NP vs P

$P = \text{class of problems for which efficiently find a solution in polynomial time}$

$NP = \text{class of problems for which efficiently verify a given solution}$.

$NP \not= P$
Rudrata Cycle

Input: Graph $G = (V, E)$

Solution: Find a cycle that visits every vertex exactly once

Rudrata cycle \in NP

Proof: Verify $(\text{Graph } G = (V, E), \text{ a cycle } C)$

Check if C is a Rudrata cycle in G.
Factorization \in NP

Input: An n-bit integer N

Sol: Some $p, q > 1$ integers such that $p \cdot q = N$.

Solution Input

Verify (p, q, N)

$p \cdot q = N$

Factorization $\notin P$ (general belief)
A problem A is NP-complete if every problem in NP reduces to A.

Def:

NP-complete problems \rightarrow 3-COL, Hamiltonian Cycle, TSP

\Rightarrow

- \lor
 - Factorisation
 - Break RSA

\Rightarrow

- \lor

\Rightarrow

- \lor

- MST, Shortest Paths

Halting \Rightarrow
Reductions:

Def: problem \(A \) \(\leq_p \) problem \(B \)
\(\Rightarrow \) reduction can take polytime

Problem \(A \) reduces in polytime to problem \(B \)

If you can use an algorithm for \(B \) to solve \(A \)

\(\text{Problem } A \) \(\leq_p \) \(\text{Problem } B \)

\(\text{Matching} \) \(\leq_p \) \(\text{MaxFlow} \)
HAMILTONIAN
RUDRATA CYCLE

Input: GRAPH $G = (V, E)$

Solution: Find a cycle that visits every vertex exactly once

HALF - CYCLE

Input: Graph $G = (V, E)$

Solution: Find a cycle that visits half the nodes $|V|/2$
\[A \leq B = \text{using an algorithm for } B \text{ to solve } A \]

\[\downarrow \text{Half-Cycle} \]

Algorithm for B = Half Cycle

Input to A
\[G = (V,E) \]

Input to B
\[G' = (V',E') \]

Reduction
\[G' = G \cup \{ \text{n disjoint vertices} \} \]

Solution to B
\[\Rightarrow \text{Solution to A} \]

No solution to B
\[\Rightarrow \text{No solution to A} \]

1) Describe reduction algo
2) Solution to B \(\Rightarrow\) Solution to A efficiently
3) No soln to B \(\Rightarrow\) No soln to A.
Half cycle in G' \[\Rightarrow\] Cycle in G

Half cycle in G' \[\Rightarrow\] Cycle in G

Hydra cycle in G
NP-complete problems

1) All of them are reducible to one another

\[3\text{COL} \leq_p \text{Rudrata Cycle} \]

2) "Hardest problems within NP"

If a polytime algo for one of them gives a polytime algo for all of NP

\[\text{NP} = \text{P} \]
Theorem:

Circuit SAT is NP-complete

Mother of all NP-completeness

Circuit SAT

Input: A boolean circuit C with n boolean inputs (x_1, x_n) & one output.

Sol: An input assignment x s.t. output of $C = 1$.

\[
\text{A} \quad \text{And} \\
\text{Or} \quad \text{And} \\
\text{A} \quad \text{A} \quad \text{Or} \\
x_1, x_n, x_n
\]