CS 170 Efficient Algorithms and Intractable Problems

Lecture 26 Online Algorithms 2 and Beyond this course

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

This is the last lecture!

Last graded homework due this Sunday

Final exam on Monday 5/12 (last lecture's slides had an erroneous date!)

We will have an exam review sessions

 \rightarrow Early RRR week, look out for an Ed post coming soon

We will have reduced OH during RRR week (see calendar for updated hours)

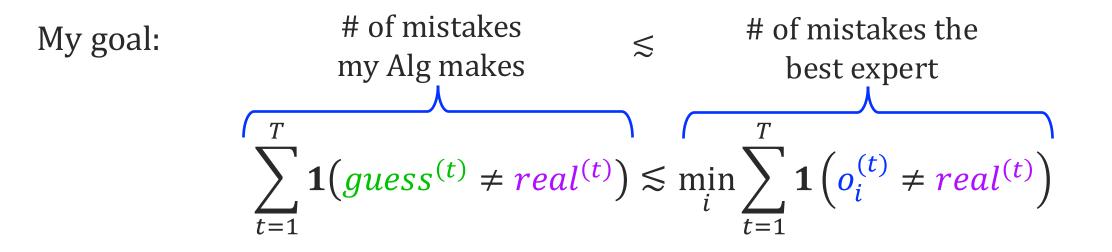
Online Algorithms

1.56 🗰 0.78

Recall Online Learning Formalism

There are *n* "experts", i = 1, ..., n and *T* days t = 1, ..., TOn each day t = 1, ..., T

- All experts *i* give me their *opinion* $o_i^{(t)}$ (binary, like Yes/No, or Up/Down)
- I make my prediction $guess^{(t)}$
- Afterwards, I see the real outcome *real*^(t), which can be worst-case
 →Happy if guessed correctly and sad if I made a mistake!



Recall: Weighted Majority Algorithm

(Deterministic) Weighted Majority with parameter ϵ Initialize weights $w_i^{(1)} = 1$ for all $i \in [n]$. For t = 1, ..., TTake the weighted majority of the experts: $guess^{(t)} = \operatorname{argmax}_{y} \sum w_i^{(t)} \mathbf{1}(o_i^{(t)} = y)$ For $i = 1, \dots, n$ If $o_i^{(t)} \neq real^{(t)}$ then $w_i^{(t+1)} \leftarrow w_i^{(t)}(1-\epsilon)$, else $w_i^{(t+1)} \leftarrow w_i^{(t)}$.

Theorem: Guarantees of Weighted Majority $\epsilon = 0.5$ For M: Algorithms # mistakes and OPT: best expert's # mistakes, the (Deterministic) weighted majority algorithm with $\epsilon = 0.5$ gets $M \le 2.4(log_2(n) + OPT)$.

We will learn more about online algorithms and their performance.

We'll learn the <u>Multiplicative Weights Updates (MWU)</u> Algorithm One of my all-time favorite algorithms!

We see how they can be used to prove some theorems or design some algorithms we had seen before!

How much do we regret?

We showed that $Alg's \# mistakes \le 2.4(log_2(|H|) + OPT)$ is good if OPT is small.

- \rightarrow If best expert is wrong 5% of the time, we are wrong 12% of the time
- \rightarrow If best expert is wrong 25% of the time, we are wrong half the time!
- It would have been nice, if instead $Alg's \# mistakes OPT \leq small$
 - → Ideally, smaller than o(T).
 - \rightarrow On average over *T* timesteps, we do nearly as well as the best expert.

Idea: Smoothly transition between predicting Yes or No based on the weights. →Weighted majority: 49% Yes, 51% No, we predict No

Randomized Weighted majority:

 \rightarrow If 49% Yes, 51% No, we predict Yes with 0.49 prob and No with 0.51 prob.

→ We can also use less aggressive ϵ .

Randomized Weighted Majority

Randomized Weighted Majority Algorithm with parameter $0 < \epsilon < 1$ Every time an expert makes a mistake, its weight is multiplied by $(1 - \epsilon)$

Randomized Weighted Majority with parameter ϵ Initialize weights $w_i^{(1)} = 1$ for all $i \in [n]$. For $t = 1, \dots T$ Guess with probability proportional to the weighted majority: $guess^{(t)} \leftarrow y \text{ with prob.} \frac{1}{W^{(t)}} \sum w_i^{(t)} \mathbf{1} \left(o_i^{(t)} = y \right)$ $i \in [n]$ For $i = 1, \dots, n$ If $o_i^{(t)} \neq real^{(t)}$ then $w_i^{(t+1)} \leftarrow w_i^{(t)}(1-\epsilon)$, else $w_i^{(t+1)} \leftarrow w_i^{(t)}$.

