Today: Quantum.
Today: Quantum.
Today: Quantum.
Today: Quantum.

\[\text{S} \quad \text{H} \]
Today: Quantum.
Qubit/electron.

\[|0 \rangle \quad \text{ground state} \quad |1 \rangle \quad \text{excited state} \]

Superposition:

\[\alpha_0 |0 \rangle + \alpha_1 |1 \rangle \]

Complex numbers \(\alpha_0 \) and \(\alpha_1 \).

\[|\alpha_0|^2 + |\alpha_1|^2 = 1 \]

\(\alpha_0 \) and \(\alpha_1 \) are "amplitudes."
Qubit/electron.

ground state

\[|0\rangle \]
Qubit/electron.

excited state

$|1\rangle$

Complex numbers α_0 and α_1.

$|\alpha_0|^2 + |\alpha_1|^2 = 1.$

α_0, α_1 are "amplitudes."
Qubit/electron.

- Ground state: $|0\rangle$
- Excited state: $|1\rangle$

Superposition: $\alpha |0\rangle + \alpha |1\rangle = 1$

α and α are "amplitudes."
Qubit/electron.

- **Ground state**: $|0\rangle$
- **Excited state**: $|1\rangle$
- **Superposition**: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$

Complex numbers α_0 and α_1.
Qubit/electron.

ground state \[|0\rangle \]

excited state \[|1\rangle \]

Superposition \[\alpha_0 |0\rangle + \alpha_1 |1\rangle \]

Complex numbers \(\alpha_0 \) and \(\alpha_1 \).
\[|\alpha_0|^2 + |\alpha_1|^2 = 1. \]
Qubit/electron.

\[|0\rangle \quad \text{ground state} \]
\[|1\rangle \quad \text{excited state} \]

\[\alpha_0 |0\rangle + \alpha_1 |1\rangle \quad \text{Superposition} \]

Complex numbers \(\alpha_0 \) and \(\alpha_1 \).
\[|\alpha_0|^2 + |\alpha_1|^2 = 1. \]
\(\alpha_0, \alpha_1 \) are “amplitudes.”
Measurement.

\[\alpha_0 |0\rangle + \alpha_1 |1\rangle \]
Measurement.

\[\alpha_0 |0\rangle + \alpha_1 |1\rangle \]

Remember \(|\alpha_0 |2 \rangle + |\alpha_1 |2 \rangle = 1 \).

Amplitudes \(\rightarrow \) probabilities on measurement!!
Measurement.

\[\alpha_0 |0\rangle + \alpha_1 |1\rangle \]

State \(|0\rangle \) with prob \(|\alpha_0|^2 \)
Measurement.

\[\alpha_0 |0\rangle + \alpha_1 |1\rangle \]

\[\text{state } |0\rangle \text{ with prob } |\alpha_0|^2 \]

\[\text{state } |1\rangle \text{ with prob } |\alpha_1|^2 \]
Measurement.

Remember $|\alpha_0|^2 + |\alpha_1|^2 = 1$.

\[|\alpha_0|^2 + |\alpha_1|^2 = 1. \]
Measurement.

\[\alpha_0 |0\rangle + \alpha_1 |1\rangle \]

- State \(|0\rangle\) with prob \(|\alpha_0|^2\)
- State \(|1\rangle\) with prob \(|\alpha_1|^2\)

Remember \(|\alpha_0|^2 + |\alpha_1|^2 = 1\).

Amplitudes \(\rightarrow\) probabilities on measurement!!!
Two qubits...a dollar.

One bit:

Classic State: 0 or 1.

Quantum State: Internal:
\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]

Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State: Internal:
\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle. \]

Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh!

Something new, with two.

Partial Measure: look at one bit.

Result: 0 (with probability \[|\alpha_{00}|^2 + |\alpha_{01}|^2 \].)

What is the state of the system if result is 0?

New Internal state:
\[\alpha_{00} |00\rangle + \alpha_{01} |01\rangle \]

Scaling to make probabilities add to 1.
Two qubits...a dollar.

One bit:

Classic State: 0 or 1.
Two qubits...a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:

Internal:
\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]

Measure: 0 or 1.
Two numbers internally, measurement yields one bit.

Two bits:
Classical State: 00, 01, 10, 11.
Quantum State:

Internal:
\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle. \]

Measure: 00, 01, 10, 11.
Four internal numbers, measurement yields two bits.

