CS 170 Efficient Algorithms and Intractable Problems

Lecture 24 Randomized Algorithms

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

End-of-semester course evaluations are open now → You can receive an additional homework drop if you fill it out (see "End-of-Semester Feedback Form" on Ed on how to receive HW drop)

Wrapping Up Intelligent Search

Branch-and-Bound

Rule out optimality for minimization problem:

- → We need a function *lowerbound*(P_i) that looks at a partial solution P_i and quickly gives us a lower bound on the value of any possible completion of P_i .
- → If *lowerbound*(P_i) > best-so-far, the entire branch under P_i can be eliminated.

Branch-and-bound for a minimization problem

```
Start with problem P_0 and let S = \{P_0\}, the set of active subproblems best-so-far = \infty
```

```
Repeat while S \neq \emptyset:
```

<u>Choose</u> a subproblem (partial solution) $P \in S$ and remove it from S

Expand the problem into smaller subproblems P_1, P_2, \dots, P_k

```
For each P_i:
```

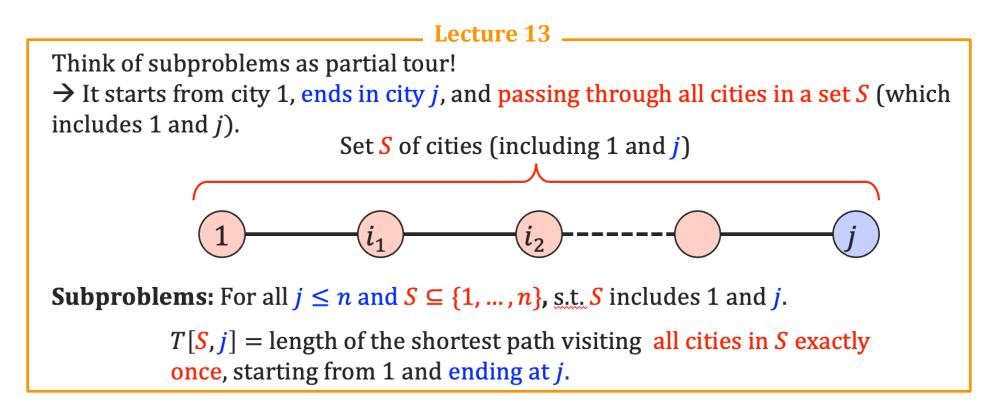
If P_i is a complete solution, update best-so-far if it's the best value so far Else if *lowerbound*(P_i) < best-so-far, add P_i to *S*.

Return best-so-far

Branch-and-Bound for TSP

Recall: TSP(graph G = ([n], E) and edge lengths $d_e > 0$ for all $e \in E$, returns a tour (a cycle passing through all nodes) of the smallest length.

Partial Solutions: Same subproblems as in our DP algorithm for TSP.

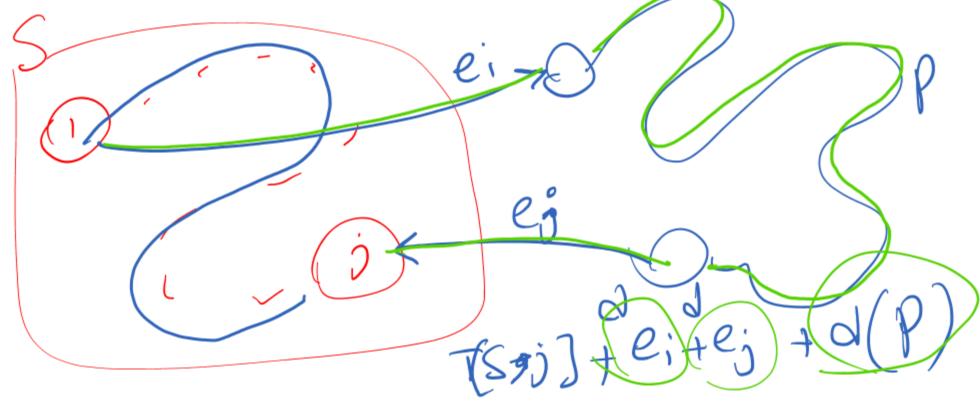


Lower-Bounding Value of Partial TSP

Subproblems: For all $j \le n$ and $S \subseteq \{1, ..., n\}$, s.t. *S* includes 1 and *j*.

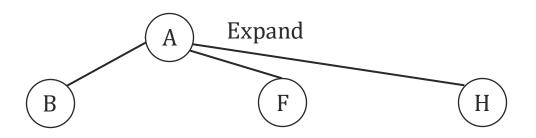
T[S, j] = the shortest path visiting all cities in *S* exactly once, starting from 1 and ending at *j*.

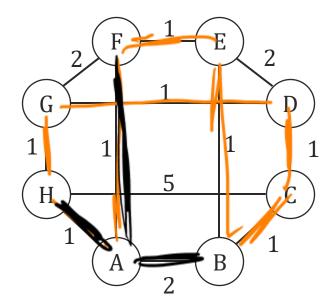
lowerbound(T[S, j]) needs to lower bound the completion of this tour.