Randomized Weighted Majority

Theorem: Guarantees of Weighted Majority ϵ

For M: Algorithms # mistakes and OPT: best expert's # mistakes, the randomized weighted majority algorithm with ϵ gets

$$\mathbb{E}[M] \leq (1+\epsilon)OPT + \frac{1}{\epsilon}\log_2(n).$$
For $\epsilon = \sqrt{\frac{\log_2(n)}{OPT}}$, get $\mathbb{E}[M] \leq OPT + 2\sqrt{T\log_2(n)}|.$

$$PT \in T$$

$$\mathbb{E} \text{ that relates to } T=1, 2, 4, - \cdots > 2x \text{ current step.}$$

Beyond Binary Guesses and Outcomes

We can extend this to non-binary general outcomes and predictions

We want to take one of n actions, each one is like an "expert" E.g., each s-t path is one action/expert.

 \rightarrow Each action *i* has has some cost at time *t*, called $c_i^{(t)} \in [0,1]$

 \rightarrow Alg plays action i_t at time t, perhaps randomly

 \rightarrow We see cost of all actions after we take an action

E.g., The traffic of the *i*th s-t path at time *t*.

We want the total cost of the algorithm not to be much larger than the cost of the best action, in hindsight.

 \rightarrow Want small regret

I regret

$$\frac{T}{\text{REGRET}} \coloneqq \sum_{t=1}^{T} c_{i_t}^{(t)} - \min_{i^*} \sum_{t=1}^{T} c_{i^*}^{(t)} \leq \text{small}$$
Total cost of Alg's choices Total cost of the best action

Multiplicative Weights Update (MWU) Multiplicative Weights Update with parameter ϵ Initialize weights $w_i^{(1)} = 1$ for all $i \in [n]$. For t = 1, ..., TPlay action *i* with probability $\frac{w_i^{(t)}}{w_i^{(t)}}$ Observe costs $c_i^{(t)}$ for all i = 1, ..., nFor i = 1, ..., n, $\operatorname{let} w_i^{(t+1)} \leftarrow w_i^{(t)} (1 - \epsilon c_i^t)$

Theorem: For an appropriate choice of $\epsilon = \sqrt{\log_2(n)/T}$, the **MWU Algorithm** has $\mathbb{E}[\text{Regret}] \le O\left(\sqrt{T \log_2(n)}, -X\right) \approx e^{X} e^{X} e^{X}$

No-Regret Algorithms

No-regret algorithms:

- \rightarrow Algorithms for which **REGRET** (or its expectation) is o(T)
- →E.g. MWU is no-regret because $\mathbb{E}[\text{Regret of MWU}] \le O(\sqrt{T \log_2(n)}).$
- \rightarrow It doesn't literally mean that you have 0 regret!
- →It means if you play the algorithm long enough $(T \rightarrow \infty)$ then your average regret is $\frac{\text{REGRET}}{T} \rightarrow 0!$

→ Meaning, in hindsight, you do not much regret not having known the best expert a priori! You'll catch up and do nearly as well as the best.

REGRET :=
$$\sum_{t=1}^{T} c_{i_t}^{(t)} - \min_{i^*} \sum_{t=1}^{T} c_{i^*}^{(t)}$$

Total cost of Alg's choices Total cost of the best action

Proving the MinMax Theorem using <u>Multiplicative Weights Update</u>

Revisiting Zero-Sum Games

Usage Examples:

Most two-player board/card games.

Competition between two rival firms, splitting the market share.

Actions are played by self-interested agents in a win-lose game.

Each player takes some actions.

Equilibrium, if neither can improve their position.

Two player Games

<u>Players</u>: Player **1** and **2**

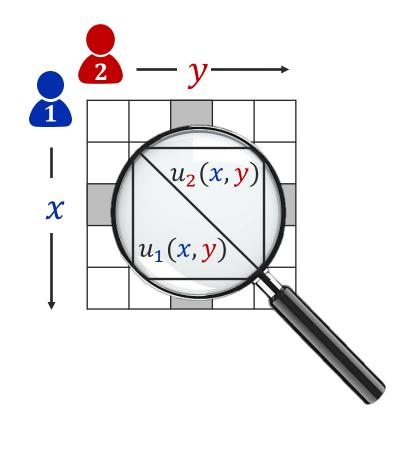
<u>Strategies</u>: Sets of actions *X*, *Y*

<u>Payoffs</u>: When **1** plays *x* and **2** plays *y*.

