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Announcements

This week is the last week of class
→Last week with discussion sections
→Last required homework is out this week, we will have an optional homework 

next week

Final exam is on Monday May 8, at 11:30am

Please fill out the course eval form!



Recall: Primality Test
Primality Testing: Given a number 𝑁, is it a prime number? 

If 𝑝 is a prime, then for all 𝑥 = 1, … , 𝑝 − 1 we have that 𝑥𝑝−1 ≡ 1 (mod 𝑝)

Fermat’s Little Theorem

This suggests that we might be able to deduce whether 𝑁 is a prime by looking at 
whether 𝑥𝑝−1 ≢ 1 (mod N) for some choice of 𝑥. Let’s choose 𝑥 at random!

Choose 𝑥 uniformly at random from all 𝑥 = 1, … , 𝑁 − 1. 
Return “prime” if 𝑥𝑁−1 ≡ 1 (mod 𝑁) , otherwise return “composite”

Fermat’s Primality Test



Recall: Composite 𝑁 and Carmichael numbers
Let’s say input was composite number 𝑁 = 9. All arithmetic here is mod 9. 

18 ≡ 1 

28 ≡ 4 ≢ 1 

38 ≡ 0 ≢ 1 

48 ≡ 7 ≢ 1 

58 ≡ 7 ≢ 1 

68 ≡ 0 ≢ 1 

78 ≡ 4 ≢ 1 

88 ≡ 1 

Out of 8 choices for a random 𝑥 ∈ {1, … , 8}, only 2 of them would 
lead Fermat’s test to erroneously state that 9 is a prime! Fermat’s 
test would have been correct with prob 0.75!

Carmichael numbers:
Composite number 𝑁 for which 𝑥𝑁−1 ≡
1 (mod 𝑁) for all 𝑥 that’s coprime with 𝑁. 

There are rare exceptions: There are composite numbers 𝑁 for 
which 𝑥𝑁−1 ≡ 1 (mod 𝑁) for many 𝑥s.



Correctness of the Primality Test
Theorem: Assume that 𝑁 is a composite, but not Carmichael number. Then with 
prob > 1/2 Fermat’s outputs “composite”. i.e.

𝑥𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁) for at least half of 𝑥 = 1, … , 𝑁 − 1



Correctness of the Primality Test (cont.)

We proved that for every bad 𝑏𝑖  (for which 𝑏𝑖
𝑁−1 ≡ 1 (𝑚𝑜𝑑 𝑁)) there is a distinct 

good 𝑔𝑖=𝑏𝑖𝑎 (for which 𝑔𝑖
𝑁−1 ≢ 1 (𝑚𝑜𝑑 𝑁)) 



Primality Testing through the ages

200 BC: Eratosthenes (Greek polymath) described the prime number sieve for 
finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what 
we discussed but one more idea to deal with Carmichael numbers)

1977 …. 2002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time deterministic algorithm 
for primality testing (de-randomizing one of their earlier algorithms from 1999)



Online Algorithms



Online Algorithms
So far, we studied algorithmic problems where, 

• Input given in one whole

• We generate output in one whole 

But for some algorithmic problems, we are faced with

• Input that is given to us piece-by-piece

• Making irrevocable decisions: can’t wait to see the entire input, or future input 
depends on past and current decisions.

These are called online algorithms 
(as opposed to offline)

Our focus: Algorithms for “online learning” that play a big role in Alg design, ML, etc. 



Stock Market Predictions

Every day: 

→Need to decide to invest or not.

→ I ask for advice from “experts”: 
websites, influencers, and my toddler

→Experts recommend invest or not invest

→Market’s up/down become clear after

End of the year:

→ Want investment decisions as best as 
the best experts would have 
recommended.

Online Routing

Every day:

→I need to decide which route to take to 
campus.

→ Traffic is not a priori known

→ Only after I arrive on campus, I know 
how long my commute took me.

End of the year:

→ Want my commute time to be short, as 
short as the best historical route.



