 𝑔𝑖=𝑏𝑖𝑎 (for which 𝑔𝑖

𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁)) 



Primality Testing through the ages
200 BC: Eratosthenes (Greek polymath) described the prime number sieve for 
finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what 
we discussed but one more idea to deal with Carmichael numbers)

1977 …. 2002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time deterministic algorithm 
for primality testing (de-randomizing one of their earlier algorithms from 1999)



Next time
Online algorithms: natural place where you want 
randomness. 

Complexity Classes and Wrapup
There are problems for which we know polynomial time randomized algorithms, 
but no deterministic polynomial time algorithms!
→ E.g., Polynomial testing

Are randomized algorithms actually more powerful than deterministic algorithms? 
→ Major complexity theory open problem. We don’t know yet!
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