1's payoff : $u_1(x, y)$ **2**'s payoff : $u_2(x, y)$

<u>Zero-sum games</u>: focus of this section $-u_1(x, y) = u_2(x, y)$

We'll call one of the loss and one gain/utility $\ell(x, y) = -u_1(x, y)$ (in this section)



MinMax Equilibrium

<u>Mixed Strategies</u>: \overline{A} picks distribution *p* over *X* and $\overline{2}$ picks distribution *q* over *Y*.

MinMax value

 $\min_{p} \max_{q} p^{\mathsf{T}} \mathbf{L} q$ (player 1 goes first)

MaxMin value

 $\max_{q} \min_{p} p^{\mathsf{T}} \mathbf{L} q$

(player 2 goes first)

Von Neumann's MinMax Theorm

MinMax value = MaxMin value Under some conditions, e.g., X and Y finite.

Proof: It was easy to see that going second is an advantage for either player $\min_{p} \max_{q} p^{\mathsf{T}} L q \geq \max_{q} \min_{p} p^{\mathsf{T}} L q$

The reverse direction was the hard part of this proof.

Proving the reverse direction of MinMax p

Idea: Online algorithms and MinMax are about interactions with an adversary. So let's use the a no-regret algorithm for one of the players (or both).

- Imagine <u>hypothetical interactions</u> over t = 1, ..., T days: when Piq is played. The <u>row player</u> uses <u>Multiplicative Weights</u> Undate to choose Playing row *i* with probability $p_i^{(t)} \propto \omega_i^{(t)}$
- <u>Column player</u> "best responds" to the row player

Playing $q^{(t)} = \operatorname{argmax}_{q} p^{(t)^{\top}} L q$

• The row player's cost vector of $(c_1^{(t)}, \dots, c_n^{(t)}) = L q^{(t)}$ is revealed and she suffers $p^{(t)^{\mathsf{T}}} \operatorname{L} q^{t}$ loss in expectation.

Proving the reverse direction of MinMax Playing row *i* with probability $p_i^{(t)}$ using MWU

Playing column $q^{(t)} = \operatorname{argmax}_{q} p^{(t), \mathsf{T}} \operatorname{L} q$, Row player cost vector is revealed to be $(\operatorname{L} q^{t})$

I want to prove that $\min_{p} \max_{q} p^{\mathsf{T}} L q \leq \max_{p} \min_{q} p^{\mathsf{T}} L q$ using a construction of a pair of

strategies that are at minimax equilibrium. $P = \frac{1}{2} \stackrel{(1)}{}_{+} \stackrel{(1)}{}_{+} \stackrel{(1)}{}_{+} \stackrel{(1)}{}_{+} \stackrel{(1)}{}_{+} \stackrel{(2)}{}_{+} \stackrel{(2)}{}_{+} \stackrel{(3)}{}_{+} \stackrel{(3)}{}_{+}$

3€

$$\frac{(3)}{9} = \max_{q} \frac{1}{7} \sum_{p} p^{+} \log \leq \frac{1}{7} \sum_{t=1}^{q} \max_{q} p^{+} \log = \frac{1}{7} \sum_{p} p^{+} \log = \frac{1}{7} \sum_{p} p^{+} \log q$$

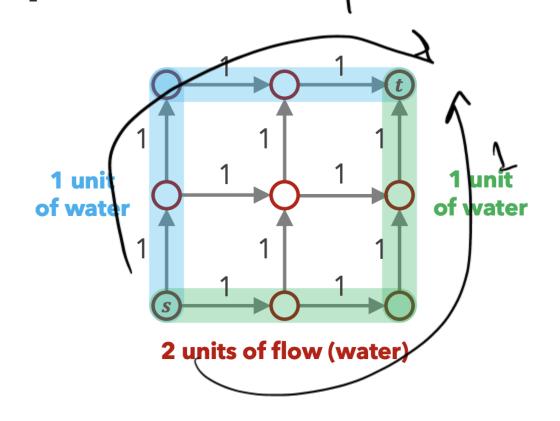
$$\frac{1}{7} \sum_{t=1}^{q} p^{+} \log \leq \frac{1}{7} \sum_{q} p^{+} \log q \geq \frac{1}{7} \sum_{q}$$

