CS 170 Efficient Algorithms and Intractable Problems

Lecture 25 Online Algorithms 1

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

This week is the last week of class

- \rightarrow Last week with discussion sections
- → Last required homework is out this week, we will have an optional homework next week

Final exam is on Monday May 8, at 11:30am

Please fill out the course eval form!

Recall: Primality Test

Primality Testing: Given a number *N*, is it a prime number?

Fermat's Little Theorem

If *p* is a prime, then for all x = 1, ..., p - 1 we have that $x^{p-1} \equiv 1 \pmod{p}$

This suggests that we might be able to deduce whether N is a prime by looking at whether $x^{p-1} \not\equiv 1 \pmod{N}$ for some choice of x. Let's choose x at random!

Fermat's Primality Test

Choose *x* uniformly at random from all x = 1, ..., N - 1. **Return** "prime" if $x^{N-1} \equiv 1 \pmod{N}$, otherwise return "composite"

Recall: Composite N and Carmichael numbers

Let's say input was composite number N = 9. All arithmetic here is mod 9.

1 ⁸	≡	1			
2 ⁸	≡	4	≢	1	
3 ⁸	≡	0	≢	1	
4 ⁸	≡	7	≢	1	
5 ⁸	≡	7	≢	1	
6 ⁸	≡	0	≢	1	
7 ⁸	≡	4	≢	1	
8 ⁸	≡	1			

Out of 8 choices for a random $x \in \{1, ..., 8\}$, only 2 of them would lead Fermat's test to erroneously state that 9 is a prime! Fermat's test would have been correct with prob 0.75!

There are rare exceptions: There are composite numbers *N* for which $x^{N-1} \equiv 1 \pmod{N}$ for many *x*s.

Carmichael numbers:

Composite number N for which $x^{N-1} \equiv 1 \pmod{N}$ for all x that's coprime with N.

Correctness of the Primality Test

Theorem: Assume that *N* is a composite, but not Carmichael number. Then with prob > 1/2 Fermat's outputs "composite". i.e. $x^{N-1} \not\equiv 1 \pmod{N}$ for at least half of x = 1, ..., N - 1

Correctness of the Primality Test (cont.)

We proved that for every **bad** b_i (for which $b_i^{N-1} \equiv 1 \pmod{N}$) there is a distinct **good** $g_i = b_i a$ (for which $g_i^{N-1} \not\equiv 1 \pmod{N}$)

Primality Testing through the ages

200 BC: Eratosthenes (Greek polymath) described the *prime number sieve* for finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what we discussed but one more idea to deal with Carmichael numbers)

1977 2002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time *deterministic* algorithm for primality testing (de-randomizing one of their earlier algorithms from 1999)

Online Algorithms

1.56 0.78

Online Algorithms

So far, we studied algorithmic problems where,

- Input given in one whole
- We generate output in one whole

But for some algorithmic problems, we are faced with

- Input that is given to us piece-by-piece
- Making irrevocable decisions: can't wait to see the entire input, or future input depends on past and current decisions.

These are called online algorithms

(as opposed to offline)

Our focus: Algorithms for "online learning" that play a big role in Alg design, ML, etc.

Stock Market Predictions

Every day:

 \rightarrow Need to decide to invest or not.

→ I ask for advice from *"experts":* websites, influencers, and my toddler

 \rightarrow Experts recommend invest or not invest

 \rightarrow Market's up/down become clear after

End of the year:

→ Want investment decisions as best as the best experts would have recommended.

Online Routing

Every day:

 \rightarrow I need to decide which route to take to campus.

 \rightarrow Traffic is not a priori known

→ Only after I arrive on campus, I know how long my commute took me.

End of the year:

 \rightarrow Want my commute time to be short, as short as the best historical route.

Learning from Experts: Problem Setting

- There are *n* "experts" that have advice and opinion about each day
- Expert = someone with an opinion (but not necessarily correct)
- We want to make out own decision as to what's going to happen

	Wallstreet Journal	Co-worker	Motely Fool	TikTok Astrologer	My decision	Real outcome	
Day 1	down	up	up	up	up	up	

• Basic question: Is there a strategy that allows us to do nearly as well as best of these experts in hindsight?

