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Announcements

This is the last lecture!

Last graded homework due this Sunday

Final exam on Monday 5/12 (last lecture’s slides had an erroneous date!)

We will have an exam review sessions
→ Early RRR week, look out for an Ed post coming soon

We will have reduced OH during RRR week (see calendar for updated hours)



Online Algorithms



Recall Online Learning Formalism
There are 𝑛 “experts”, 𝑖 = 1, … , 𝑛 and 𝑇 days 𝑡 = 1, … , 𝑇
On each day 𝑡 = 1, … , 𝑇
• All experts 𝑖 give me their opinion 𝑜𝑖

(𝑡) (binary, like Yes/No, or Up/Down)
• I make my prediction 𝑔𝑢𝑒𝑠𝑠(𝑡)

• Afterwards, I see the real outcome 𝑟𝑒𝑎𝑙(𝑡), which can be worst-case
→Happy if guessed correctly and sad if I made a mistake!

My goal: # of mistakes 
my Alg makes ≲ # of mistakes the 

best expert

෍
𝑡=1

𝑇

𝟏 𝑔𝑢𝑒𝑠𝑠 𝑡 ≠ 𝑟𝑒𝑎𝑙 𝑡 ≲ min
𝑖

෍
𝑡=1

𝑇

𝟏 𝑜𝑖
(𝑡) ≠ 𝑟𝑒𝑎𝑙 𝑡



Recall: Weighted Majority Algorithm

Initialize weights 𝑤𝑖
(1) = 1 for all 𝑖 ∈ [𝑛]. 

For 𝑡 = 1, … 𝑇
       Take the weighted majority of the experts:

𝑔𝑢𝑒𝑠𝑠(𝑡) = argmax𝑦 ෍
𝑖∈[𝑛]

𝑤𝑖
(𝑡) 𝟏(𝑜𝑖

(𝑡) = 𝑦)

For 𝑖 = 1, … , 𝑛 
       If 𝑜𝑖

(𝑡) ≠ 𝑟𝑒𝑎𝑙(𝑡) then 𝑤𝑖
(𝑡+1) ←  𝑤𝑖

𝑡 (1 − 𝜖), else 𝑤𝑖
(𝑡+1) ← 𝑤𝑖

(𝑡).

(Deterministic) Weighted Majority with parameter 𝝐

For M: Algorithms # mistakes and OPT: best expert′s # mistakes, the (Deterministic) 
weighted majority algorithm with 𝜖 = 0.5 gets 

𝑀 ≤ 2.4(𝑙𝑜𝑔2 𝑛 + 𝑂𝑃𝑇) .

Theorem: Guarantees of Weighted Majority 𝝐 = 0.5



Today
We will learn more about online algorithms and their performance.

We’ll learn the Multiplicative Weights Updates (MWU) Algorithm
One of my all-time favorite algorithms!

We see how they can be used to prove some theorems or design some 
algorithms we had seen before!



How much do we regret?
We showed that 𝐴𝑙𝑔′𝑠 # 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠 ≤ 2.4(𝑙𝑜𝑔2 𝐻 + 𝑂𝑃𝑇) is good if 𝑂𝑃𝑇 is small.
→If best expert is wrong 5% of the time, we are wrong 12% of the time
→If best expert is wrong 25% of the time, we are wrong half the time!
It would have been nice, if instead 𝐴𝑙𝑔′𝑠 # 𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠 − 𝑂𝑃𝑇 ≤ 𝑠𝑚𝑎𝑙𝑙
→ Ideally, smaller than 𝑜 𝑇 .
→On average over 𝑇 timesteps, we do nearly as well as the best expert.

Idea: Smoothly transition between predicting Yes or No based on the weights.
→Weighted majority: 49% Yes, 51% No, we predict No
Randomized Weighted majority:
→If 49% Yes, 51% No, we predict Yes with 0.49 prob and No with 0.51 prob.
→ We can also use less aggressive 𝜖.



Randomized Weighted Majority

Initialize weights 𝑤𝑖
(1) = 1 for all 𝑖 ∈ [𝑛]. 

For 𝑡 = 1, … 𝑇
       Guess with probability proportional to the weighted majority:

𝑔𝑢𝑒𝑠𝑠(𝑡) ← 𝑦 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.
1

𝑊(𝑡) ෍
𝑖∈[𝑛]

𝑤𝑖
(𝑡)𝟏 𝑜𝑖

𝑡 = 𝑦

For 𝑖 = 1, … , 𝑛 
       If 𝑜𝑖

(𝑡) ≠ 𝑟𝑒𝑎𝑙(𝑡) then 𝑤𝑖
(𝑡+1) ←  𝑤𝑖

𝑡 (1 − 𝜖), else 𝑤𝑖
(𝑡+1) ← 𝑤𝑖

(𝑡).

