
CS	170
Efficient	Algorithms	and	Intractable	Problems

Nika	Haghtalab				and				John	Wright

EECS,	UC	Berkeley

Lecture	2:
Divide	and	Conquer	I,	Asymptotics

Announcements
1. OH	schedule	is	finalized	and	on	the	course	calendar!	
• Some	rooms	may	change,	keep	checking	the	calendar	for	the	location!

2. Discussion	schedule	finalized	tomorrow.	Check	discussion	tab	on	webpage.	
Start	discussions	next	week.

3. HW1	will	be	released	this	Sunday,	stay	tuned
• If	you	aren’t	on	Gradescope,	send	private	post	on	Edstem.

4. Lecture	recordings:	Maybe	released	24	hours	later	due	to	post-processing	
needed.

Recap	of	last	time
Introductions	all	around!

Our	motivating	questions	about	algorithms:	
• Does	it	work?
• Is	it	fast?
• Can	I	do	better?

Technical	content:
• Arithmetic	and	Big	Oh	notation
• Intro	to	Divide	and	Conquer
• First	attempt	at	fast	multiplication
à		Still	didn’t	beat	!(#!)	

Recap	of	last	time
Introductions	all	around!

Our	motivating	questions	about	algorithms:	
• Does	it	work?
• Is	it	fast?
• Can	I	do	better?

Technical	content:
• Arithmetic	and	Big	Oh	notation
• Intro	to	Divide	an	Conquer
• First	attempt	at	fast	multiplication
à		Still	didn’t	beat	!(#!)	

Recap	of	last	time
Introductions	all	around!

Our	motivating	questions	about	algorithms:	
• Does	it	work?
• Is	it	fast?
• Can	I	do	better?

Technical	content:
• Arithmetic	and	Big	Oh	notation
• Intro	to	Divide	an	Conquer
• First	attempt	at	fast	multiplication
à		Still	didn’t	beat	!(#!)	

1

This	lecture
• Karatsuba’s	algorithm	with	! "!.#
àUsing	divide	and	conquer,	but	this	time	better!

• Reviewing	! ⋅ 	and	Ω ⋅ 	notation	formally.

• Recurrence	relations	and	a	useful	theorem	for	solving	them!

Karatsuba’s	Idea
Divide	and	Conquer	indeed	can	lead	to	a	faster	algorithm!

%×'	 = *×10
$
% + . /×10

$
% 	+ 0

= *×/ 10$ + *×0 + /×. 10$/% + (.×0)
P1	 P2	 P3	 P4	

Main	idea:	Could	we	write	P2+P3	using	what	we	compute	in	P1	and	P4,	
and	at	most	one	other	#/2-digit	multiplication?

The	issue	is	that	we	are	creating	4	sub-problems.	
What	if	we	could	create	fewer	subproblems?

Karatsuba’s	Clever	Trick
Let	us	only	compute	3	multiplications	with	"/2		digit	numbers:
• Q1:	*×/
• Q2:	.×0
• Q3:	(* + .)(/ + 0)

%×'	 = *×10
$
% + . /×10

$
% 	+ 0

= *×/ 10$ + *×0 + /×. 10$/% + (.×0)

'(+ *+ = ' + + * + (− ac	 − bd

Q1	 Q3−Q1−Q2	 Q2	

Expressing	P2+P3	differently

Three	subproblems

Well…	Gauss	had	used	this	trick	too,	for	complex	numbers…

What	is	the	runtime	of	Karatsuba’s	algorithm?

Less	formally,	how	many	1-digit	multiplications	do	we	do	in	Karatsuba’s	
algorithm?

Same	approach	as	last	lecture,	
this	time	our	branching	factor	is	3	instead	of	4

!	digits

…1 1 11 1 1

…

Layer #	of	digits #	problems

0 " 1

1 "/2 3
⋮ ⋮ ⋮

(#digits	per	
node #	nodes

⋮ ⋮ ⋮

Depth 1 #	leaves!)##$%&$'?