Formalism:

There are *n* "experts", i = 1, ..., n and *T* days t = 1, ..., TOn each day t = 1, ..., T

- All experts *i* give me their *opinion* $o_i^{(t)}$ (binary, like Yes/No, or Up/Down)
- I make my prediction $guess^{(t)}$
- Afterwards, I see the real outcome *real*^(t), which can be worst-case
 →Happy if guessed correctly and sad if I made a mistake!

A Simpler Setting

What if at least one of these *n* experts is perfect (makes 0 mistakes!) We just don't know which ones are perfect a priori.

What's an algorithm that is guaranteed to make a small number of mistakes?

Idea: Never follow an expert that's already made a mistake.

Attempt 1: Follow 1*st* expert's advice until they make a mistake ... then follow the advice of the next expert who hasn't made a mistake yet, and repeat. **How well does this do?**

Halving Algorithm

Attempt 1: Every time Alg makes a mistake, we rule out 1 expert. Atempt 2: Every time Alg makes a mistake, we rule out many experts! How?

 \rightarrow Follow the majority vote of the active experts (those with 0 mistakes so far)

Halving Algorithm Let $E_1 = [n]$ //all experts are active For t = 1, ..., T• $guess^{(t)} \leftarrow Yes$ if at least half of the experts in E_t guess Yes • $E_{t+1} \leftarrow \left\{ i \in E_t \mid o_i^{(t)} = real^{(t)} \right\}$ //Remove experts who were wrong

Example of Halving Algorithm

	1	2	3	4	5	6	7	My decision	Real Outcome
Included in set E ₁ ?	\checkmark								

Theorem: Bound on # Mistakes of Halving When there is a perfect expert, Halving makes at most $\leq log_2(n)$ mistakes **Proof:** If we make a mistake at time *t*, majority of E_t were wrong $\Rightarrow |E_{t+1}| \leq \frac{1}{2} |E_t|$. After $log_2(n)$ mistakes, only one expert is left in the set.

Can we do better?

Theorem:

In the worst-case, any deterministic algorithm makes $log_2(n)$ mistakes

What if no perfect expert?

Halving completely rules an expert after their first mistake. →No perfect expert? Don't rule out someone after their first mistake.

Suppose we know that the best expert makes M mistakes

→Attempt 1: Run Halving M times back to back. After all experts are thrown away, restart Halving with all experts again.

→How many mistakes does Alg make?

Can we do better?

Halving Algorithm:

- A mistake disqualifies an expert and we took the majority of the remaining experts. **Weighted Majority Algorithm:**
- A mistake **lowers the weight** of an expert. (e.g., divide by 2)
- Predict with the **weighted** majority of the experts.

	1	2	3	4	5	6	7	My decision	Real Outcome
Weights at $t = 1$	1	1	1	1	1	1	1		

Weighted Majority Guarantees

Weighted Majority Algorithm is run using parameter $0 < \epsilon < 1$ Every time an expert makes a mistake, its weight is multiplied by $(1 - \epsilon)$

(Deterministic) Weighted Majority with parameter ϵ Initialize weights $w_i^{(1)} = 1$ for all $i \in [n]$. For t = 1, ..., TTake the weighted majority of the experts: $guess^{(t)} = \operatorname{argmax}_{y} \sum w_i^{(t)} \mathbf{1}(o_i^{(t)} = y)$ $i \in [n]$ For i = 1, ..., nIf $o_i^{(t)} \neq real^{(t)}$ then $w_i^{(t+1)} \leftarrow w_i^{(t)}(1-\epsilon)$, else $w_i^{(t+1)} \leftarrow w_i^{(t)}$.

Weighted Majority Guarantees

Discuss

Assume Weighted Majority with $\epsilon = 0.5$ made a mistake on round t, what it the total weight of experts at time t + 1 compared to the total weight of experts at time t? *a)* $W^{(t+)} \le W^{(t)}/2$ *c)* $W^{(t+1)} = n/2$ *b)* $W^{(t+1)} \le 3W^{(t)}/4$ *d)* $W^{(t+1)} \le W^{(t)}/4$

Assuming that expert i makes m_i mistakes, what is the weight of expert i when the algorithm quits?

a)
$$w_i^{(T+1)} = \left(\frac{1}{2}\right)^{m_i}$$
 b) $w_i^{(T+1)} = 1$ c) $w_i^{(T+1)} \le \left(\frac{3}{4}\right)^{m_i}$

Proof of Weighted Majority Algorithm

Theorem: Guarantees of Weighted Majority $\epsilon = 0.5$ For M: Algorithms # mistakes and OPT: best expert's # mistakes, the (Deterministic)weighted majority algorithm with $\epsilon = 0.5$ gets $M \le 2.4(log_2(n) + OPT)$.