Randomized Weighted Majority with parameter 𝝐

Randomized Weighted Majority Algorithm with parameter 0 < 𝜖 < 1
Every time an expert makes a mistake, its weight is multiplied by (1 − 𝜖)



Randomized Weighted Majority

For M: Algorithms # mistakes and OPT: best expert′s # mistakes, the randomized 
weighted majority algorithm with 𝜖 gets 

𝔼 𝑀 ≤ 1 + 𝜖 𝑂𝑃𝑇 +
1
𝜖

log2 𝑛 .

For 𝜖 =
log2(𝑛)

𝑂𝑃𝑇
, get 𝔼 𝑀 ≤ 𝑂𝑃𝑇 + 2 𝑇 log2(𝑛)| .

Theorem: Guarantees of Weighted Majority 𝜖



Beyond Binary Guesses and Outcomes
We can extend this to non-binary general outcomes and predictions
We want to take one of 𝑛 actions, each one is like an “expert”

→Each action 𝑖 has has some cost at time 𝑡, called 𝑐𝑖
(𝑡) ∈ [0,1]

→ Alg plays action 𝑖𝑡  at time 𝑡, perhaps randomly
→We see cost of all actions after we take an action

We want the total cost of the algorithm not to be much larger than the cost of the best 
action, in hindsight. 
→ Want small regret

E.g., each s-t path is one action/expert.

E.g., The traffic of the 𝑖𝑡ℎ s-t path at time 𝑡.

෍
𝑡=1

𝑇

𝑐𝑖𝑡

(𝑡) − min
𝑖∗ ෍

𝑡=1

𝑇

𝑐𝑖∗
𝑡 ≤ 𝑠𝑚𝑎𝑙𝑙

Total cost of Alg’s choices Total cost of the best action

REGRET ≔



Multiplicative Weights Update (MWU)

Initialize weights 𝑤𝑖
(1) = 1 for all 𝑖 ∈ [𝑛]. 

For 𝑡 = 1, … 𝑇

       Play action 𝑖 with probability  𝑤𝑖
𝑡

𝑊(𝑡)

Observe costs 𝑐𝑖
𝑡  for all  𝑖 = 1, … , 𝑛

For 𝑖 = 1, … , 𝑛 ,
  let 𝑤𝑖

(𝑡+1) ← 𝑤𝑖
𝑡 (1 − 𝜖𝑐𝑖

𝑡)

Multiplicative Weights Update with parameter 𝝐 

Theorem: For an appropriate choice of 𝜖 = log2(𝑛) /𝑇,  the MWU Algorithm has

𝔼 Regret ≤ 𝑂 𝑇 log2 𝑛 .



No-Regret Algorithms
No-regret algorithms:
→Algorithms for which REGRET (or its expectation) is 𝑜(𝑇)
→E.g. MWU is no-regret because 𝔼 Regret of MWU ≤ 𝑂 𝑇 log2 𝑛 . 
→It doesn’t literally mean that you have 0 regret!
→It means if you play the algorithm long enough (𝑇 → ∞) then your average 

regret is REGRET
𝑇

→ 0!

→ Meaning, in hindsight, you do not much regret not having known the best 
expert a priori! You’ll catch up and do nearly as well as the best.

෍
𝑡=1

𝑇

𝑐𝑖𝑡

(𝑡) − min
𝑖∗ ෍

𝑡=1

𝑇

𝑐𝑖∗
𝑡

Total cost of Alg’s choices Total cost of the best action

REGRET ≔



Proving the MinMax Theorem
using Multiplicative Weights Update 



Actions are played by self-interested 
agents in a win-lose game.

Each player takes some actions.

Equilibrium, if neither can improve 
their position. 

Usage Examples: 
Most two-player board/card games. 

Competition between two rival firms, 
splitting the market share.

Revisiting Zero-Sum Games



Two player Games

𝑢2(𝑥, 𝑦)

𝑢1(𝑥, 𝑦)

𝑦

𝑥

𝟏

𝟐Players: Player 1 and 2

Strategies: Sets of actions 𝑋, 𝑌   
Payoffs: When 1 plays 𝑥 and 2 plays 𝑦.