#/2 #/2	#/2

Layer #	of	digits #	problems

0 " 1

1 "/2 3
⋮ ⋮ ⋮

(

⋮ ⋮ ⋮

1

!	digits

…1 1 11 1 1

…

#/2 #/2	#/2

!	digits

…1 1 11 1 1

…

Layer #	of	digits #	problems

0 " 1

1 "/2 3
⋮ ⋮ ⋮

("
2! 3"

⋮ ⋮ ⋮

log#(") 1 "$%&!(()

#/2 #/2	#/2

depth:	Solve	for	!,	such	that	"#! = 1	è	! = log#(()
#	leaves:	Take	3$%&'(= 3)*+"(") = ()*+"(.) ≈ (/.1

Solution	Slide

Other	Algorithms
• Karatsuba	(1960):	O "*., !
• Toom-3/Toom-Cook	(1963):	O "*.-,. 	

• Schönhage–Strassen	(1971):
• Runs	in	time	O(" log " log log ")	

• Furer	(2007)
• Runs	in	time	" log " ⋅ 2/($%&∗ ")	

• Harvey	and	van	der	Hoeven	(2019)
• Runs	in	time	O(" log ")	

Saw	this!

x

Divide	and	conquer	too!	Instead	of	breaking	into	three	n/2-sized	
problems,	break	into	five	n/3-sized	problems.	

(advanced) Hint:	Start	with	9	subproblems	and	reduce	it	to	5	subproblems.

We	used	base	10	so	far
àCounted	the	#	of	1-digit	operations,	assuming	adding/multiplying	
single	digits	is	easy	(memorized	our	multiplication	table!)

What	if	we	use	base	2?
àWe	would	want	to	count	#	of	1-bit	operations.

How	do	we	alter	Karatsuba’s	algorithm	for	binary	numbers?

What	about	binary	representation?

Easy	to	compute	10' 	in	base	10.	In	base	2,	it	is	easy	to	compute	2' .
N-bit	integer	multiplications

.!.%⋯.$ = .!, .%, ⋯ , .$/% 	×2$/% + [. ⁄$ %)!. ⁄$ %)%⋯.$]

)3)))4	 ⋯	 ⋯)56))563)5
71 72

8×7 = 81×71 2" + 81×72 + 82×71 2"/# + (82×72)
= ⋯

Practice:	Complete	this	equation	the	Karatsuba’s	way	and	rederived	! #".$ 	runtime	for	
multiplying	two	#-bit	numbers.	Might	see	this	on	HW	or	Discussion!

Technically
• We	only	counted	the	number	of	1-digit	problems
• There	are	other	things	we	do:	adding,	subtracting,	…
• Shouldn’t	we	account	for	all	of	that?

Absolutely!
• We	should	be	more	formal,	and	we	will	be	next!
• In	this	case,	additions/subtractions	end	up	in	lower	order	terms
• Don’t	affect	!(.).

Details	we	skipped

Asymptotic	Notations	
More	Formally

Runtime	of	Algorithms	Asymptotically
Suppose	an	algorithm	with	input	size	"	takes

< " = 5"# + 20" log(") 	+ 7

Why	is	it	a	good	idea	to	just	say	this	is	? "# ?
• Constants	like	5,	20,	7,	depend	on	the	platform	and	computer.
• Makes	it	easier	to	compare	the	performance	of	algorithms	on	large	inputs
• Makes	algorithm	analysis	easier
• Sometime	clever	tricks	and	representations	improve	the	constants	anyway.

ms

< " ∈ ? "# 		also	commonly	written	as	< " = ? "# 	

Definition	of	O(…)
• Let	: " ,	; " 	be	functions	of	positive	integers.
• Think	of	: " 	as		a	runtime:	positive	and	increasing	in	n.

• We	say	“: " 	is	! ; " ”	if	and	only	if
for	large	enough	n,		

: " 	is	at	most	some	constant	multiple	of	; " .

Definition	of	O(…)
• Let	: " ,	; " 	be	functions	of	positive	integers.
• Think	of	: " 	as		a	runtime:	positive	and	increasing	in	n.

• We	say	“: " 	is	! ; " ”	if	and	only	if
for	large	enough	n,		

: " 	is	at	most	some	constant	multiple	of	; " .

• Always	give	the	tightest	and	simplest	O()	you	can.
à	e.g.,	5"% ∈ !("*)	and	5"% ∈ !(2"% + ")	too,	
à	but	give	the	best	bound	of	!("%).