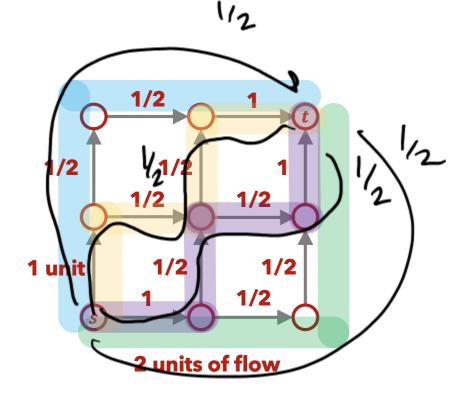
Algorithm for Max Flow Using <u>Multiplicative Weights Update</u>

From here one, material covered is not in scope for the final exam! Let's just have some fun!

Revisiting Max Flow

Input: A directed graph G = (V, E), source vertex *s* and sink vertex *t*, and edge capacities c_e for all $e \in E$. For ease today assume $c_e = 1$ for all edges. **Output:** A maximum valid s-t flow

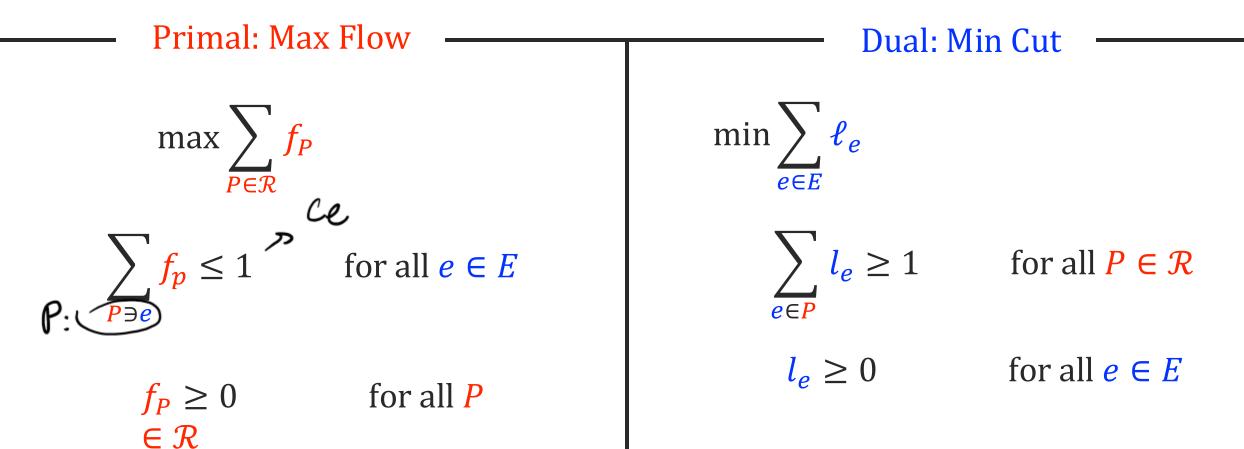




We solved flow problems with an LP before

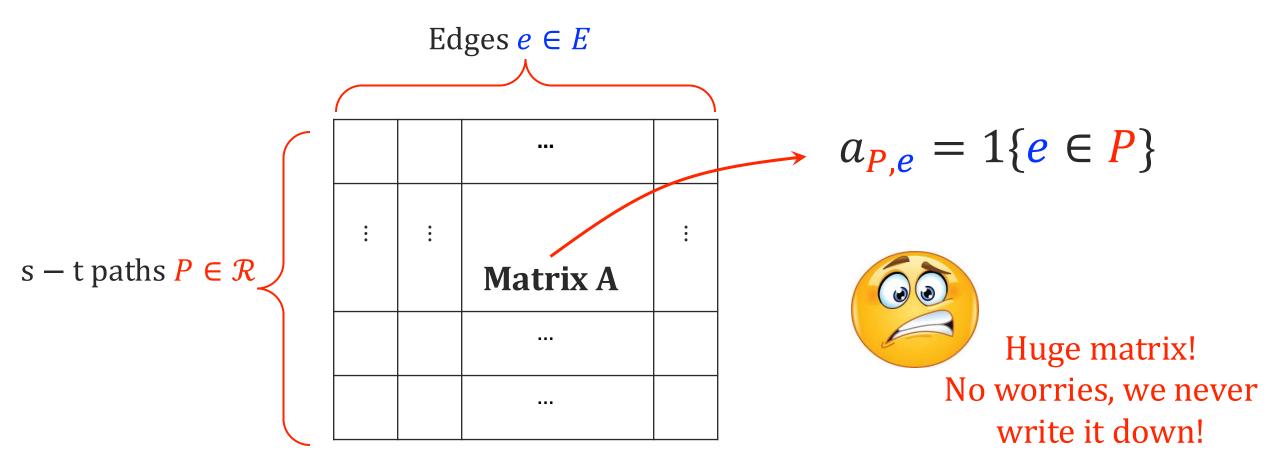
The primal and dual LPs corresponding to max flow and min cut:

Let \mathcal{R} be the set of all s-t paths, f_P is the amount of flow on path P and ℓ_e are dual variable indicating the cut.



Min Cut-Max Flow as a MinMax Game

Column player: Choosing the dual variables $\ell_e s$. Row player: Choosing the primal variables f_P



MinMax Value of the Game

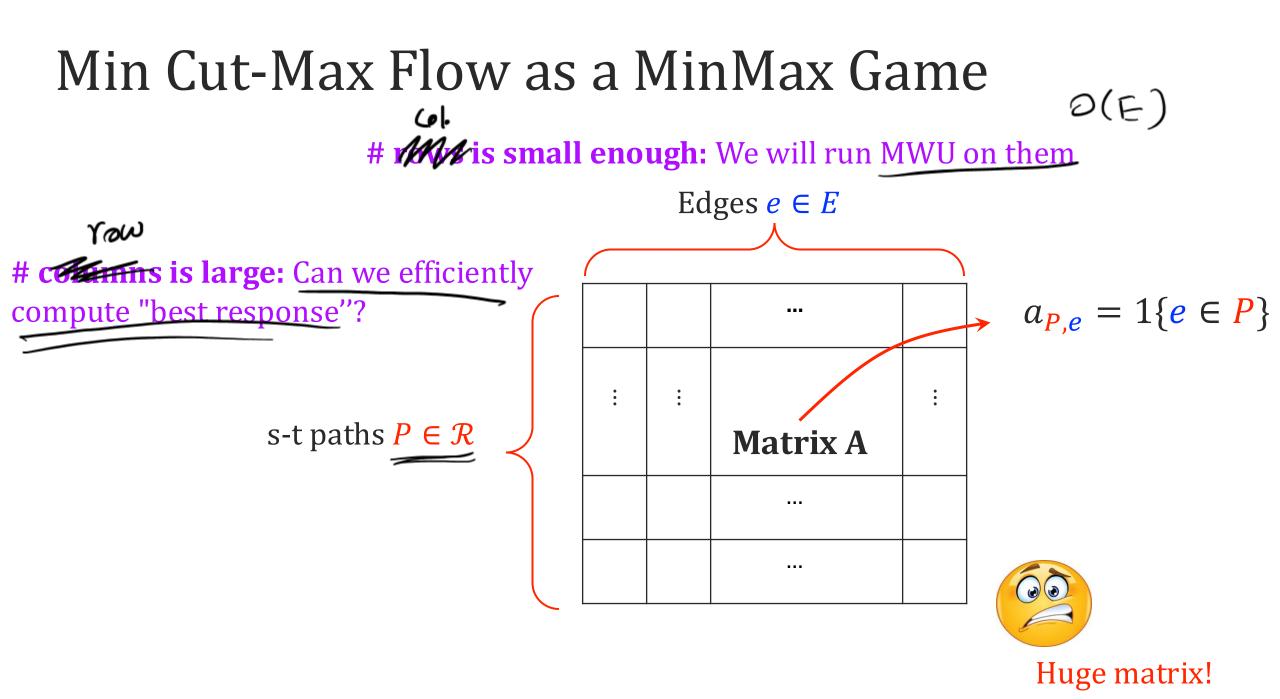
Claim

Let OPT be the max flow (= min cut). The the minmax value of this game is 1

$$\min_{y \in [0,1]^{\mathcal{R}}} \max_{x \in [0,1]^{E}} y^{\mathsf{T}} A x = \max_{x \in [0,1]^{E}} \min_{y \in [0,1]^{\mathcal{R}}} y^{\mathsf{T}} A x = \frac{1}{\mathsf{OPT}}$$

Proof idea: construct strategies from the primal and dual solutions. E.g., scaled dual variables $\frac{\ell_e}{OPT}$ are mixed strategy: Col. Player puts a uniform distribution over its cut.