How much do we regret?

 $Alg's \# mistakes \le 2.4(log_2(|H|) + OPT)$ is good if OPT is small.

 \rightarrow If best expert is wrong 5% of the time, we are wrong 12% of the time

 \rightarrow If best expert is wrong 25% of the time, we are wrong half the time!

It would have been nice, if instead $Alg's \# mistakes - OPT \leq small$

- → Ideally, smaller than o(T).
- \rightarrow On average over *T* timesteps, we do nearly as well as the best expert.

Idea: Smoothly transition between predicting Yes or No based on the weights. →Weighted majority: 49% Yes, 51% No, we predict No

Randomized Weighted majority:

 \rightarrow If 49% Yes, 51% No, we predict Yes with 0.49 prob and No with 0.51 prob.

→ We can also use less aggressive ϵ .

Randomized Weighted Majority

Randomized Weighted Majority Algorithm with parameter $0 < \epsilon < 1$ Every time an expert makes a mistake, its weight is multiplied by $(1 - \epsilon)$

Randomized Weighted Majority with parameter ϵ Initialize weights $w_i^{(1)} = 1$ for all $i \in [n]$. For $t = 1, \dots T$ Guess with probability proportional to the weighted majority: $guess^{(t)} \leftarrow y \text{ with prob.} \frac{1}{W^{(t)}} \sum w_i^{(t)} \mathbf{1} \left(o_i^{(t)} = y \right)$ $i \in [n]$ For $i = 1, \dots, n$ If $o_i^{(t)} \neq real^{(t)}$ then $w_i^{(t+1)} \leftarrow w_i^{(t)}(1-\epsilon)$, else $w_i^{(t+1)} \leftarrow w_i^{(t)}$.

Randomized Weighted Majority

Theorem: Guarantees of Weighted Majority ϵ

For M: Algorithms # mistakes and OPT: best expert's # mistakes, the randomized weighted majority algorithm with ϵ gets

$$\mathbb{E}[M] \le (1+\epsilon)OPT + \frac{1}{\epsilon}\log_2(n).$$

For
$$\epsilon = \sqrt{\frac{\log_2(n)}{OPT}}$$
, get $\mathbb{E}[M] \le OPT + 2\sqrt{T \log_2(n)}$

Beyond Binary Guesses and Outcomes

We can extend this to non-binary general outcomes and predictions

We want to take one of n actions, each one is like an "expert" E.g., each s-t path is one action/expert.

- → Each action *i* has has some cost at time *t*, called $c_i^{(t)} \in [0,1]$ E.g., The traffic of the *i*th s-t path at time *t*.
- \rightarrow Alg plays action i_t at time t, perhaps randomly

 \rightarrow We see **cost** of all actions after we take an action

We want the total cost of the algorithm not to be much larger than the cost of the best action, in hindsight.

→ Want small regret REGRET := $\sum_{t=1}^{T} c_{i_t}^{(t)} - \min_{i^*} \sum_{t=1}^{T} c_{i^*}^{(t)} \le small$ Total cost of Alg's choices Total cost of the best action

Multiplicative Weight Update (MWU) Algorithm!

Multiplicative Weight Update with parameter ϵ Initialize weights $w_i^{(1)} = 1$ for all $i \in [n]$.For t = 1, ..., TPlay action i with probability $\frac{w_i^{(t)}}{w^{(t)}}$ Observe costs $c_i^{(t)}$ for all i = 1, ..., n

Observe costs $c_i^{(r)}$ for all i = 1, ..., rFor i = 1, ..., n, let $w_i^{(t+1)} \leftarrow w_i^{(t)}(1 - \epsilon c_i^t)$

Theorem: For an appropriate choice of $\epsilon = \sqrt{\log_2(n)/T}$, the MWU Algorithm has $\mathbb{E}[\text{Regret}] \le O\left(\sqrt{T \log_2(n)}\right)$.

Next Lecture

Will be the last one!

We will see how useful online algorithms are!

And we will recap what we learned in this semester!