
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 25
Online Algorithms 1

Announcements

This week is the last week of class
→Last week with discussion sections
→Last required homework is out this week, we will have an optional homework

next week

Final exam is on Monday May 8, at 11:30am

Please fill out the course eval form!

Recall: Primality Test
Primality Testing: Given a number 𝑁, is it a prime number?

If 𝑝 is a prime, then for all 𝑥 = 1, … , 𝑝 − 1 we have that 𝑥𝑝−1 ≡ 1 (mod 𝑝)

Fermat’s Little Theorem

This suggests that we might be able to deduce whether 𝑁 is a prime by looking at
whether 𝑥𝑝−1 ≢ 1 (mod N) for some choice of 𝑥. Let’s choose 𝑥 at random!

Choose 𝑥 uniformly at random from all 𝑥 = 1, … , 𝑁 − 1.
Return “prime” if 𝑥𝑁−1 ≡ 1 (mod 𝑁) , otherwise return “composite”

Fermat’s Primality Test

Recall: Composite 𝑁 and Carmichael numbers
Let’s say input was composite number 𝑁 = 9. All arithmetic here is mod 9.

18 ≡ 1

28 ≡ 4 ≢ 1

38 ≡ 0 ≢ 1

48 ≡ 7 ≢ 1

58 ≡ 7 ≢ 1

68 ≡ 0 ≢ 1

78 ≡ 4 ≢ 1

88 ≡ 1

Out of 8 choices for a random 𝑥 ∈ {1, … , 8}, only 2 of them would
lead Fermat’s test to erroneously state that 9 is a prime! Fermat’s
test would have been correct with prob 0.75!

Carmichael numbers:
Composite number 𝑁 for which 𝑥𝑁−1 ≡
1 (mod 𝑁) for all 𝑥 that’s coprime with 𝑁.

There are rare exceptions: There are composite numbers 𝑁 for
which 𝑥𝑁−1 ≡ 1 (mod 𝑁) for many 𝑥s.

Correctness of the Primality Test
Theorem: Assume that 𝑁 is a composite, but not Carmichael number. Then with
prob > 1/2 Fermat’s outputs “composite”. i.e.

𝑥𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁) for at least half of 𝑥 = 1, … , 𝑁 − 1

Correctness of the Primality Test (cont.)

We proved that for every bad 𝑏𝑖 (for which 𝑏𝑖
𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁)) there is a distinct

good 𝑔𝑖=𝑏𝑖𝑎 (for which 𝑔𝑖
𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁))

Primality Testing through the ages

200 BC: Eratosthenes (Greek polymath) described the prime number sieve for
finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what
we discussed but one more idea to deal with Carmichael numbers)

1977 …. 2002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time deterministic algorithm
for primality testing (de-randomizing one of their earlier algorithms from 1999)

Online Algorithms

Online Algorithms
So far, we studied algorithmic problems where,

• Input given in one whole

• We generate output in one whole

But for some algorithmic problems, we are faced with

• Input that is given to us piece-by-piece

• Making irrevocable decisions: can’t wait to see the entire input, or future input
depends on past and current decisions.

These are called online algorithms
(as opposed to offline)

Our focus: Algorithms for “online learning” that play a big role in Alg design, ML, etc.

Stock Market Predictions

Every day:

→Need to decide to invest or not.

→ I ask for advice from “experts”:
websites, influencers, and my toddler

→Experts recommend invest or not invest

→Market’s up/down become clear after

End of the year:

→ Want investment decisions as best as
the best experts would have
recommended.

Online Routing

Every day:

→I need to decide which route to take to
campus.

→ Traffic is not a priori known

→ Only after I arrive on campus, I know
how long my commute took me.

End of the year:

→ Want my commute time to be short, as
short as the best historical route.

Learning from Experts: Problem Setting
• There are 𝑛 “experts” that have advice and opinion about each day

• Expert = someone with an opinion (but not necessarily correct)

• We want to make out own decision as to what’s going to happen

Wallstreet Journal Co-worker Motely Fool TikTok
Astrologer

My
decision

Real
outcome

Day 1 down up up up up up

Day 2 down up up down up down

Day 3 up up down down down down

Day 4 up down down up up up

• Basic question: Is there a strategy that allows us to do nearly as well as best of these
experts in hindsight?