1’s payoff ∶ 𝑢1(𝑥, 𝑦)             2’s payoff ∶ 𝑢2(𝑥, 𝑦) 

Zero-sum games: focus of this section
−𝑢1(𝑥, 𝑦) =  𝑢2 𝑥, 𝑦

We’ll call one of the loss and one gain/utility
ℓ 𝑥, 𝑦 =  −𝑢1(𝑥, 𝑦)   (in this section)



MinMax Equilibrium
Mixed Strategies:          picks distribution 𝑝 over 𝑋 and      picks distribution 𝑞 over 𝑌. 𝟏 𝟐

MinMax value MaxMin value

min
𝑝

max
𝑞

𝑝⊤ L 𝑞 max
𝑞

 min 
𝑝

𝑝⊤ L 𝑞

(player 1 goes first) (player 2 goes first)

MinMax value = MaxMin value
Under some conditions, e.g., 𝑋 and 𝑌 finite.  

Von Neumann’s MinMax Theorm

min
𝑝

max
𝑞

𝑝⊤L 𝑞 ≥ max
𝑞

 min 
𝑝

𝑝⊤L 𝑞
Proof: It was easy to see that going second is an advantage for either player

The reverse direction was the hard part of this proof.



Proving the reverse direction of MinMax

• Column player “best responds” to the row player

Imagine hypothetical interactions over 𝑡 = 1, … , 𝑇 days:
• The row player uses Multiplicative Weights Update to choose one row per day 

Idea: Online algorithms and MinMax are about interactions with an adversary. 
So let’s use the a no-regret algorithm for one of the players (or both).

Playing row 𝑖 with probability 𝑝𝑖
(𝑡) 

Playing  𝑞(𝑡) = argmax𝑞 𝑝 𝑡 ⊤ L 𝑞

• The row player’s cost vector of 𝑐1
𝑡 , … , 𝑐𝑛

𝑡 = L 𝑞(𝑡) is revealed and she suffers 

𝑝 𝑡 ⊤ L 𝑞𝑡  loss in expectation.



Proving the reverse direction of MinMax
Playing row 𝑖 with probability 𝑝𝑖

(𝑡) using MWU

Playing column 𝑞(𝑡) = argmaxq 𝑝 𝑡 ,⊤ L 𝑞 , Row player cost vector is revealed to be (L 𝑞𝑡)

I want to prove that min
𝑝

max
𝑞

𝑝⊤L 𝑞 ≤  max
𝑞

 min 
𝑝

𝑝⊤L 𝑞 using a construction of a pair of 

strategies that are at minmax equilibrium.

Construct 



Algorithm for Max Flow 
Using Multiplicative Weights Update 

From here one, material covered is not in scope for the final exam! 
Let’s just have some fun!



Revisiting Max Flow
Input: A directed graph 𝐺 = 𝑉, 𝐸 , source vertex 𝑠 and sink vertex 𝑡, and 
edge capacities 𝑐𝑒  for all 𝑒 ∈ 𝐸. For ease today assume 𝑐𝑒 = 1 for all edges.
Output: A maximum valid s-t flow



We solved flow problems with an LP before
The primal and dual LPs corresponding to max flow and min cut:

max ෍
𝑃∈ℛ

𝑓𝑃

෍
𝑃∋𝑒

𝑓𝑝 ≤ 1 for all 𝑒 ∈ 𝐸

𝑓𝑃 ≥ 0 for all 𝑃
∈ ℛ

min ෍
𝑒∈𝐸

ℓ𝑒

෍
𝑒∈𝑃

𝑙𝑒 ≥ 1 for all 𝑃 ∈ ℛ

𝑙𝑒 ≥ 0 for all 𝑒 ∈ 𝐸

Let ℛ be the set of all s-t paths, 𝑓𝑃 is the amount of flow on path 𝑃 and ℓ𝑒  are dual 
variable indicating the cut.  

Primal: Max Flow Dual: Min Cut



Min Cut-Max Flow as a MinMax Game
Column player: Choosing the dual variables ℓ𝑒𝑠.
Row player: Choosing the primal variables 𝑓𝑃 

…

⋮ ⋮ ⋮

…

…

Edges 𝑒 ∈ 𝐸

s − t paths 𝑃 ∈ ℛ

𝑎𝑃,𝑒 = 1{𝑒 ∈ 𝑃}

Huge matrix!
No worries, we never 

write it down!

