CS 170 Efficient Algorithms and Intractable Problems

Lecture 25 Online Algorithms 1

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

This week is the last week of class

- \rightarrow Last week with discussion sections
- → Last required homework is out this week, we will have an optional homework next week

Final exam is on Monday May 8, at 11:30am

Please fill out the course eval form!

Recall: Primality Test

Primality Testing: Given a number *N*, is it a prime number?

Fermat's Little Theorem

If *p* is a prime, then for all x = 1, ..., p - 1 we have that $x^{p-1} \equiv 1 \pmod{p}$

This suggests that we might be able to deduce whether N is a prime by looking at whether $x^{p-1} \not\equiv 1 \pmod{N}$ for some choice of x. Let's choose x at random!

Fermat's Primality Test

Choose *x* uniformly at random from all x = 1, ..., N - 1. **Return** "prime" if $x^{N-1} \equiv 1 \pmod{N}$, otherwise return "composite"

Recall: Composite N and Carmichael numbers

Let's say input was composite number N = 9. All arithmetic here is mod 9.

Out of 8 choices for a random $x \in \{1, ..., 8\}$, only 2 of them would lead Fermat's test to erroneously state that 9 is a prime! Fermat's test would have been correct with prob 0.75!

There are rare exceptions: There are composite numbers *N* for which $x^{N-1} \equiv 1 \pmod{N}$ for many *x*s.

Carmichael numbers: Composite number N for which $x^{N-1} \equiv 1 \pmod{N}$ for all x that's coprime with N.

 $1^{8} \equiv 1$ $2^8 \equiv 4 \not\equiv 1 \not\in$ $3^8 \equiv 0 \not\equiv 1$ $4^8 \equiv 7 \not\equiv 1$ $5^8 \equiv 7 \not\equiv 1^4$ $6^8 \equiv 0 \not\equiv 1$ $7^8 \equiv 4 \not\equiv 1$ $8^8 \equiv 1$

Correctness of the Primality Test

Theorem: Assume that *N* is a composite, but not Carmichael number. Then with prob > 1/2 Fermat's outputs "composite". i.e. $x^{N-1} \not\equiv 1 \pmod{N}$ for at least half of $x = 1, \dots, N-1 \xrightarrow{N} 2$ are good. 1) N is not (armichael => $\exists \alpha$ coprime with N s.t $\alpha^{N-1} \neq 1$ (mod N) α coprime with N => $\exists \overline{\alpha}^{1}$, s.t $\alpha \cdot \overline{\alpha}^{1} = 1$ med N) 2) Take any bad bi (means $b_i \equiv 1 \pmod{N}$) $\Longrightarrow \exists a good g_i$ ($g_i \not\equiv 1 \mod N$) $(g_{i}) = (a b_{i})^{N-1} \equiv a \quad b \neq \equiv a^{N-1} \neq 1 \mod N.$ $(g_{i}) = (a b_{i})^{N-1} \equiv a \quad b \neq \equiv a^{N-1} \neq 1 \mod N.$ 3) The mapping from b; to gi is one-to-one: If $b_{i} \neq b_{j} => g_{i} \neq g_{j}$ why? assume not $g_{i} \equiv g_{j} \xrightarrow{Xa^{1}} a_{i}ab_{i} \equiv a_{i}ab_{j} => b_{i} \equiv b_{j}$

N=princ => adjut = prine

Correctness of the Primality Test (cont.)

We proved that for every **bad** b_i (for which $b_i^{N-1} \equiv 1 \pmod{N}$) there is a distinct **good** $g_i = b_i a$ (for which $g_i^{N-1} \not\equiv 1 \pmod{N}$)

Primality Testing through the ages

200 BC: Eratosthenes (Greek polymath) described the *prime number sieve* for finding all the prime numbers up to a certain value.

1976: Miller and and Rabin came up with a randomized algorithm (similar to what we discussed but one more idea to deal with Carmichael numbers)

1977 2002: Other randomized algorithms

2002: Agrawal, Kayal, and Saxena gave a polynomial time *deterministic* algorithm for primality testing (de-randomizing one of their earlier algorithms from 1999)

Online Algorithms

1.56 0.78

Online Algorithms

So far, we studied algorithmic problems where,

- Input given in one whole
- We generate output in one whole

But for some algorithmic problems, we are faced with

- Input that is given to us piece-by-piece
- Making irrevocable decisions: can't wait to see the entire input, or future input depends on past and current decisions.

These are called online algorithms

(as opposed to offline)

Our focus: Algorithms for "online learning" that play a big role in Alg design, ML, etc.

Stock Market Predictions

Every day:

 \rightarrow Need to decide to invest or not.

→ I ask for advice from *"experts":* websites, influencers, and my toddler

 \rightarrow Experts recommend invest or not invest

 \rightarrow Market's up/down become clear after

End of the year:

→ Want investment decisions as best as the best experts would have recommended.

Online Routing

Every day:

 \rightarrow I need to decide which route to take to campus.

 \rightarrow Traffic is not a priori known

→ Only after I arrive on campus, I know how long my commute took me.

End of the year:

 \rightarrow Want my commute time to be short, as short as the best historical route.

Learning from Experts: Problem Setting

- There are *n* "experts" that have advice and opinion about each day
- Expert = someone with an opinion (but not necessarily correct)
- We want to make out own decision as to what's going to happen

	Wallstreet Journal	Co-worker	Motely Fool	JikTok J Astrologer	My decision	Real outcome
Day 1	down	up	up	up	up	up
Day 2	down	up	up	down	up	down
Day 3	up	up	down	down	down	down
Day 4	up	down	down	up	up	up

• Basic question: Is there a strategy that allows us to do nearly as well as best of these experts in hindsight?