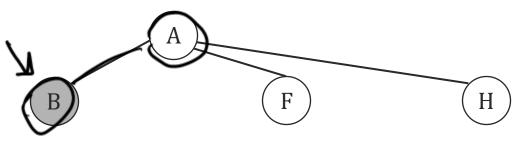
Lower-Bounding Value of Partial TSP (cont.) **Lemma:** Let *lowerbound*(T[S, j]) = MST($V \setminus S$) + $\min_{x \in V \setminus S} d_{ix}$ + $\min_{x \in V \setminus S} d_{jx}$ + T[S, j]. This is a valid lower bound, i.e., any tour that uses T[S, j] as a partial tour, has a 1) Sinf is connection all VIS length that is at least *lowerbound*(T[S, j]) MST: Shatest subgraph connects all vartices $U_{S} J(P) > MST(V S)$ **Proof:** 2) Eix ejx bothane min distance edges crossing cut & connecti Li to VIS) => lowerband < TTS: 7

Best-so-far = ∞

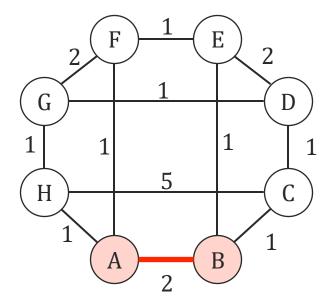




Best-so-far = ∞

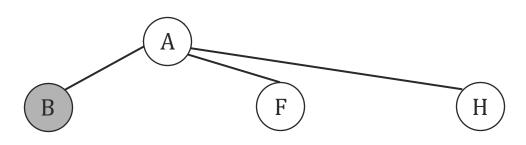


Discard?

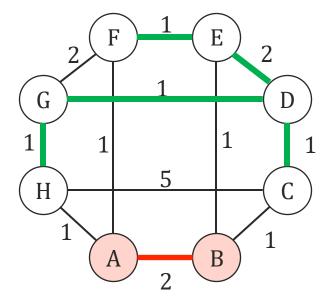


Current partial solution shown in red.

Best-so-far = ∞

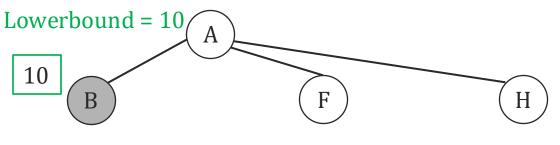


Discard?

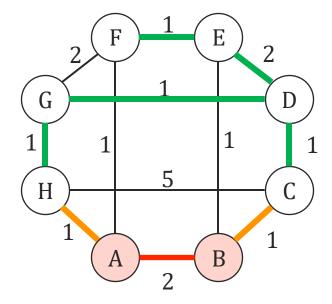


Current partial solution shown in red. MST of the complement set shown in green.

Best-so-far = ∞

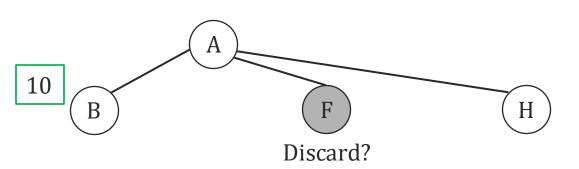


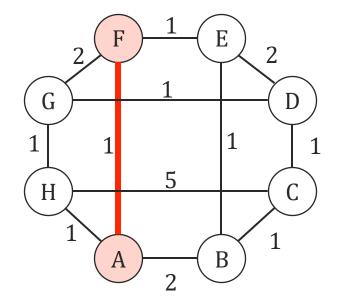
Discard?



Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

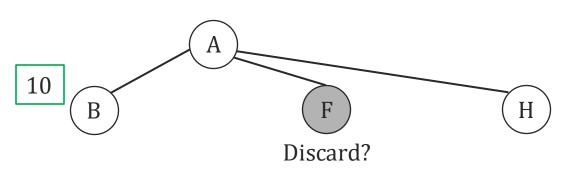
Best-so-far = ∞

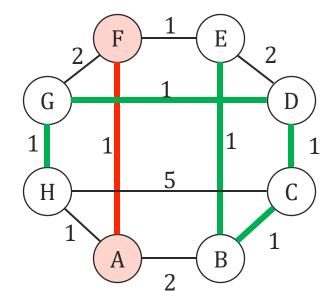




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

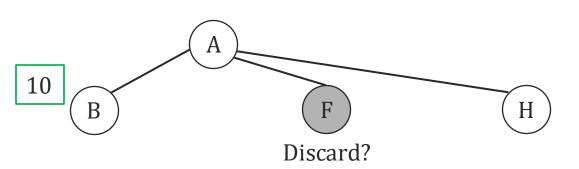
Best-so-far = ∞

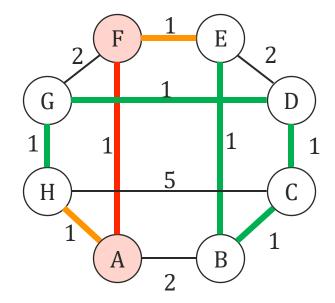




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

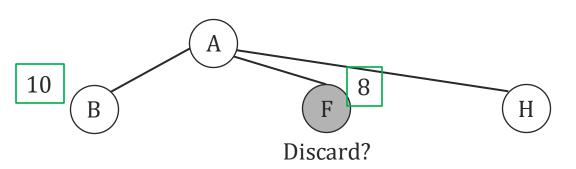
Best-so-far = ∞

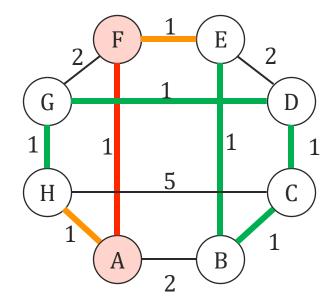




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

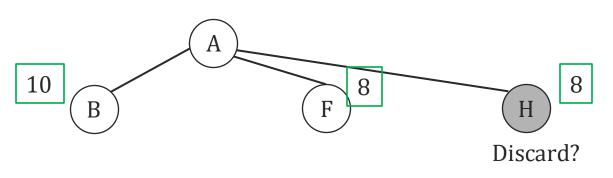
Best-so-far = ∞

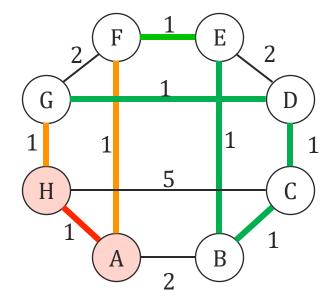




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

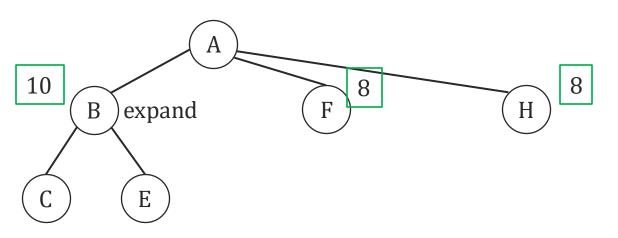
Best-so-far = ∞

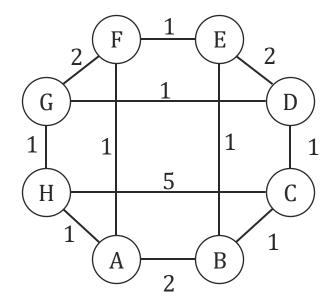




Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

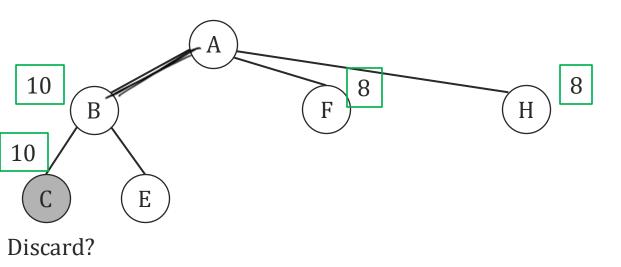
Best-so-far = ∞





Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

Best-so-far = ∞

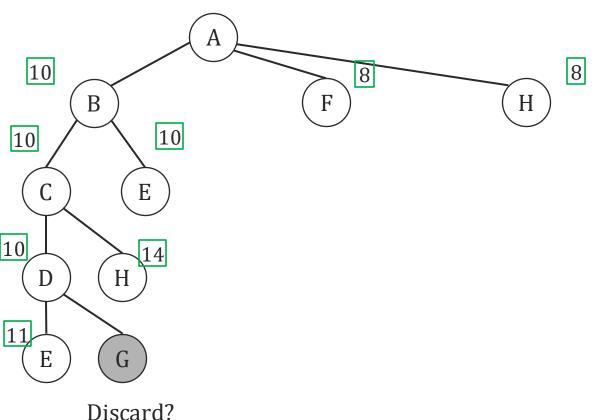


 $\begin{array}{c|cccc}
2 & F & 1 & E & 2 \\
\hline G & 1 & D \\
1 & 1 & 1 & 1 \\
\hline H & 5 & C \\
1 & A & 2 & D \\
\end{array}$

Current partial solution shown in red. MST of the complement set shown in green. Lightest edges connecting the blue tour to the complement are shown in orange.

Skipping forward a few steps

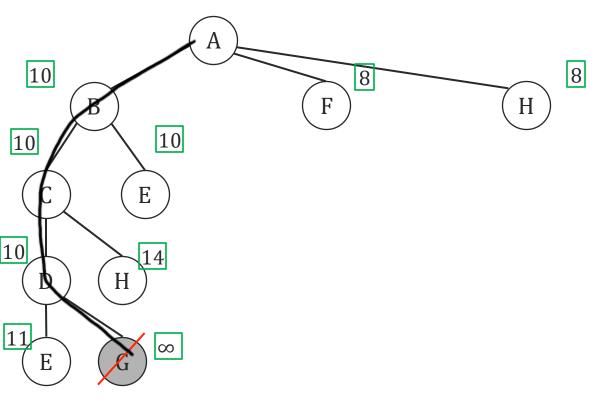
Best-so-far = ∞



Iru?