Ooh!
Something new, with two.
Partial Measure: look at one bit.
Result: 0 (with probability \[|\alpha_{00}\rangle^2 + |\alpha_{01}\rangle^2. \])

What is the state of the system if result is 0?
New Internal state:
\[\alpha_{00} |00\rangle + \alpha_{01} |01\rangle \]

\[\sqrt{ |\alpha_{00}\rangle^2 + |\alpha_{01}\rangle^2} \]
Scaling to make probabilities add to 1.
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]
Two qubits...a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:
 - Internal:
 \[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]
 - Measure : 0 or 1.

Ooh! Something new, with two.

Partial Measure: look at one bit. Result: 0 (with probability \[|\alpha_0\rangle^2 + |\alpha_1\rangle^2. \])

What is the state of the system if result is 0?

New Internal state:
\[\sqrt{\alpha_0^2 + \alpha_1^2} |00\rangle + \sqrt{\alpha_0^2 + \alpha_1^2} |01\rangle + \sqrt{\alpha_0^2 + \alpha_1^2} |10\rangle + \sqrt{\alpha_0^2 + \alpha_1^2} |11\rangle. \]
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:
- Internal:
 \[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle.\]
- Measure: 0 or 1.

Two numbers internally,
Two qubits... a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:
- Internal:

\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]
- Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:
- Internal:

\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle. \]
- Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh!

Something new, with two.

Partial Measure: look at one bit.

Result: 0 (with probability \[|\alpha_{00}\rangle^2 + |\alpha_{01}\rangle^2. \])

What is the state of the system if result is 0?

New Internal state:

\[\alpha_{00} |00\rangle + \alpha_{01} |01\rangle \]

\[\sqrt{ |\alpha_{00}\rangle^2 + |\alpha_{01}\rangle^2} = 1 \]

Scaling to make probabilities add to 1.
Two qubits...a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:
- Internal:
 \[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]
- Measure: 0 or 1.
Two numbers internally, measurement yields one bit.

Two bits:
Classical State: 00, 01, 10, 11.
Quantum State:
- Internal:
 \[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle. \]
- Measure: 00, 01, 10, 11.
Four internal numbers, measurement yields two bits.

Ooh! Something new, with two.
Partial measure: look at one bit.
Result: 0 (with probability \(|\alpha_0\rangle^2 + |\alpha_1\rangle^2 \)).
What is the state of the system if result is 0?
New internal state:
\[|\alpha_0|0\rangle + |\alpha_1|1\rangle. \]
Scaling to make probabilities add to 1.
Two qubits...a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:
- Internal:
 \[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]
- Measure: 0 or 1.
Two numbers internally, measurement yields one bit.

Two bits:
Classical State: 00, 01, 10, 11.
Two qubits...a dollar.

One bit:
- **Classical State:** 0 or 1.
- **Quantum State:**
 - Internal: $|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$.
 - Measure: 0 or 1.
Two numbers internally, measurement yields one bit.

Two bits:
- **Classical State:** 00, 01, 10, 11.
- **Quantum State:**
 - Internal: $|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle$.
 - Measure: 00, 01, 10, 11.
Four internal numbers, measurement yields two bits.
Two qubits..a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:
 Internal:
 $|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$.
 Measure: 0 or 1.
Two numbers internally, measurement yields one bit.

Two bits:
Classical State: 00, 01, 10, 11.
Quantum State:
 Internal:
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:
- Internal: \(|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle \).
- Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:
- Internal: \(|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \)
Two qubits... a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:
Internal:
\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]
Measure: 0 or 1.
Two numbers internally, measurement yields one bit.

Two bits:
Classical State: 00, 01, 10, 11.
Quantum State:
Internal:
\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \]
\[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]
Two qubits...a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]

Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \]

\[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]

Measure: 00, 01, 10, 11.
Two qubits...a dollar.

One bit:
- **Classic State**: 0 or 1.
- **Quantum State**:
 - Internal: $|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$.
 - Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:
- **Classical State**: 00, 01, 10, 11.
- **Quantum State**:
 - Internal:
 $|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle$
 $|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1$
 - Measure: 00, 01, 10, 11.

4 internal numbers,
Two qubits...a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:

Internal:

$$|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle.$$

Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:

Internal:

$$|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle$$

$$|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1$$

Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.
Two qubits..a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:
Internal:
\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]
Measure : 0 or 1.
Two numbers internally, measurement yields one bit.

Ooh!

Two bits:
Classical State: 00, 01, 10, 11.
Quantum State:
Internal:
\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \]
\[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]
Measure : 00, 01, 10, 11.
4 internal numbers, measurement yields two bits.
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:
 - Internal: $\left| \alpha \right\rangle = \alpha_0 \left| 0 \right\rangle + \alpha_1 \left| 1 \right\rangle$.
 - Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

 Ooh! Something new,

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:
 - Internal:
 $$\left| \alpha \right\rangle = \alpha_{00} \left| 00 \right\rangle + \alpha_{01} \left| 01 \right\rangle + \alpha_{01} \left| 10 \right\rangle + \alpha_{11} \left| 11 \right\rangle$$
 $$|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1$$
 - Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.
Two qubits...a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]

Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \]

\[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]

Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh! Something new, with two.
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]

Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \]

\[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]

Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh! Something new, with two.