Primal: Max Flow	Dual: Min Cut
	Dual. Mill Gut
$\max \sum_{P \in \mathcal{R}} f_P$	$\min \sum_{e \in E} \ell_e$
$\sum_{P \ni e} f_p \le 1 \qquad \text{for all } e \in E$	$\sum_{e \in P} l_e \ge 1 \qquad \text{for all } P \in \mathcal{R}$
$f_P \ge 0$ for all $P \in \mathcal{R}$	$l_e \ge 0$ for all $e \in E$



Solving Max Flow with Multiplicative Weights

Le.

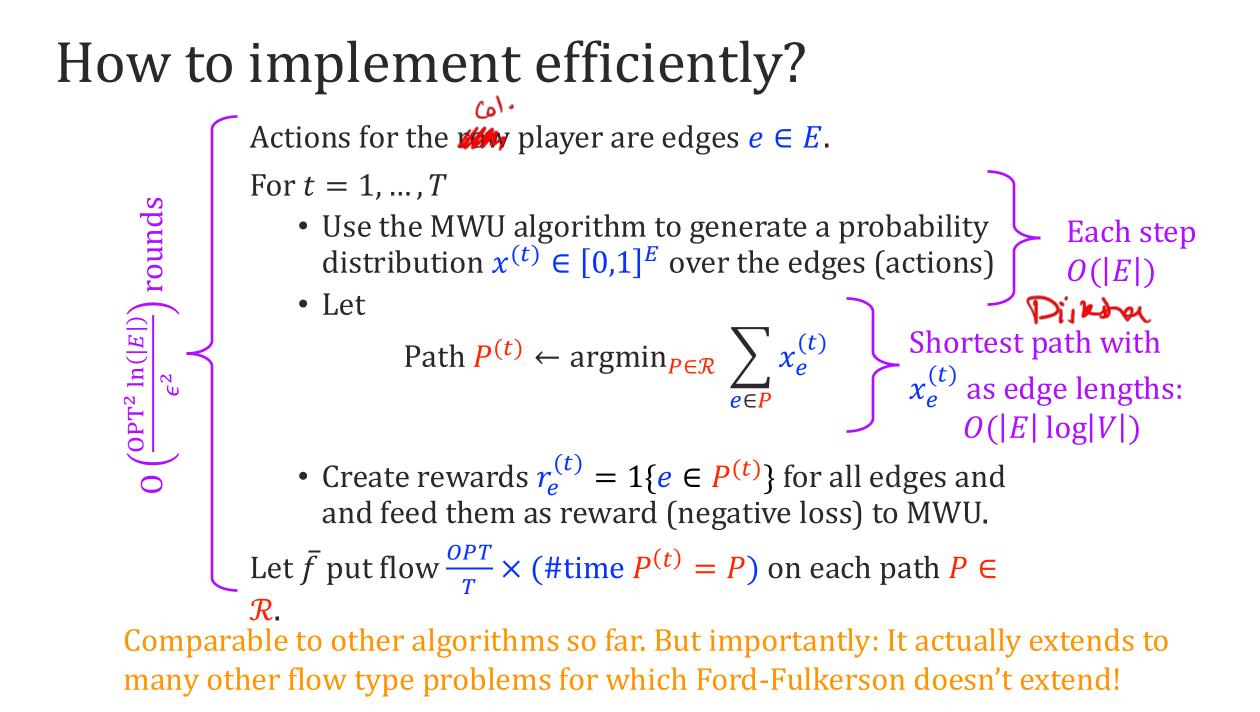
ام) Actions for the player are edges $e \in E$. For t = 1, ..., T• Use the MWU algorithm to generate a probability distribution $x^{(t)} \in [0,1]^E$ over the edges (actions) • Let $P^{(t)}$ be column player's "best response" Path $P^{(t)} \leftarrow \operatorname{argmin}_{P \in \mathcal{R}} \sum x_e^{(t)}$