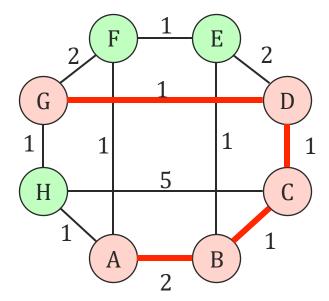
Example from Sec 9 of the textbook

Best-so-far = ∞



Discard! Never expand

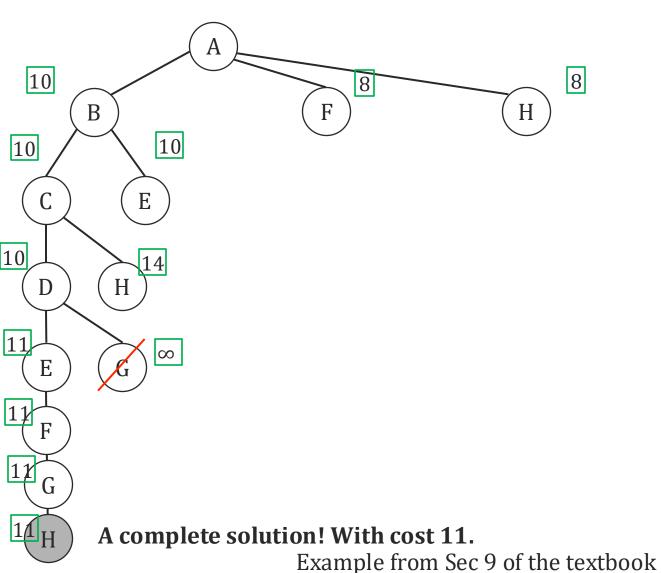
Example from Sec 9 of the textbook

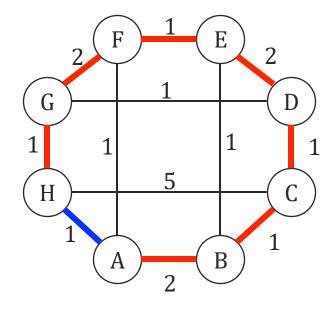


The complement set is not connected! MST has ∞ weight.