There	exists	/	and	"+ > 0
Such	that	for	all	" ≥ "+, : " ≤ / ⋅ ;(")

Example
Prove	that	for	T # = 2#! + 2,	we	T # ∈ !(#!)

T
&
=
2&

! +
2

*
&
=
&!

2#! + 2 ≤ 4#!

Even	though	T # 	is	larger	than	#!	always,	we	
can	find	* = 4	and	#+ = 1,	such	that	all	# > #+	

4&
!

&" = 1

How	do	you	prove	the	above	inequality?

Whatever	(correct!)	math	you	like!
• E.g.,	equal	at	#+	and	RHS	has	larger	derivative.

What’s	wrong	with	this	argument	and	
relying	on	pictures? T &

= 0.
1&
! + 2

* &
= &

log
(&)

of	pictures!
The	picture	seems	to	imply	that	
for	T " = 0.1"# + 2		we	have	
that	T " ∈ ?(" log("))!

of	pictures!

T
&

=
0.1

&!
+
2

*
&
=
& l
og
(&
)

That	is	why	you	should	come	up	with	/	and	"+	
and	mathematically	prove	that	for	all	# ≥
#+, < # ≤ * ⋅ > # .	

The	picture	seems	to	imply	that	
for	T " = 0.1"# + 2		we	have	
that	T " ∈ ?(" log("))!

What’s	wrong	with	this	argument	and	
relying	on	pictures?

How	to	prove	0.1$! ∉ &($)!
• Proof	by	contradiction:		
• Suppose	that	0.1	"% ∈ ! " .
• Then	there	is	some	positive	/	and	"0	so	that:

∀" ≥ "+, 0.1"% ≤ /	"
• Divide	both	sides	by	":

∀" ≥ "+, 0.1"	 ≤ /

• That’s	not	correct.	Let	" = "+ + 10	c
• Then	# ≥ #+,	but	 0.1#	 > *.

• Contradiction!

Recap	of	Proof	Techniques
To	prove	< " ∈ 	? D " :	
• You	have	to	come	up	with	F	and	"0	so	that	the	definition	is	satisfied.

To	prove	<(") ∉	? D "
• You	have	to	rule	out	all	possible	F	and	"0.	
• One	approach	is	to	use	proof	by	contradiction:
• Suppose	there	exists	a	F	and	an	"0	so	that	the	definition	is	satisfied.
• Derive	a	contradiction,
à	e.g.,	by	finding	large	enough	"	(as	a	function	of	F	and	"5),	for	which	the	
definition	is	not	satisfied.

Ω(…)	means	lower	bound
• Let	: " ,	; " 	be	functions	of	positive	integers.
• Think	of	: " 	as		a	runtime:	positive	and	increasing	in	n.

• We	say	“: " ∈	Ω ; " ”	if	and	only	if
for	large	enough	n,		

: " 	is	at	least	some	constant	multiple	of	; " .
There	exists	/	and	"+ > 0

Such	that	for	all	" ≥ "+, / ⋅ ; " ≤ : "

Switched	these	
compared	to	O()!!

Example
Indeed,	0.1"# + 2 ∈ Ω(" log("))!

T
&
=
0.1

&!
+
2

*
&
=
& l
og
(&
)

Prove	this	formally:	
Find	constants	*	and	#+ > 0,	such	that	
for	all	# ≥ #+, *	# log(#) ≤ 0.1#! + 2.
	

Θ(…)	means	both!
We	say	“" # 	is	Θ %(#) ”	iff	both:

	! " = $ % "
and	

	! " = Ω % "

Example:	Asymptotics	of	the	geometric	series
Take	any	constant	I	and	function	< " = 1 + I + I# +⋯+ I"	

Show	that	< " = S
Θ I" 	 if	I > 1
Θ 1 	 if	I < 1
Θ " 	 if	I = 1

Proof	Idea:	Recall	sum	of	a	geometric	series	that	for	E ≠ 1:	
1 + E + E! +⋯+ E5 = E56" − 1

E − 1
Intuition:	
• For	E > 1	,	this	is	approximately	7

#$%

7 = E5.
• For	E < 1,	7

#$%8"
78" ≈ "

"87
Prove	formally	at	home	(also	EX	0.2	of	the	book).