Formalism:
There are 𝑛 “experts”, 𝑖 = 1, … , 𝑛 and 𝑇 days 𝑡 = 1, … , 𝑇

On each day 𝑡 = 1, … , 𝑇

• All experts 𝑖 give me their opinion 𝑜𝑖
(𝑡)

 (binary, like Yes/No, or Up/Down)

• I make my prediction 𝑔𝑢𝑒𝑠𝑠(𝑡)

• Afterwards, I see the real outcome 𝑟𝑒𝑎𝑙(𝑡), which can be worst-case

→Happy if guessed correctly and sad if I made a mistake!

My goal: # of mistakes
my Alg makes

≲
of mistakes the

best expert

𝑡=1

𝑇

𝟏 𝑔𝑢𝑒𝑠𝑠 𝑡 ≠ 𝑟𝑒𝑎𝑙 𝑡 ≲ min
𝑖

𝑡=1

𝑇

𝟏 𝑜𝑖
(𝑡)

≠ 𝑟𝑒𝑎𝑙 𝑡

A Simpler Setting
What if at least one of these 𝑛 experts is perfect (makes 0 mistakes!) We just don’t
know which ones are perfect a priori.

What’s an algorithm that is guaranteed to make a small number of mistakes?

Idea: Never follow an expert that’s already made a mistake.

Attempt 1: Follow 1𝑠𝑡 expert’s advice until they make a mistake … then follow the
advice of the next expert who hasn’t made a mistake yet, and repeat.
How well does this do?

Halving Algorithm
Attempt 1: Every time Alg makes a mistake, we rule out 1 expert.

Atempt 2: Every time Alg makes a mistake, we rule out many experts!

How?

→ Follow the majority vote of the active experts (those with 0 mistakes so far)

Let 𝐸1 = [𝑛] //all experts are active

For 𝑡 = 1, … , 𝑇

• 𝑔𝑢𝑒𝑠𝑠(𝑡) ← 𝑌𝑒𝑠 if at least half of the experts in 𝐸𝑡 guess Yes

• 𝐸𝑡+1 ← 𝑖 ∈ 𝐸𝑡 ∣ 𝑜𝑖
𝑡 = 𝑟𝑒𝑎𝑙(𝑡) //Remove experts who were wrong

Halving Algorithm

Example of Halving Algorithm

When there is a perfect expert, Halving makes at most ≤ 𝒍𝒐𝒈𝟐(𝒏) mistakes

Proof: If we make a mistake at time 𝑡, majority of 𝐸𝑡 were wrong → 𝐸𝑡+1 ≤
1

2
|𝐸𝑡|. After

log2(𝑛) mistakes, only one expert is left in the set.

Theorem: Bound on # Mistakes of Halving

1 2 3 4 5 6 7 My decision Real Outcome

Included in set E1? ✓ ✓ ✓ ✓ ✓ ✓ ✓

Opinions on day 𝑡 = 1 Y Y N Y Y Y N Y N

Included in set E2? ✓ ✓ ✓

Opinions on day 𝑡 = 2 Y Y N Y Y

Included in set E3? ✓ ✓

Opinions on day 𝑡 = 3 N N N Y

Included in set E4? ✓ ✓

Can we do better?
Theorem:

In the worst-case, any deterministic algorithm makes 𝒍𝒐𝒈𝟐(𝒏) mistakes

What if no perfect expert?
Halving completely rules an expert after their first mistake.

→No perfect expert? Don’t rule out someone after their first mistake.

Suppose we know that the best expert makes M mistakes

→Attempt 1: Run Halving M times back to back. After all experts are
thrown away, restart Halving with all experts again.

→How many mistakes does Alg make?

Can we do better?
Halving Algorithm:

• A mistake disqualifies an expert and we took the majority of the remaining experts.

Weighted Majority Algorithm:

• A mistake lowers the weight of an expert. (e.g., divide by 2)

• Predict with the weighted majority of the experts.

