CS170
Efficient Algorithms and Intractable Problems

Lecture 25
Online Algorithms 1

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

This week is the last week of class
- Last week with discussion sections

—> Last required homework is out this week, we will have an optional homework
next week

|
Final exam is on Monday Mayﬁ 11:30am

Please fill out the course eval form!

Recall: Primality Test

Primality Testing: Given a number N, is it a prime number?

Fermat'’s Little Theorem

If p is a prime, then forall x = 1, ...,p — 1 we have that x?~! = 1 (mod p)

This suggests that we might be able to deduce whether N is a prime by looking at
whether x?~1 # 1 (mod N) for some choice of x. Let’s choose x at random!

Fermat’'s Primality Test

Choose x uniformly at random fromallx =1, ..., N — 1.
Return “prime” if x =1 = 1 (mod N), otherwise return “composite”

Recall: Composite N and Carmichael numbers

Let’s say input was composite number N = 9. All arithmetic here is mod 9.

e ff{ Out of 8 choices for a random x € {1, ..., 8}, only 2 of them would
=1 lead Fermat's test to erroneously state that 9 is a prime! Fermat's
28 =4=%1¢ test would have been correct with prob 0.75!

33=0%1
3 _) There are rare exceptions: There are composite numbers N for
/ Y =T7F 1/> which x¥~! = 1 (mod N) for many xs.

58=7=%1
68 =0=1 Carmichael numbers:

t | Composite number N for which(x”‘1 =
7°=4#1 1 (mod N) Ior all x that’s coprime with N.
88 = 1 —

)

_ _ N=prine = gl = privas/
Correctness of the Primality Test

Theorem: Assume that N is a composite, but not Carmichael number. Then with

@;1/2 Fermat’s outputs “composite”. i.e. 1 J
N-1 ly QY€ Qo9
sél(m:n.gi.[N) for atleast halfof x = 1,..,N —1—> "

DN is not Cavmichael =>3 & oprime with N %4- A (et N)
\Q_ (ae-fm_mt“’\?\\ _;'_)a O\, }g% QKB«jL

N-| fx_i .
9.) lﬂl@_am ba.a b‘ maws b, #LCWM)) =3 a g 9 o, F!)

N A }.}...l
— 1 aned N.
%)’F(@b = 0 L{‘Z‘ %)
3) MW{‘P"E\ fom b ’ﬂ'ji 1S one-— %—ane, T bibﬁ) => 4, $30
l ' X &\ . LJ
R TOPR 9= 9, bacx\o "0\1“3—-’)9
e :1_

ob s ghl‘;,J

Correctness of the Primality Test (cont.)

We proved that for every bad b; (for which b)Y~ = 1 (mod N)) there is a distinct
good g,=b;a (for which g!'~* # 1 (mod N))

Primality Testing through the ages

200 BC: Eratosthenes (Greek polymath) described the prime number sieve for
finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what
we discussed but one more idea to deal with Carmichael numbers)

19772002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time deterministic algorithm
for primality testing (de-randomizing one of their earlier algorithms from 1999)

Online Algorithms

So far, we studied algorithmic problems where,
* Input given in one whole

* We generate output in one whole

But for some algorithmic problems, we are faced with
 Input that is given to us piece-by-piece

* Making irrevocable decisions: can’t wait to see the entire input, or future input
depends on past and current decisions.

These are called online algorithms
(as opposed to offline)

Our focus: Algorithms for “online learning” that play a big role in Alg design, ML, etc.

Stock Market Predictions Online Routing

Every day: Every day:

—>Need to decide to invest or not. -1 need to decide which route to take to
—> [ask for advice from “experts”: campus.

websites, influencers, and my toddler —> Traffic is not a priori known

- Experts recommend invest or not invest | = Only after I arrive on campus, I know

—>Market’s up/down become clear after how long my commute took me.

End of the year:

- Want investment decisions as best as End of the year:

the best experts would have - Want my commute time to be short, as
recommended. short as the best historical route.

Learning from Experts: Problem Setting

* There are n “experts” that have advice and opinion about each day

* Expert = someone with an opinion (but not necessarily correct)

* We want to make out own decision as to what's going to happen

Day 1
Day 2
Day 3
Day 4

Wallstreet Journal | Co-worker | Motely Fool | TikTok My Real
Astrologer |decision |outcome
down up up up up up
down up up down up down
up up down down down down
up down down up up up

* Basic question: Is there a strategy that allows us to do nearly as well as best of these
experts in hindsight?

Formalism:

There are n “experts”, i = 1,...,nand T dayst =1, ...,T
Oneachdayt=1,..,T i gup
 All experts i give me their opinion 0() (binary, like Yes/No, or Up/Down)

Al
* | make my prediction guess® Va T &‘%:6 E

o Afterwards, I see the real outcome real®), which can be worst-case

—>Happy if guessed correctly and sad if | made a mistake! —
< A smdl
My goal: # of mistakes 2 # of mistakes the T
my Alg makes - best expert -
A (A \

z 1(guesst = real(t))/v, mmZ 1) % real(t))

A Simpler Setting

What if at least one of these n experts is perfect (makes 0 mistakes!) We just don’t
know which ones are perfect a priori.

What'’s an algorithm that is guaranteed to make a small number of mistakes?

Attempt 1: Follow 1st expert’s advice until they make a mistake ... then follow the
advice of the next expert who hasn’'t made a mistake yet, and repeat.
How well does this do?

Can atake N awislabs
\9417 Mo gnave.

Halving Algorithm

Attempt 1: Every time Alg makes a mistake, we rule out 1 expert.