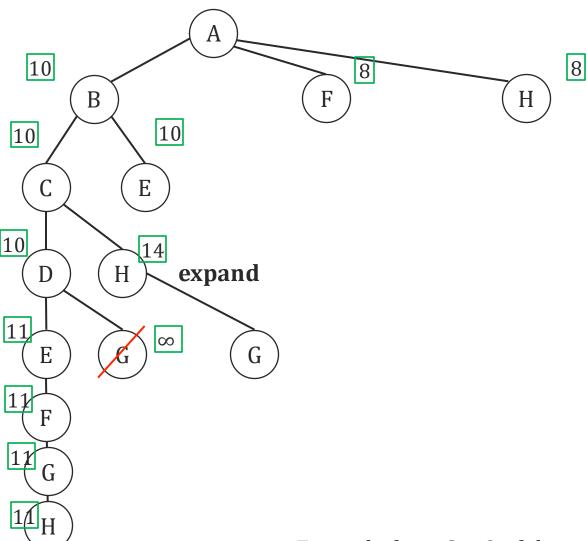
Skipping forward a few steps

Best-so-far = 🔊 , 11

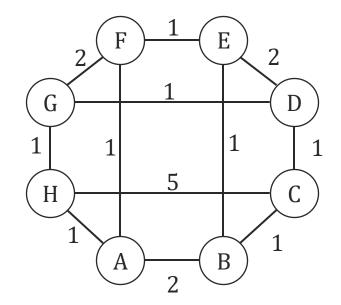




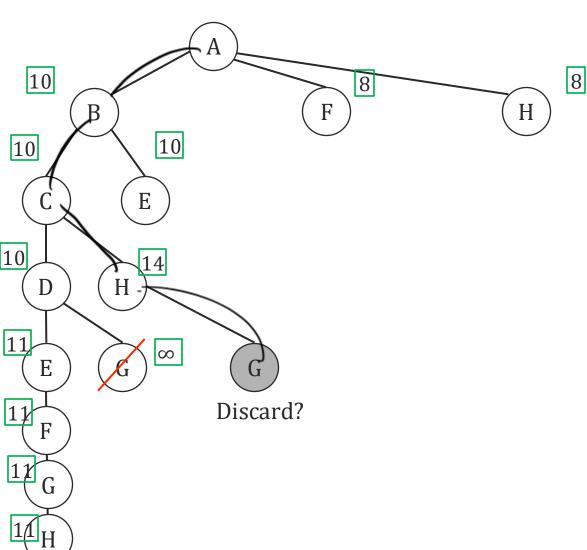
Best-so-far = 🔊 , 11



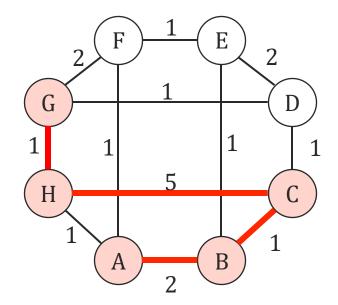
Example from Sec 9 of the textbook



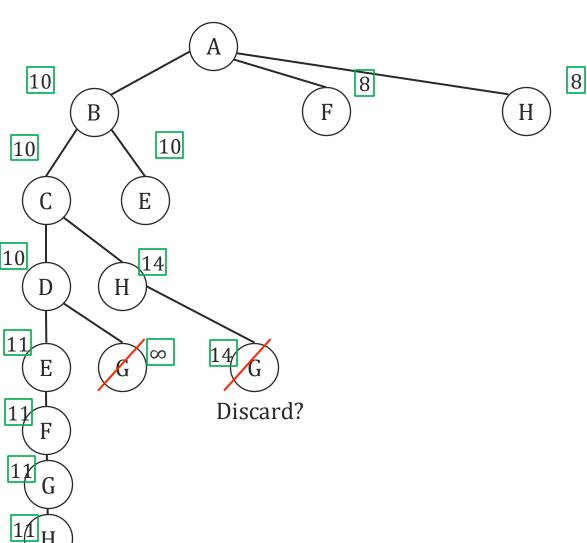
Best-so-far = 🔊 , 11



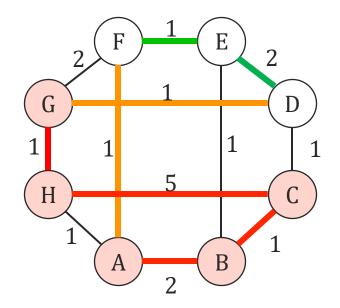
Example from Sec 9 of the textbook



Best-so-far = 🔊 , 11



Example from Sec 9 of the textbook



Lowerbound =14 > best-so-far

See textbook for the complete run of the algorithm

Randomized Algorithms

Deterministic Versus Randomized Algorithms

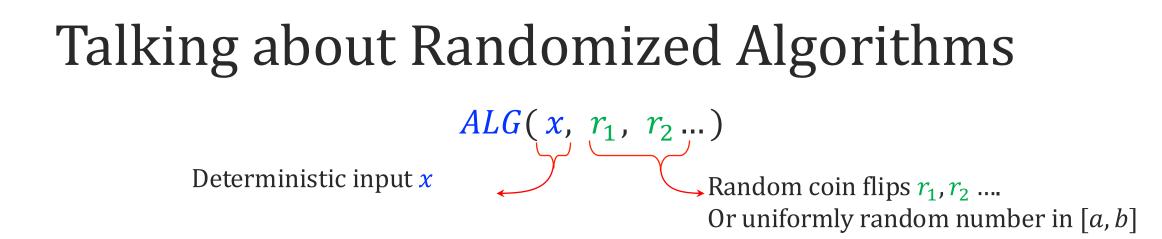
So far, almost all algorithms we've discussed in this class have been deterministic algorithms.

Deterministic algorithms:

- \rightarrow Take input
- \rightarrow Do read/write computation to memory
- \rightarrow Write the output

Randomized Algorithms:

- \rightarrow Everything a deterministic algorithm does
- \rightarrow And an infinite sequence of random coin flips



The <u>output</u> and <u>computation path</u> of a randomized algorithm are **random variables**

Statements we'd like to make about randomized algorithms \rightarrow Accuracy/correctness: for all inputs *x*, there is a reasonable c > 0

 $\Pr[ALG(x, r_1, r_2 \dots) \text{ is correct}] \ge c$

 \rightarrow **Runtime:** for all inputs *x*, there is a reasonable *C*

E[runtime of $ALG(x, r_1, r_2 \dots)$] $\leq C$ or $Var[runtime of <math>ALG(x, r_1, r_2 \dots)$] $\leq C$

c and *C* could be a function of the input size.

Two Types of Randomized Algorithms

Las-Vegas Algorithms:

- They always output the correct answer (output is deterministic).
- Their runtime is random variable. We usually talk about E[*runtime*].
- E.g. QuickSort, QuickSelect.

Lecture 4

Monte Carlo Algorithms:

- They could be wrong (output is randomized) and we talk about Pr[correctness].
- Their runtime is bounded deterministically.
- E.g. Randomized **Min Cut** algorithm, randomized **Primality testing.**

This lecture!

Probability of Correctness

We said that the Monte Carlo Algorithm can be incorrect (or suboptimal) occasionally. There are two types of error tolerance that are acceptable for Monte Carlo algs.