Matrix A



MinMax Value of the Game

Let OPT be the max flow (= min cut). The the minmax value of this game is

min
𝑦∈ 0,1 ℛ

max
𝑥∈ 0,1 𝐸

𝑦⊤𝐴𝑥 = max
𝑥∈ 0,1 𝐸

min
𝑦∈ 0,1 ℛ

𝑦⊤𝐴𝑥 =
1

OPT

Claim

Proof idea: construct strategies from the primal and dual solutions. E.g., scaled dual 
variables ℓ𝑒

𝑂𝑃𝑇
  are mixed strategy: Col. Player puts a uniform distribution over its cut. 

max ෍
𝑃∈ℛ

𝑓𝑃

෍
𝑃∋𝑒

𝑓𝑝 ≤ 1 for all 𝑒 ∈ 𝐸

𝑓𝑃 ≥ 0 for all 𝑃 ∈ ℛ

min ෍
𝑒∈𝐸

ℓ𝑒

෍
𝑒∈𝑃

𝑙𝑒 ≥ 1 for all 𝑃 ∈ ℛ

𝑙𝑒 ≥ 0 for all 𝑒 ∈ 𝐸

Primal: Max Flow Dual: Min Cut



Min Cut-Max Flow as a MinMax Game

…

⋮ ⋮ ⋮

…

…

Edges 𝑒 ∈ 𝐸

s-t paths 𝑃 ∈ ℛ

𝑎𝑃,𝑒 = 1{𝑒 ∈ 𝑃}

Huge matrix!

Matrix A

# rows is small enough: We will run MWU on them

# columns is large: Can we efficiently 
compute "best response’’?



Solving Max Flow with Multiplicative Weights 
Actions for the row player are edges 𝑒 ∈ 𝐸.
For 𝑡 = 1, … , 𝑇

• Use the MWU algorithm to generate a probability 
distribution 𝑥(𝑡) ∈ 0,1 𝐸  over the edges (actions)

• Let 𝑃(𝑡) be column player’s “best response”
Path 𝑃(𝑡) ← argmin𝑃∈ℛ  ෍

𝑒∈𝑃

𝑥𝑒
(𝑡)

• Create rewards 𝑟𝑒
(𝑡) = 1{𝑒 ∈ 𝑃(𝑡)} for all edges and 

and feed them as reward (negative loss) to MWU.

Let ҧ𝑓 put flow 𝑂𝑃𝑇
𝑇

× (#time 𝑃 𝑡 = 𝑃) on each path 𝑃 ∈ 
ℛ.

When 𝑇 ≥ 8 OPT2 ⋅ ln 𝐸
𝜖2  

then ҧ𝑓(1 − 𝜖) is an 1 − 𝜖 -
approximately optimal flow!

Theorem:



How to implement efficiently?
Actions for the row player are edges 𝑒 ∈ 𝐸.
For 𝑡 = 1, … , 𝑇

• Use the MWU algorithm to generate a probability 
distribution 𝑥(𝑡) ∈ 0,1 𝐸  over the edges (actions)

• Let
Path 𝑃(𝑡) ← argmin𝑃∈ℛ  ෍

𝑒∈𝑃

𝑥𝑒
(𝑡)

• Create rewards 𝑟𝑒
(𝑡) = 1{𝑒 ∈ 𝑃(𝑡)} for all edges and 

and feed them as reward (negative loss) to MWU.

Let ҧ𝑓 put flow 𝑂𝑃𝑇
𝑇

× (#time 𝑃 𝑡 = 𝑃) on each path 𝑃 ∈ 
ℛ.

Shortest path with 
𝑥𝑒

(𝑡) as edge lengths:
𝑂( 𝐸 log 𝑉 )

O
O

PT
2

ln
𝐸

𝜖2
 ro

un
ds Each step 

𝑂( 𝐸 )

Comparable to other algorithms so far. But importantly: It actually extends to 
many other flow type problems for which Ford-Fulkerson doesn’t extend!



MWU is the MVP!
Even for offline problems, online learning 

algorithms can be very helpful!



CS170

Lots and lots 
to learn!



CS170

To see more …
• Take more courses
• Come to Theory lunch! Wednesdays at around noon
• Go to the Simons Institute for Theory of Computing 

on campus.
• Stay in touch with us!

Continue to learn about Theory of CS !



Jonny Carolyn David W Eric Meghal

Andrew XavierBill DianaJessica L Ryan

John and Nika want to say a 
huge thanks to our staff!



Aaryan Ajay Alex Anushka David Y

Divya George Jeffery Jessica H

Richik Shu Thomas Will YYamuna



Thank you!
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