Atempt 2: Every time Alg makes a mistake, we rule out many experts!
How?

—> Follow the majority vote of the active experts (those with 0 mistakes so far)

e Halving Algorithm ™~
Le@ = [n] //all experts are active
Fort=1,.. T
» guesst) « Yes iff at least half of the experts in E, guess Yes
e Epq {i €E, | ol-(t) = real(t)} //Remove experts who were wrong
K-Er

_/

Example of Halvgg Algorithm

1 3 4 5 6 7 | My decision | Real Outcome

t%L Included in set E;? JVIivIivIivI|iv]|v]|V

Opinionsondayt =1 | Y Y N Y N Y N Y/ N
4= 2 Included in set E,? v v v)
Opinionson day t = 2 Y Y m Y Y
Included in set E3? v v =
Opinionson day t = 3 N N N m
Included in set E,? v v —
s Theorem: Bound on # Mistakes of Halving

When there is a perfect expert, Halving makes at most < log,(n) mistakes

Proof: Ifw\eamake a mistake at time t, majority of E, were wrong =2 |E,,{| < % |E.|. After

log, (n) mistakes, only one expertis left in the set.o,

Canwe do better? = 2%¢ wget-12

Theorem: . 51 Ty,) o
In the worst-case, any deterministic algorithm makes log, (n) mistaj

L+J < TN -

o,) Y- - .\ i
AN UP*’N
iT&Eﬂ iﬂ“ﬂ l . \,

What if no perfect expert?

Halving completely rules an expert after their first mistake.
- No perfect expert? Don’t rule out someone after their first mistake.

Suppose we know that the best expert makes M mistakes

- Attempt 1: Run Halving M times back to back. After all experts are
thrown away, restart Halving with all exp}g‘fjjgg,m.
- How many mistakes does Alg make?l o = 2
o i ad ghane P«lj lon make ﬁlaaf»ajt w&k&a}

o) oH-phorty < M s ded Suis),
41 phewe Wﬁl—w 2nd

< (M) (leg)

D \ (n)" M) —= DO Mt ()
Can we do better? Sel® > 0l)
Halving Algorithm:

* A mistake disqualifies an expert and we took the majority of the remaining experts.
Weighted Majority Algorithm:

* A mistake lowers the weight of an expert. (e.g., divide by 2)
* Predict with the weighted majority of the experts.

1 2 3 4 5 6 7 | My decision | Real Outcome
Weightsatt =1 1 1 1 1 1 1 1
Opinionsonday t =1 Y Y N Y N Y N Y N
Included in set E,? 1 1 1
Opinionsondayt =2 | N N Y N Y N N N Y
Included in set E3? s | Ya 1 Ya 1 Va

Weighted Majority Algorithm

Weighted Majority Algorithm is run using parameter 0 < e <1

Every time an expert makes a mistake, its weight is multiplied by (1 — €)

(Deterministic) Weighted Majority with parameter €

Initialize weights Wl-(l) = 1foralli € [n].
Fort=1,..T
Take the weighted majority of the experts:

guesst) = argmax,, 2 Wl-(t) 1(0i(t) =v)

l€[n]
Fori=1, ...,n

(t+1)

| (t+1) (O

9 If ol.(t) + real® then w - Wi(t)(l — €), else w, i

~

'J

_ o WY ok weigl
Weighted Majority Guarantees itz ™

4 ,. c

Discuss W _ ey
ﬁssume Weighted Majority with e = 0.5 made a mistake on round t, ﬁhat it the total)

weight of experts at time t + 1 compared to the total weight of experts at time t?

a) Wttt <w® /2 c) Wtth =n/?
W) < 3w /4 d) WD < w® /4
3 D
L
O Wi \7’&\5) + t N

\]
R A R R AR/
Assuming that expert i makes m; mistakes, what is the weight of expert i when the

algorithm quits? —

a) Wi(T+) _ (%)mi b) Wi(T+1) _1 o) Wi(TH) - G)mi

L, ™
NS W, - /
) ‘domidake "7 Zufomsh - - - o, Y

Proof of Weighted Majority Algorithm

-~ Theorem: Guarantees of Weighted Majority € = 0.5 ~
For M: Algorithms # mistakes and OPT: best expert’'s # mistakes, the (Deterministic)

weighted majority algorithm with € = 0.5 gets
M < 2.4(log, @™ + OPT).

_))
oY’ X 'H'-k ; ¥ OPT y
Pk Lo i e oﬁ;;»iw (5T B el o @
Y Wee) (PG —> (W Y,) = W
@E_;‘%":"g My evg \| e JW =D MY makes Mamsiake (_3;)\!0
W= n PT n oPT 0

D, (331_) é(%_) N :> P\ L (Z‘/:Q > N2y (1-ﬁ$)*QPT)
\ l# 0Y) xofy 7\

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recall: Primality Test
	Slide 4: Recall: Composite N and Carmichael numbers
	Slide 5: Correctness of the Primality Test
	Slide 7: Correctness of the Primality Test (cont.)
	Slide 8: Primality Testing through the ages
	Slide 9: Online Algorithms
	Slide 10: Online Algorithms
	Slide 11: Stock Market Predictions
	Slide 12: Learning from Experts: Problem Setting
	Slide 13: Formalism:
	Slide 14: A Simpler Setting
	Slide 15: Halving Algorithm
	Slide 16: Example of Halving Algorithm
	Slide 17: Can we do better?
	Slide 18: What if no perfect expert?
	Slide 19: Can we do better?
	Slide 20: Weighted Majority Algorithm
	Slide 21: Weighted Majority Guarantees
	Slide 22: Proof of Weighted Majority Algorithm