One-sided error:

- If the answer is "Yes", then the ALG says "Yes" with probability 1.
- If the answer is "No", then ALG says "No" with probability p > 0.

Two-sided error:

• ALG is correct with probability $\frac{1}{2} + \epsilon$.

Both can be boosted to give correctness with probability 0.99!

Boosting Correctness via Repeated Trials

One-sided error:

- If the answer is "Yes", then the ALG says "Yes" with probability 1.
- If the answer is "No", then ALG says "No" with probability p > 0

For
$$t = 1, ..., \frac{10}{p}$$

If ALG="No", return No. // Using fresh randomness
return "Yes"

$$1-x \leq exp(-x)$$

Boosting Correctness via Repeated Trials

Two-sided error: ALG is correct with probability $\frac{1}{2} + \epsilon$.

For t = 1, ..., $\Theta\left(\frac{1}{\epsilon^2}\right)$ Run ALG // Using fresh randomness **return** Majority vote of the runs.

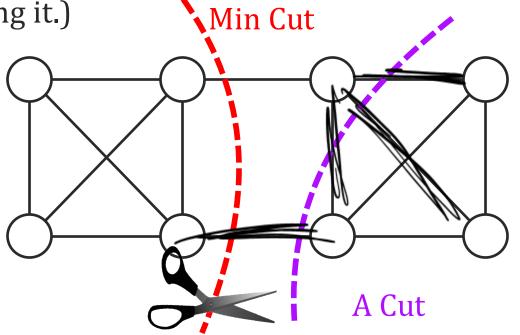
The probability of correctness is also 0.999.

Minimum Cut Problem (Recall)

Input: Given an undirected graph G = (V, E)

Output: Return the minimum cut (i..e, a partition of vertices to two sets, with minimum

number of edges crossing it.)



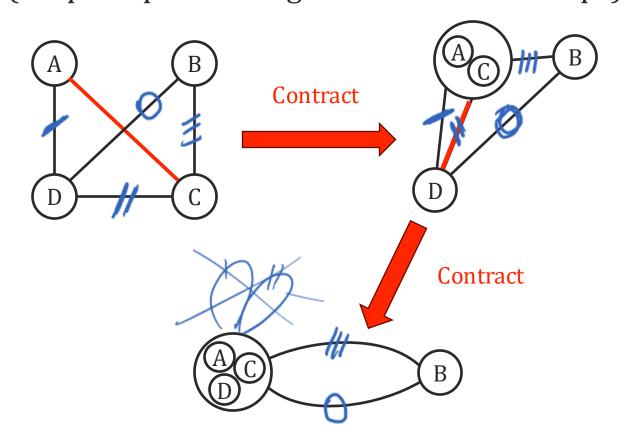
Deterministic Algorithm: We saw Mincut / Max flow as an LP **Today:** We will see a beautiful randomized Alg for it! We assume unweighted graphs, though it works for weighted ones too.

Karger's Algorithm (randomized contraction)

Rand-contraction(G = (V, E)) **Repeat** until 2 vertices are left Take a uniformly random eContracse

Return the <u>cut that corresponds</u> to the 2 vertices

Contraction of edge (*u*, *v*): Merge *u* and *v* into one giant node. All other edges adjacent to *u* and *v* come out the giant node (keep the parallel edges but delete self loops)



Runtime of this alg: O(m)

Correctness of Karger's Algorithm

Theorem: The probability that Karger's algorithm returns a minimum cut in a graph with *n* vertices is 2/n(n-1).

This is great actually!

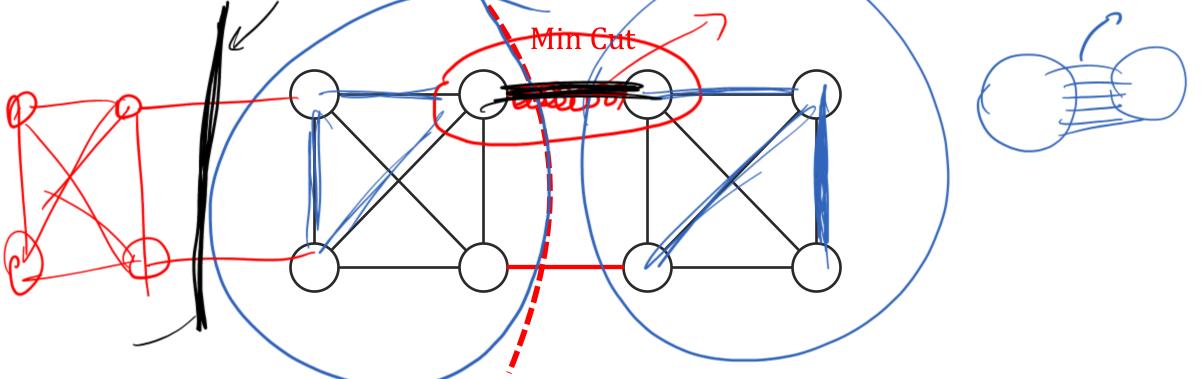
- \rightarrow There are $\approx 2^n$ cuts
- \rightarrow So, this algorithm does significantly better than picking a random cut.