Prove	formally	
at	home!

Revisiting	Karatsuba’s	Alg	runtime,	more	formally

I×K = Q1×105 + Q3 − Q1 − Q2 105/! + Q2

Karatsuba’s	Alg	in	1	layer

Q1=	'×*						Q2=	+×(Q3=	(' + +)(* + ()

What	is	the	runtime	of	Karatsuba’s	Alg?

At	each	layer,	we	have	3	problems
à	Each	problem	of	size	5!.

We	have	to	do	a	bunch	of	other	operations
• Finding	a,	b,	c,	d	by	shifting	#-digit	arrays.
• #/2-digit	additions	' + +,	c+(
• #-digit	additions	Q3 − Q1 − Q2
• 2#-digit	additions	Q1×105 + Q3 − Q1 − Q2 105/! + Q2
• ….

Runtime	:											: " = 3	: $
% + 20"

!(#)
More	precisely	≤ 20#

Work	in	this	layerRecursive	calls	to	
the	next	layer

Recurrence	Relations	
Recurrence	relations	give	a	formula	for	< " ,	i.e.,	the	runtime	on	size	"	problems
in	terms	of	<(W)	where	W < ".

< " = 3	< "
# + 20"	is	a	recurrence	relation.

< 1 = O 1 			Base	case	(e.g.,	< 1 = 5	XI	500)				

Main	question:
Given	a	recurrence	relation	for	<("),	find	a	closed-form	expression	for	it.

For	example,	we	hope	that	<(") 	= 	? "*., 	for	the	above	recurrence!		

Work	in	this	layerRecursive	calls	to	
the	next	layer

Solve	Karatuba’s	Alg	Recurrence	Relation
< # = 3< 5

! + 20#,						< 1 = 20.

3×	

3-./($)×	

36	×	

9×

"

1
(Size	1)

…
#/4

#/23

…

#/2

size

Total	contribution	
in	this	layer

Abstraction	of	the	tree

Solve	Karatuba’s	Alg	Recurrence	Relation
< # = 3< 5

! + 20#,						< 1 = 20.

M
:;+

<=>(5)
20# 3

2
:
= 20# M

:;+

<=> 5 3
2

:

										= ! # ?
!
<=> 5

										= ! #×#<=> ?8<=> !

										= ! #<=> ? = ! #".$

20#

Total	contribution	
in	this	layer

3×20 #
2

9×20 #
4

Abstraction	of	the	tree

3@×20 #
2@

3<=> 5 ×20 1

3×	

3-./($)×	

36	×	

9×

"

1
(Size	1)

…
#/4

#/23

…

#/2

size

Solution	Slide

Solving	Recurrence	Relations	Generally
The	tree	method,	as	we	just	did
• Keep	track	of	the	number	and	size	of	problems	in	each	step
• Account	for	total	amount	of	computation	done	in	each	layer.
• Sum	over	all	the	computation	done	in	the	layers.

The	Master	Theorem
The	tree	method,	as	we	just	did
• Keep	track	of	the	number	and	size	of	problems	in	each	step
• Account	for	total	amount	of	computation	done	in	each	layer.
• Sum	over	all	the	computation	done	in	the	layers.

Suppose	that	8 ≥ 1, 7 > 1, and	[≥ 0	are	constants	(independent	of	n).
Suppose	< " = 8 ⋅ < "

7 +? "8 .		Then

< # =
O #A 	 if	' < +A
O #A log # 	 if	' = +A
O #<=>& B 	 if	' > +A

The	Master	Theorem

• Can	it	be	used	to	solve	any	recurrence	relation?
à	Nope!	But	it	is	a	useful	tool	in	many	cases.
à	So,	make	sure	you	are	also	comfortable	with	the	tree	method.

• Don’t	we	need	a	base	case?
àYes!
àTake	: 1 = ! 1 ,	the	exact	constant	in	this	case	doesn’t	affect	the	O(.).	

• 	What	if	"/.	is	not	an	integer?
àThe	Master	Theorem	is	also	correct	with	: " = * ⋅ : $

2 + ! "3 .	
àWe	will	mostly	ignore	floors	and	ceilings	in	recurrence	relations.	