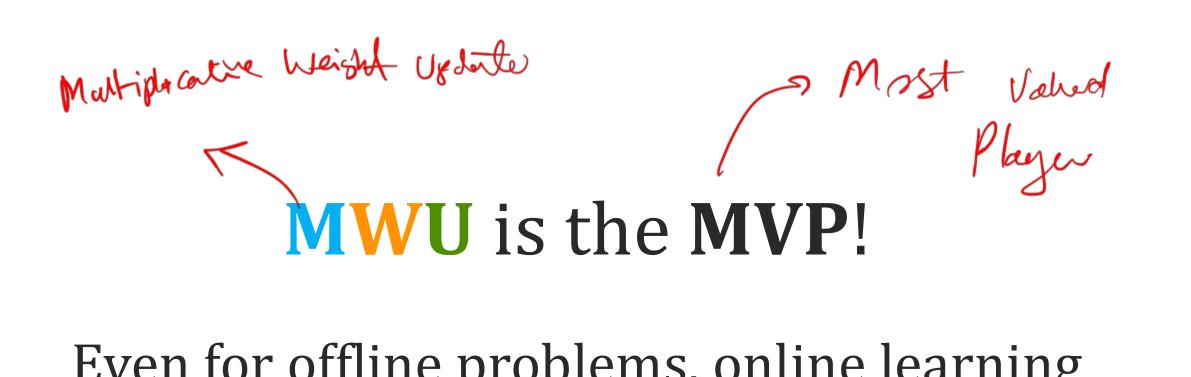
• Create rewards $r_e^{(t)} = 1\{e \in P^{(t)}\}$ for all edges and and feed them as reward (negative loss) to MWU. Let \overline{f} put flow $\frac{OPT}{T} \times (\# \text{time } P^{(t)} = P)$ on each path $P \in$ \mathcal{R}_{\bullet}

 $e \in P$

Theorem:

When $T \ge 8 \text{ OPT}^2 \cdot \frac{\ln(|E|)}{\epsilon^2}$ then $\overline{f}(1-\epsilon)$ is an $(1-\epsilon)^2$ approximately optimal flow!





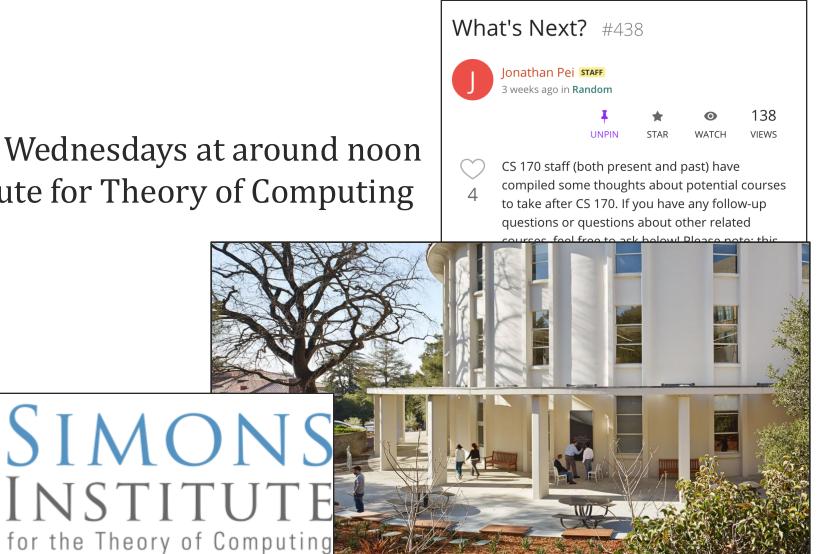
Even for offline problems, online learning algorithms can be very helpful!

Lots and lots to learn!