This is like a 1-sided error. Boost the prob of success by repeat this ALG $\Theta(n^2)$ times and returning the smallest cut you see. The success prob becomes 0.999!

High-level Intuition

When does Karger's Algorithm return the wrong cut?

→ It is wrong if and only if it **contracts an edge that crosses the min cut**.



Luckily, there aren't many edges in the minimum cut! So, it is not very likely that we'd pick one of them.

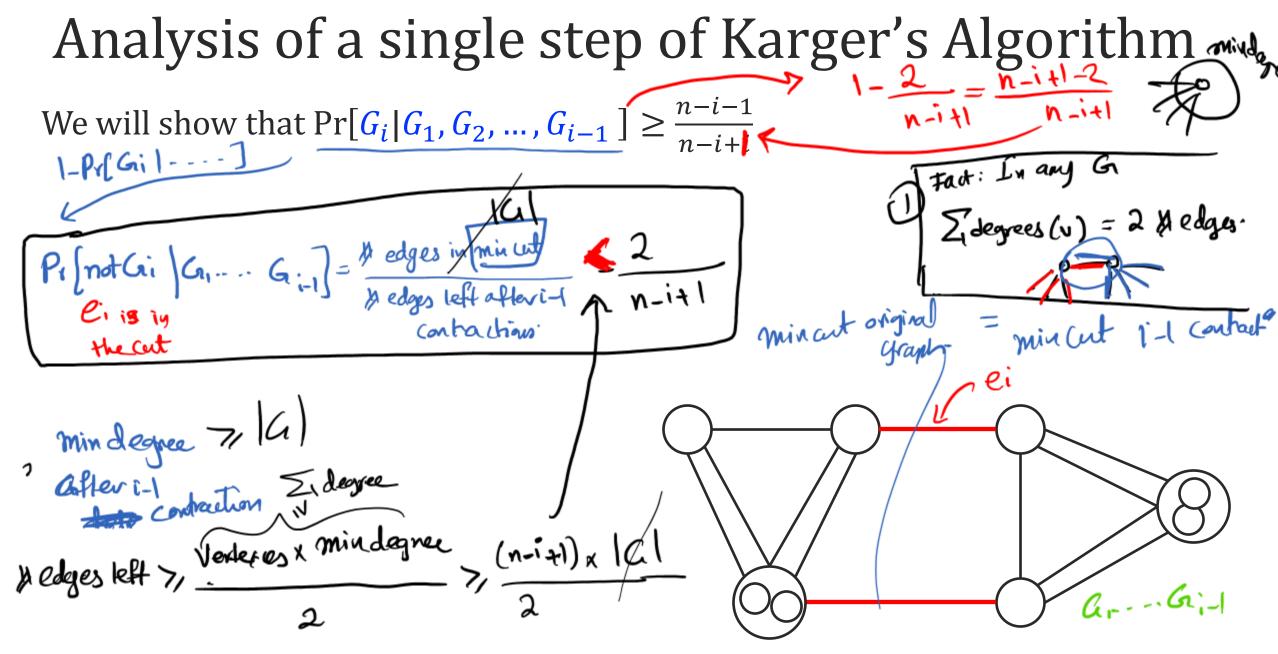
Analysis of Karger's Algorithm

Theorem: The probability that Karger's algorithm returns a minimum cut in a graph with *n* vertices is 2/n(n-1).

Proof: Let *C* be a minimum cut, and assume that Karger's algorithm contracts edges e_1, e_2, \dots, e_{n-2} .

Let G_i be the "good" event, where the selected e_i doesn't cross the cut.

$$Pr[ALG \text{ is correct}] = Pr[G_1 \land G_2 \land \dots \land G_{n-2}].$$
$$= Pr[G_1] \cdot Pr[G_2|G_1] \dots Pr[G_{n-2}|G_1, G_2, \dots, G_{n-3}]$$



2 non-cut edges have been contracted.

Analysis of Karger's Algorithm

Theorem: The probability that Karger's algorithm returns a minimum cut in a graph with *n* vertices is 2/n(n-1).

Proof: Let *C* be a minimum cut, and assume that Karger's algorithm contracts edges $e_1, e_2, ..., e_{n-2}$.