Learning from Experts: Problem Setting
• There are 𝑛 “experts” that have advice and opinion about each day

• Expert = someone with an opinion (but not necessarily correct)

• We want to make out own decision as to what’s going to happen

Wallstreet Journal Co-worker Motely Fool TikTok 
Astrologer

My 
decision

Real 
outcome

Day 1 down up up up up up

Day 2 down up up down up down

Day 3 up up down down down down

Day 4 up down down up up up

• Basic question: Is there a strategy that allows us to do nearly as well as best of these 
experts in hindsight?



Formalism:
There are 𝑛 “experts”, 𝑖 = 1, … , 𝑛 and 𝑇 days 𝑡 = 1, … , 𝑇

On each day 𝑡 = 1, … , 𝑇

• All experts 𝑖 give me their opinion 𝑜𝑖
(𝑡)

 (binary, like Yes/No, or Up/Down)

• I make my prediction 𝑔𝑢𝑒𝑠𝑠(𝑡)

• Afterwards, I see the real outcome 𝑟𝑒𝑎𝑙(𝑡), which can be worst-case

→Happy if guessed correctly and sad if I made a mistake!

My goal: # of mistakes 
my Alg makes

≲
# of mistakes the 

best expert



𝑡=1

𝑇

𝟏 𝑔𝑢𝑒𝑠𝑠 𝑡 ≠ 𝑟𝑒𝑎𝑙 𝑡 ≲ min
𝑖



𝑡=1

𝑇

𝟏 𝑜𝑖
(𝑡)

≠ 𝑟𝑒𝑎𝑙 𝑡



A Simpler Setting
What if at least one of these 𝑛 experts is perfect (makes 0 mistakes!) We just don’t 
know which ones are perfect a priori.

What’s an algorithm that is guaranteed to make a small number of mistakes?

Idea: Never follow an expert that’s already made a mistake. 

Attempt 1: Follow 1𝑠𝑡 expert’s advice until they make a mistake … then follow the 
advice of the next expert who hasn’t made a mistake yet, and repeat.
How well does this do?



Halving Algorithm
Attempt 1: Every time Alg makes a mistake, we rule out 1 expert.

Atempt 2: Every time Alg makes a mistake, we rule out many experts!

How?

→ Follow the majority vote of the active experts (those with 0 mistakes so far)

Let 𝐸1 = [𝑛]                                                    //all experts are active

For 𝑡 = 1, … , 𝑇

• 𝑔𝑢𝑒𝑠𝑠(𝑡) ← 𝑌𝑒𝑠 iff at least half of the experts in 𝐸𝑡 guess Yes

• 𝐸𝑡+1 ← 𝑖 ∈ 𝐸𝑡 ∣ 𝑜𝑖
𝑡 = 𝑟𝑒𝑎𝑙(𝑡)   //Remove experts who were wrong

Halving Algorithm



Example of Halving Algorithm

When there is a perfect expert, Halving makes at most  ≤ 𝒍𝒐𝒈𝟐(𝒏) mistakes

Proof: If we make a mistake at time 𝑡, majority of 𝐸𝑡 were wrong → 𝐸𝑡+1 ≤
1

2
|𝐸𝑡|. After 

log2(𝑛) mistakes, only one expert is left in the set.

Theorem: Bound on # Mistakes of Halving

1 2 3 4 5 6 7 My decision Real Outcome

Included in set E1? ✓ ✓ ✓ ✓ ✓ ✓ ✓

Opinions on day 𝑡 = 1 Y Y N Y N Y N Y N

Included in set E2? ✓ ✓ ✓

Opinions on day 𝑡 = 2 Y Y N Y Y

Included in set E3? ✓ ✓

Opinions on day 𝑡 = 3 N N N N

Included in set E4? ✓ ✓



Can we do better?
Theorem: 

In the worst-case, any deterministic algorithm makes 𝒍𝒐𝒈𝟐(𝒏) mistakes



What if no perfect expert?
Halving completely rules an expert after their first mistake.

→No perfect expert? Don’t rule out someone after their first mistake.