1 2 3 4 5 6 7 My decision Real Outcome

Weights at 𝑡 = 1 1 1 1 1 1 1 1

Opinions on day 𝑡 = 1 Y Y N Y N Y N Y N

Included in set E2? ½ ½ 1 ½ 1 ½ 1

Opinions on day 𝑡 = 2 N N Y N Y N N N Y

Included in set E3? ¼ ¼ 1 ¼ 1 ¼ ½

Weighted Majority Guarantees

Initialize weights 𝑤𝑖
(1)

= 1 for all 𝑖 ∈ [𝑛].

For 𝑡 = 1, … 𝑇
 Take the weighted majority of the experts:

𝑔𝑢𝑒𝑠𝑠(𝑡) = argmax𝑦

𝑖∈[𝑛]

𝑤𝑖
(𝑡)

𝟏(𝑜𝑖
(𝑡)

= 𝑦)

For 𝑖 = 1, … , 𝑛

 If 𝑜𝑖
(𝑡)

≠ 𝑟𝑒𝑎𝑙(𝑡) then 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
𝑡

(1 − 𝜖), else 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
(𝑡)

.

(Deterministic) Weighted Majority with parameter 𝝐

Weighted Majority Algorithm is run using parameter 0 < 𝜖 < 1
Every time an expert makes a mistake, its weight is multiplied by 1 − 𝜖

Weighted Majority Guarantees

Assume Weighted Majority with 𝜖 = 0.5 made a mistake on round 𝑡, what it the total
weight of experts at time 𝑡 + 1 compared to the total weight of experts at time 𝑡?

Discuss

a) 𝑊(𝑡+) ≤ Τ𝑊(𝑡) 2

b) 𝑊(𝑡+1) ≤ Τ3𝑊(𝑡) 4

c) 𝑊(𝑡+1) = Τ𝑛 2

d) 𝑊(𝑡+1) ≤ Τ𝑊(𝑡) 4

Assuming that expert 𝑖 makes 𝑚𝑖 mistakes, what is the weight of expert 𝑖 when the
algorithm quits?

a) 𝑤𝑖
(𝑇+1)

=
1

2

𝑚𝑖 b) 𝑤𝑖
(𝑇+1)

= 1 c) 𝑤𝑖
(𝑇+1)

≤
3

4

𝑚𝑖

Proof of Weighted Majority Algorithm

For M: Algorithms # mistakes and OPT: best expert′s # mistakes, the (Deterministic)

weighted majority algorithm with 𝜖 = 0.5 gets

𝑀 ≤ 2.4(𝑙𝑜𝑔2 𝑛 + 𝑂𝑃𝑇) .

Theorem: Guarantees of Weighted Majority 𝝐 = 0.5

How much do we regret?
𝐴𝑙𝑔′𝑠 # 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠 ≤ 2.4(𝑙𝑜𝑔2 𝐻 + 𝑂𝑃𝑇) is good if 𝑂𝑃𝑇 is small.

→If best expert is wrong 5% of the time, we are wrong 12% of the time

→If best expert is wrong 25% of the time, we are wrong half the time!

It would have been nice, if instead 𝐴𝑙𝑔′𝑠 # 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠 − 𝑂𝑃𝑇 ≤ 𝑠𝑚𝑎𝑙𝑙

→ Ideally, smaller than 𝑜 𝑇 .

→On average over 𝑇 timesteps, we do nearly as well as the best expert.

Idea: Smoothly transition between predicting Yes or No based on the weights.

→Weighted majority: 49% Yes, 51% No, we predict No

Randomized Weighted majority:

→If 49% Yes, 51% No, we predict Yes with 0.49 prob and No with 0.51 prob.

→ We can also use less aggressive 𝜖.

Randomized Weighted Majority

Initialize weights 𝑤𝑖
(1)

= 1 for all 𝑖 ∈ [𝑛].

For 𝑡 = 1, … 𝑇
 Guess with probability proportional to the weighted majority:

𝑔𝑢𝑒𝑠𝑠(𝑡) ← 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.
1

𝑊(𝑡)

𝑖∈[𝑛]

𝑤𝑖
(𝑡)

𝟏 𝑜𝑖
𝑡

= 𝑦

For 𝑖 = 1, … , 𝑛

 If 𝑜𝑖
(𝑡)

≠ 𝑟𝑒𝑎𝑙(𝑡) then 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
𝑡

(1 − 𝜖), else 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
(𝑡)

.