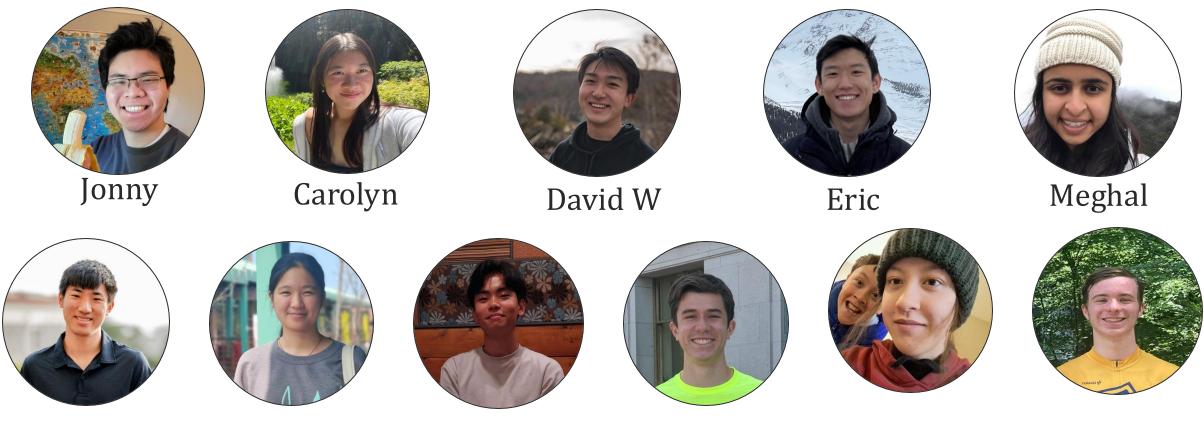
Continue to learn about Theory of CS !

To see more ...

- Take more courses
- Come to Theory lunch! Wednesdays at around noon
- Go to the Simons Institute for Theory of Computing on campus.
- Stay in touch with us!



John and Nika want to say a huge thanks to our staff!



Andrew

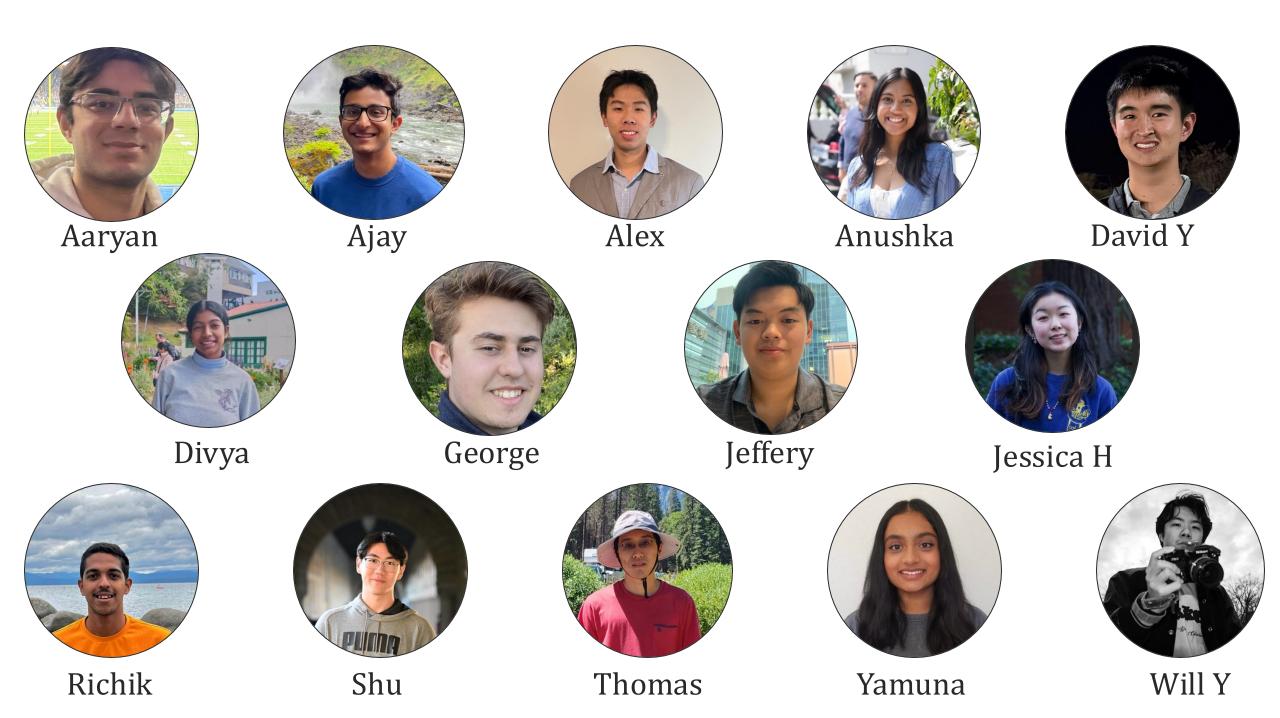
Jessica L

Bill

Ryan

Diana

Xavier



Thank you!