Suppose we know that the best expert makes M mistakes

→Attempt 1: Run Halving M times back to back. After all experts are 
thrown away, restart Halving with all experts again.

→How many mistakes does Alg make?



Can we do better?
Halving Algorithm:

• A mistake disqualifies an expert and we took the majority of the remaining experts.

Weighted Majority Algorithm:

• A mistake lowers the weight of an expert. (e.g., divide by 2)

• Predict with the weighted majority of the experts.

1 2 3 4 5 6 7 My decision Real Outcome

Weights at 𝑡 = 1 1 1 1 1 1 1 1

Opinions on day 𝑡 = 1 Y Y N Y N Y N Y N

Included in set E2? ½ ½ 1 ½ 1 ½ 1

Opinions on day 𝑡 = 2 N N Y N Y N N N Y

Included in set E3? ¼ ¼ 1 ¼ 1 ¼ ½



Weighted Majority Algorithm

Initialize weights 𝑤𝑖
(1)

= 1 for all 𝑖 ∈ [𝑛]. 

For 𝑡 = 1, … 𝑇
       Take the weighted majority of the experts:

𝑔𝑢𝑒𝑠𝑠(𝑡) = argmax𝑦 

𝑖∈[𝑛]

𝑤𝑖
(𝑡)

𝟏(𝑜𝑖
(𝑡)

= 𝑦)

For 𝑖 = 1, … , 𝑛 

       If 𝑜𝑖
(𝑡)

≠ 𝑟𝑒𝑎𝑙(𝑡) then 𝑤𝑖
(𝑡+1)

←  𝑤𝑖
𝑡

(1 − 𝜖), else 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
(𝑡)

.

(Deterministic) Weighted Majority with parameter 𝝐

Weighted Majority Algorithm is run using parameter 0 < 𝜖 < 1
Every time an expert makes a mistake, its weight is multiplied by 1 − 𝜖



Weighted Majority Guarantees

Assume Weighted Majority with 𝜖 = 0.5 made a mistake on round 𝑡, what it the total 
weight of experts at time 𝑡 + 1 compared to the total weight of experts at time 𝑡?

Discuss

a) 𝑊(𝑡+1) ≤ Τ𝑊(𝑡) 2

b) 𝑊(𝑡+1) ≤ Τ3𝑊(𝑡) 4

c) 𝑊(𝑡+1) = Τ𝑛 2

d) 𝑊(𝑡+1) ≤ Τ𝑊(𝑡) 4

Assuming that expert 𝑖 makes 𝑚𝑖  mistakes, what is the weight of expert 𝑖 when the 
algorithm quits?  

a) 𝑤𝑖
(𝑇+1)

=
1

2

𝑚𝑖 b) 𝑤𝑖
(𝑇+1)

= 1 c) 𝑤𝑖
(𝑇+1)

≥
3

4

𝑚𝑖



Proof of Weighted Majority Algorithm

For M: Algorithms # mistakes and OPT: best expert′s # mistakes, the (Deterministic) 

weighted majority algorithm with 𝜖 = 0.5 gets 

𝑀 ≤ 2.4(𝑙𝑜𝑔2 𝑛 + 𝑂𝑃𝑇) .

Theorem: Guarantees of Weighted Majority 𝝐 = 0.5


	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recall: Primality Test
	Slide 4: Recall: Composite N and Carmichael numbers
	Slide 5: Correctness of the Primality Test
	Slide 7: Correctness of the Primality Test (cont.)
	Slide 8: Primality Testing through the ages
	Slide 9: Online Algorithms
	Slide 10: Online Algorithms
	Slide 11: Stock Market Predictions
	Slide 12: Learning from Experts: Problem Setting
	Slide 13: Formalism:
	Slide 14: A Simpler Setting
	Slide 15: Halving Algorithm
	Slide 16: Example of Halving Algorithm
	Slide 17: Can we do better?
	Slide 18: What if no perfect expert?
	Slide 19: Can we do better?
	Slide 20: Weighted Majority Algorithm
	Slide 21: Weighted Majority Guarantees
	Slide 22: Proof of Weighted Majority Algorithm