Randomized Weighted Majority with parameter 𝝐

Randomized Weighted Majority Algorithm with parameter 0 < 𝜖 < 1
Every time an expert makes a mistake, its weight is multiplied by (1 − 𝜖)

Randomized Weighted Majority

For M: Algorithms # mistakes and OPT: best expert′s # mistakes, the randomized

weighted majority algorithm with 𝜖 gets

𝔼 𝑀 ≤ 1 + 𝜖 𝑂𝑃𝑇 +
1

𝜖
log2 𝑛 .

For 𝜖 =
log2(𝑛)

𝑂𝑃𝑇
, get 𝔼 𝑀 ≤ 𝑂𝑃𝑇 + 2 𝑇 log2(𝑛)| .

Theorem: Guarantees of Weighted Majority 𝜖

Beyond Binary Guesses and Outcomes
We can extend this to non-binary general outcomes and predictions

We want to take one of 𝑛 actions, each one is like an “expert”

→Each action 𝑖 has has some cost at time 𝑡, called 𝑐𝑖
(𝑡)

∈ [0,1]

→ Alg plays action 𝑖𝑡 at time 𝑡, perhaps randomly

→We see cost of all actions after we take an action

We want the total cost of the algorithm not to be much larger than the cost of the best
action, in hindsight.

→ Want small regret

E.g., each s-t path is one action/expert.

E.g., The traffic of the 𝑖𝑡ℎ s-t path at time 𝑡.

𝑡=1

𝑇

𝑐𝑖𝑡

(𝑡)
− min

𝑖∗

𝑡=1

𝑇

𝑐𝑖∗
𝑡

≤ 𝑠𝑚𝑎𝑙𝑙

Total cost of Alg’s choices Total cost of the best action

REGRET ≔

Multiplicative Weight Update (MWU) Algorithm!

Initialize weights 𝑤𝑖
(1)

= 1 for all 𝑖 ∈ [𝑛].

For 𝑡 = 1, … 𝑇

 Play action 𝑖 with probability
𝑤𝑖

𝑡

𝑊(𝑡)

Observe costs 𝑐𝑖
𝑡

 for all 𝑖 = 1, … , 𝑛

For 𝑖 = 1, … , 𝑛 ,

 let 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
𝑡

(1 − 𝜖𝑐𝑖
𝑡)

Multiplicative Weight Update with parameter 𝝐

Theorem: For an appropriate choice of 𝜖 = log2(𝑛) /𝑇, the MWU Algorithm has

𝔼 Regret ≤ 𝑂 𝑇 log2 𝑛 .

Will be the last one!

We will see how useful online algorithms are!

And we will recap what we learned in this semester!

Next Lecture

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recall: Primality Test
	Slide 4: Recall: Composite N and Carmichael numbers
	Slide 5: Correctness of the Primality Test
	Slide 7: Correctness of the Primality Test (cont.)
	Slide 8: Primality Testing through the ages
	Slide 9: Online Algorithms
	Slide 10: Online Algorithms
	Slide 11: Stock Market Predictions
	Slide 12: Learning from Experts: Problem Setting
	Slide 13: Formalism:
	Slide 14: A Simpler Setting
	Slide 15: Halving Algorithm
	Slide 16: Example of Halving Algorithm
	Slide 17: Can we do better?
	Slide 18: What if no perfect expert?
	Slide 19: Can we do better?
	Slide 20: Weighted Majority Guarantees
	Slide 21: Weighted Majority Guarantees
	Slide 22: Proof of Weighted Majority Algorithm
	Slide 23: How much do we regret?
	Slide 24: Randomized Weighted Majority
	Slide 25: Randomized Weighted Majority
	Slide 26: Beyond Binary Guesses and Outcomes
	Slide 27: Multiplicative Weight Update (MWU) Algorithm!
	Slide 28: Next Lecture