Formalism:

There are *n* "experts", i = 1, ..., n and *T* days t = 1, ..., TOn each day t = 1, ..., T

- All experts *i* give me their *opinion* $o_i^{(t)}$ (binary, like Yes/No, or Up/Down)
- I make my prediction $guess^{(t)}$
- Afterwards, I see the real outcome *real*^(t), which can be worst-case
 →Happy if guessed correctly and sad if I made a mistake!

My goal:

lift gubs

A Simpler Setting

What if at least one of these *n* experts is perfect (makes 0 mistakes!) We just don't know which ones are perfect a priori.

What's an algorithm that is guaranteed to make a small number of mistakes?

Idea: Never follow an expert that's already made a mistake.

Attempt 1: Follow 1*st* expert's advice until they make a mistake ... then follow the advice of the next expert who hasn't made a mistake yet, and repeat. **How well does this do?**

Can make Nomistakes, but no more.

Halving Algorithm

Attempt 1: Every time Alg makes a mistake, we rule out 1 expert. Atempt 2: Every time Alg makes a mistake, we rule out many experts! How?

→ Follow the majority vote of the active experts (those with 0 mistakes so far)

Example of Halving Algorithm

		1	2	3	4	5	6	7	My decision	Real Outcome
t 1	Included in set E ₁ ?	\checkmark								
	Opinions on day $t = 1$	Y	Y	N	Y	X	Y	N	Y	Ν
t=2	Included in set E ₂ ?			\checkmark		\checkmark		\checkmark	•/	
	Opinions on day $t = 2$			Y		Y		N	Y	Y
	Included in set E ₃ ?			\checkmark		\checkmark				
	Opinions on day $t = 3$			N		N			Ν	
	Included in set E ₄ ?			\checkmark		\checkmark				

Theorem: Bound on # Mistakes of Halving When there is a perfect expert, Halving makes at most $\leq log_2(n)$ mistakes **Proof:** If we make a mistake at time *t*, majority of E_t were wrong $\rightarrow |E_{t+1}| \leq \frac{1}{2} |E_t|$. After $log_2(n)$ mistakes, only one expert is left in the set.

rule. Zaperfeit expert.

Can we do better?

Theorem: Theorem: In the worst-case, any deterministic algorithm makes $log_2(n)$ mistakes. $log_2(n)$ mistakes.

What if no perfect expert?

Halving completely rules an expert after their first mistake. →No perfect expert? Don't rule out someone after their first mistake.

Suppose we know that the best expert makes M mistakes

→Attempt 1: Run Halving M times back to back. After all experts are thrown away, restart Halving with all experts again.

2

 \rightarrow How many mistakes does Alg make?

ext of pros

$$\leq (M+1)(\log(N)+1)$$

 $O(\log(n) \cdot M) \Longrightarrow O(M + \log(n))$

Can we do better?

Halving Algorithm:

- A mistake disqualifies an expert and we took the majority of the remaining experts. **Weighted Majority Algorithm:**
- A mistake **lowers the weight** of an expert. (e.g., divide by 2)
- Predict with the **weighted** majority of the experts.

	1	2	3	4	5	6	7	My decision	Real Outcome
Weights at $t = 1$	1	1	1	1	1	1	1		
Opinions on day $t = 1$	Y	Y	N	Y	N	Y	N	Y	Ν
Included in set E ₂ ?	1⁄2	1⁄2	1	1⁄2	1	1⁄2	1		
Opinions on day $t = 2$	N	N	Y	N	Y	N	N	N	Y
Included in set E ₃ ?	1⁄4	1⁄4	1	1⁄4	1	1⁄4	1/2		

Weighted Majority Algorithm

Weighted Majority Algorithm is run using parameter $0 < \epsilon < 1$ Every time an expert makes a mistake, its weight is multiplied by $(1 - \epsilon)$

(Deterministic) Weighted Majority with parameter ϵ Initialize weights $w_i^{(1)} = 1$ for all $i \in [n]$. For t = 1, ..., TTake the weighted majority of the experts: $guess^{(t)} = \operatorname{argmax}_{y} \sum w_i^{(t)} \mathbf{1}(o_i^{(t)} = y)$ $i \in [n]$ For i = 1, ..., nIf $o_i^{(t)} \neq real^{(t)}$ then $w_i^{(t+1)} \leftarrow w_i^{(t)}(1-\epsilon)$, else $w_i^{(t+1)} \leftarrow w_i^{(t)}$.

Wt, total waight Weighted Majority Guarantees Discuss Assume Weighted Majority with $\epsilon = 0.5$ made <u>a mistake</u> on round *t*, what it the total weight of experts at time t + 1 compared to the total weight of experts at time t? $\int_{0}^{0} \frac{W^{(t+1)} \le W^{(t)}/2}{W^{(t+1)} \le 3W^{(t)}/4}$ $W^{(t+1)} = n/2$ d) $W^{(t+1)} \le W^{(t)}/4$ 1) $W_{inc} = W_{-}^{\dagger} W_{inc} \leq W_{-} \leq \frac{1}{2} W_{inc}^{\dagger} \leq \frac{1}{2} W_{inc}^{\dagger} \leq \frac{1}{2} = \frac{1}{2} W_{inc}^{\dagger} \leq \frac{1}{2} = \frac{1}{2} W_{inc}^{\dagger} \leq \frac{1}{2} = \frac{1}{$ Assuming that expert *i* makes m_i mistakes, what is the weight of expert *i* when the algorithm quits? $(1/2)^{m_i} c) \quad w_i^{(T+1)} \ge \left(\frac{3}{4}\right)^{m_i}$ $=\left(\frac{1}{2}\right)^{m_i}$ b) $w_i^{(T+1)} = 1$

Proof of Weighted Majority Algorithm