More	on	the	Master	Theorem

Overview	of	the	proof	of	Master	Theorem
• See	Section	2.2	of	the	book	for	a	complete	proof.

For	the	proof,	suppose	that	: " ≤ * ⋅ : $
2 + / ⋅ "3 .

• For	formal	recursive	arguments,	we	always	substitute	a	constant.
à	Precise	relationship	between	each	layer’s	parameter	and	the	amount	of	
work.
à	Let’s	assume	: 1 = /,	too.	For	convenience!
à	Just	do	the	tree	method!

< # ≤ ' ⋅ < #
+ + * ⋅ #A

8×	

8$%&4(")×	

8C	×

8#×

4

1
(Size	1)

…

4/5!

4/5'

…
4/5

Layer Problem	
size

#	
problems

Work	@	this	
layer

0 " 1

1 "/7 8

⋮ ⋮ ⋮

("/7! 8!

⋮ ⋮ ⋮

log7(") 1 8$%&4(")	

< # ≤ ' ⋅ < #
+ + * ⋅ #A

8×	

8$%&4(")×	

8C	×

8#×

4

1
(Size	1)

…

4/5!

4/5'

…
4/5

Layer Problem	
size

#	
problems

Work	@	this	
layer

0 " 1 / ⋅ "3

1 "/7 8 8 ⋅ F ⋅ "7
8

⋮ ⋮ ⋮ ⋮

("/7! 8! 8! ⋅ F ⋅ "
7!

8

⋮ ⋮ ⋮ ⋮

log7(") 1 8$%&4(")	 8$%&4(") ⋅ F

Solution	Slide

< # ≤ ' ⋅ < #
+ + * ⋅ #A Layer Problem	

size
#	

problems
Work	@	this	

layer

0 " 1 / ⋅ "3

1 "/7 8 8 ⋅ F ⋅ "7
8

⋮ ⋮ ⋮ ⋮

("/7! 8! 8! ⋅ F ⋅ "
7!

8

⋮ ⋮ ⋮ ⋮

log7(") 1 8$%&4(")	 8$%&4(")	 ⋅ F

Total	computation	on	all	layers:

/"3 ⋅ H
67+

-./4($) *
.3

6

Looks	so	familiar	…

< # ≤ ' ⋅ < #
+ + * ⋅ #A

Total	computation	on	all	layers:

/"3 ⋅ H
67+

-./4($) *
.3

6

Geometric	series

1 + E + E! +⋯+ E5	= R
Θ E5 	 if	E > 1
Θ 1 	 if	E < 1
Θ # 	 if	E = 1

Proof	of	the	Master	Theorem

< # ≤ ' ⋅ < #
+ + * ⋅ #A

Total	computation	on	all	layers:

/"3 ⋅ H
67+

-./4($) *
.3

6

Geometric	series

1 + E + E! +⋯+ E5	= R
Θ E5 	 if	E > 1
Θ 1 	 if	E < 1
Θ # 	 if	E = 1

=
Θ "3 *

.3
-./4($)

	 if	* > .3

Θ "3 	 if	 * < .3
Θ "3log(") 	 if	P = 1

The	Master	Theorem
#A ⋅ #<=>&(

B
D()

= #A6<=>& B 8A

= #<=>& B

= #A6<=>& B 8<=>& D(

Master	Theorem’s	Interpretation

Branching	causes	the	number	
of	problems	to	explode!		
Most	work	is	at	the
	bottom	of	the	tree!

Problem	size	shrinks	fast,	
so	most	work	is	at	the	

top	of	the	tree!

(vs.	 -T

8 > 78
Tall	and	narrow

8 < 78
Wide	tree

8	 = 	78
Branching	perfectly	balances	
total	amount	of	work	per	layer.	
All	layers	contribute	equally.

Next	time
• More	divide	and	conquer
• Matrix	multiplications
• Median	selection

Wrap	up
Karatsuba	Integer	Multiplication:

You	can	do	better	than	grade	school	multiplication!
Example	of	divide-and-conquer	in	action
Runtime	analysis,	informal	and	formal.

Asymptotics,	recurrence	relations,	and	Master	theorem
Tree	method	is	intuitive	and	fun!
Master	theorem	is	useful!