Partial Measure: look at one bit.
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:
- Internal: \(|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle \).
- Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:
- Internal: \(|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle \)
 \[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]
- Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh! Something new, with two.

Partial Measure: look at one bit.

Result: 0
Two qubits..a dollar.

One bit:
Classic State: 0 or 1.
Quantum State:
Internal:
|α⟩ = α₀ |0⟩ + α₁ |1⟩.
Measure : 0 or 1.
Two numbers internally, measurement yields one bit.

Two bits:
Classical State: 00, 01, 10, 11.
Quantum State:
Internal:
|α⟩ = α₀₀ |00⟩ + α₀₁ |01⟩ + α₀₁ |10⟩ + α₁₁ |11⟩
|α₀₀|² + ⋯ + |α₁₁|² = 1
Measure : 00, 01, 10, 11.
4 internal numbers, measurement yields two bits.

Ooh! Something new, with two.

Partial Measure: look at one bit.
Result: 0 (with probability |α₀₀|² + |α₀₁|².)
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State: Internal:
\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]

Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State: Internal:
\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \]
\[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]

Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh! Something new, with two.

Partial Measure: look at one bit.

Result: 0 (with probability \[|\alpha_{00}|^2 + |\alpha_{01}|^2. \])

What is the state of the system if result is 0?
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle. \]

Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:

Internal:

\[|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{01} |10\rangle + \alpha_{11} |11\rangle \]

\[|\alpha_{00}|^2 + \cdots + |\alpha_{11}|^2 = 1 \]

Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh! Something new, with two.

Partial Measure: look at one bit.

Result: 0 (with probability \(|\alpha_{00}|^2 + |\alpha_{01}|^2 \).)

What is the state of the system if result is 0?

New Internal state:

\[\frac{\alpha_{00} |00\rangle + \alpha_{01} |01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}} \]
Two qubits..a dollar.

One bit:

Classic State: 0 or 1.

Quantum State:
- Internal: \(|\alpha\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle \).
- Measure: 0 or 1.

Two numbers internally, measurement yields one bit.

Two bits:

Classical State: 00, 01, 10, 11.

Quantum State:
- Internal: \(|\alpha\rangle = \alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle \).
- Measure: 00, 01, 10, 11.

4 internal numbers, measurement yields two bits.

Ooh! Something new, with two.

Partial Measure: look at one bit.
- Result: 0 (with probability \(|\alpha_{00}|^2 + |\alpha_{01}|^2 \)).

What is the state of the system if result is 0?

New Internal state: \(\frac{\alpha_{00} |00\rangle + \alpha_{01} |01\rangle}{\sqrt{|\alpha_{00}|^2 + |\alpha_{01}|^2}} \)

Scaling to make probabilities add to 1.
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$
Joint State: Entanglement

Qubit one internal state: \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \)
Qubit two internal state: \(\beta_0 |0\rangle + \beta_1 |1\rangle \)

Joint State: \(\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle \)

Can all two bit states be decomposed?

Yes?
No?

No!

\(\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle \)

Proof: Exercise 10.1

No solution to the system of four polynomial equations.

Product of \(\alpha_0 \beta_1 = 0 \) means one must be 0

"Bell State."

One key to the power of quantum.

Entanglement: measure the first bit as 0, the other bit is zero.

More complicated actually: Bell-CHSH inequalities.
Joint State: Entanglement

Qubit one internal state: \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \)
Qubit two internal state: \(\beta_0 |0\rangle + \beta_1 |1\rangle \)

Joint State: \(\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle \),

Can all two bit states be decomposed?
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$,

Can all two bit states be decomposed? Yes?
Joint State: Entanglement

Qubit one internal state: \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \)
Qubit two internal state: \(\beta_0 |0\rangle + \beta_1 |1\rangle \)

Joint State: \(\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle \),

Can all two bit states be decomposed? Yes? No?
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$,

Can all two bit states be decomposed? Yes? No?

No!
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$,

Can all two bit states be decomposed? Yes? No?

No! $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$,

Can all two bit states be decomposed? Yes? No?

No! $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

Proof: Exercise 10.1
Joint State: Entanglement

Qubit one internal state: \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \)
Qubit two internal state: \(\beta_0 |0\rangle + \beta_1 |1\rangle \)

Joint State: \(\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle \),

Can all two bit states be decomposed? Yes? No?