Let G_i be the "good" event, where the selected e_i doesn't cross the cut. $\Pr[ALG \text{ is correct}] = \Pr[G_1 \land G_2 \land \dots \land G_{n-2}].$ $= \Pr[G_{1}] \cdot \Pr[G_{2}|G_{1}] \dots \Pr[G_{n-2}|G_{1},G_{2},\dots,G_{n-3}]$ $= \Pr[G_{1}] \cdot \Pr[G_{2}|G_{1}] \dots \Pr[G_{n-2}|G_{1},G_{2},\dots,G_{n-3}]$ $= \Pr[G_{1}] \cdot \Pr[G_{2}|G_{1}] \dots \Pr[G_{n-2}|G_{1},G_{2},\dots,G_{n-3}]$ n(n-1) From last slide $\Pr[G_i | G_1, G_2, \dots, G_{i-1}] \ge \frac{n-i-1}{n-i+1}$

Wrap up Karger's Algorithm

Runtime:

- One round of Karger's Alg can be done in O(m) runtime
- It has success probability of $\Omega(1/n^2)$, so we need to repeating it $O(n^2)$ rounds to boost the correctness probability to 0.999
- Total runtime: $O(m n^2)$
 - → Actually, this can be improved to $\approx O(n^2)$ since not all computation needs to be repeated. (not in scope for this class)
- The linear programming solution, while deterministic, can be slower.

Prime Numbers

Prime numbers: 2, 3, 5, 7, 11, 13, ...

Prime numbers are super useful!

 \rightarrow e.g., In cryptography you want to produce large (128bits, 256bit,) primes

There are lots of prime numbers!

 \rightarrow If you pick 100 random 128-bit numbers, very likely that at least 1 of them is prime.

To generate primes effectively, it's enough to be able to <u>test whether a number is prime</u>.

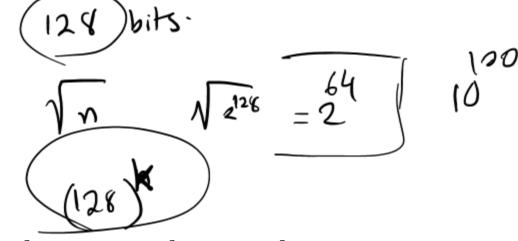
Primality Testing: given a number, determine if it is a prime number.

Primality Testing

Primality Testing: Given a number *N*, is it a prime number?

A straight-forward algorithms:

- → For all $z = \mathbf{1}, ..., \sqrt{N}$, see if z divides N?
- \rightarrow Runtime is poly(N)



- \rightarrow But, this is not pseudo-polynomial time algorithm, not polynomial time!
- → For it to be polynomial time, it needs to be poly(#bits of N) or polylog(N).

Fermat's Little Theorem

All prime numbers satisfy a neat little test!

Fermat's Little Theorem

If *p* is a prime, then for all x = 1, ..., p - 1 we have that $x^{p-1} \equiv 1 \pmod{p}$

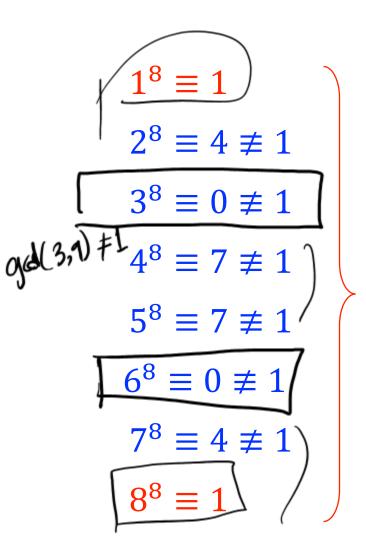
This suggests that we might be able to deduce whether N is a prime by looking at whether $x^{p-1} \not\equiv 1 \pmod{N}$ for some choice of x. Let's choose x at random!

Fermat's Primality Test

Choose *x* uniformly at random from all x = 1, ..., N - 1. **Return** "prime" if $x^{N-1} \equiv 1 \pmod{N}$, otherwise return "composite"

What if *N* is composite?

Let's say input was composite number N = 9. All arithmetic here is mod 9.



Out of 8 choices for a random $x \in \{1, ..., 8\}$, only 2 of them would lead Fermat's test to erroneously state that 9 is a prime!

Fermat's test would have been correct with prob 0.75!

Can we say that Fermat's test succeeds with a reasonable probability, for all *N*?

The Exception: Carmichael Numbers

Unfortunately, that it not the case.

There are composite numbers N for which $x^{N-1} \equiv 1 \pmod{N}$ for many xs. \rightarrow For these inputs, the probability of success is too small.

Carmichael numbers: Composite number *N* for which $x^{N-1} \equiv 1 \pmod{N}$ for all *x* that's coprime with *N*.

There are infinitely many of these! But they are very rare and spread apart. Smallest Carmichael number is $561 = 3 \times 11 \times 17$.

Limited Primality-Testing non-Carmichael

In this lecture, we show that Fermat's test is a good randomized primality, as long as the input is not a Carmichael number.

Theorem: Assume that *N* is not a Carmichael number. Then the Fermat's test satisfies the following requirements.
1. If *N* is prime, it states "prime" with probability 1.
2. If *N* is composite (but not Carmichael), it states "composite" with prob > 1/2.

Remark 1: Can boost the prob. to 0.99 by repeating the a few times (e.g. >6 times).

Remark 2: There is an algorithm based on the same idea as Fermat's test that work also for all integers! We won't cover it in class though.