No! \(\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle \).

Proof: Exercise 10.1

No solution to the system of four polynomial equations.
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$

Can all two bit states be decomposed? Yes? No?

No! $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

Proof: Exercise 10.1

No solution to the system of four polynomial equations.

Product of $\alpha_0 \beta_1 = 0$ means one must be 0
Joint State: Entanglement

Qubit one internal state: \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \)
Qubit two internal state: \(\beta_0 |0\rangle + \beta_1 |1\rangle \)

Joint State: \(\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle \),

Can all two bit states be decomposed? Yes? No?

No! \(\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle \).

Proof: Exercise 10.1

No solution to the system of four polynomial equations.

Product of \(\alpha_0 \beta_1 = 0 \) means one must be 0 . . .
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$,

Can all two bit states be decomposed? Yes? No?

No! $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

Proof: Exercise 10.1

No solution to the system of four polynomial equations.

Product of $\alpha_0 \beta_1 = 0$ means one must be 0 . . .

“Bell State.”
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$,

Can all two bit states be decomposed? Yes? No?

No! $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

Proof: Exercise 10.1

No solution to the system of four polynomial equations.

Product of $\alpha_0 \beta_1 = 0$ means one must be 0 . . .

“Bell State.”

One key to the power of quantum.
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$,

Can all two bit states be decomposed? Yes? No?

No! $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

Proof: Exercise 10.1

No solution to the system of four polynomial equations.
Product of $\alpha_0 \beta_1 = 0$ means one must be 0 ...

"Bell State."

One key to the power of quantum.

Entanglement: measure the first bit as 0, the other bit is zero.
Joint State: Entanglement

Qubit one internal state: $\alpha_0 |0\rangle + \alpha_1 |1\rangle$
Qubit two internal state: $\beta_0 |0\rangle + \beta_1 |1\rangle$

Joint State: $\alpha_0 \beta_0 |00\rangle + \alpha_0 \beta_1 |01\rangle + \alpha_1 \beta_0 |10\rangle + \alpha_1 \beta_1 |11\rangle$, Can all two bit states be decomposed? Yes? No?

No! $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$.

Proof: Exercise 10.1

No solution to the system of four polynomial equations.

Product of $\alpha_0 \beta_1 = 0$ means one must be 0 . . .

“Bell State.”

One key to the power of quantum.

Entanglement: measure the first bit as 0, the other bit is zero.

More complicated actually: Bell-CHSH inequalities.
n-qubits.

Internal State: $\alpha_{0\cdots 0} |0\cdots 0\rangle + \alpha_{0\cdots 1} |0\cdots 1\rangle + \cdots + \alpha_{1\cdots 1} |1\cdots 1\rangle$.
$\textit{n-qubits.}$

Internal State: $\alpha_{0...0} |0 \cdots 0\rangle + \alpha_{0...1} |0 \cdots 1\rangle + \cdots + \alpha_{1...1} |1 \cdots 1\rangle$.

Internal state described by 2^n amplitudes:
n-qubits.

Internal State: $\alpha_{0\cdots 0} |0\cdots 0\rangle + \alpha_{0\cdots 1} |0\cdots 1\rangle + \cdots + \alpha_{1\cdots 1} |1\cdots 1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.
n-qubits.

Internal State: $\alpha_{0\ldots0} |0\cdots0\rangle + \alpha_{0\ldots1} |0\cdots1\rangle + \cdots + \alpha_{1\ldots1} |1\cdots1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.

Full measurement still yields “only” n bits.
n-qubits.

Internal State: $\alpha_{0\cdots0} |0\cdots0\rangle + \alpha_{0\cdots1} |0\cdots1\rangle + \cdots + \alpha_{1\cdots1} |1\cdots1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.

Full measurement still yields “only” n bits.

Partial measurement yields k bits.
Internal State: $\alpha_{0\ldots 0} |0\cdots 0\rangle + \alpha_{0\ldots 1} |0\cdots 1\rangle + \cdots + \alpha_{1\ldots 1} |1\cdots 1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.

Full measurement still yields “only” n bits.

Partial measurement yields k bits
and leaves a superposition on consistent states.
n-qubits.

Internal State: $\alpha_{0 \ldots 0} |0 \cdots 0\rangle + \alpha_{0 \ldots 1} |0 \cdots 1\rangle + \cdots + \alpha_{1 \ldots 1} |1 \cdots 1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.

Full measurement still yields “only” n bits.

Partial measurement yields k bits and leaves a superposition on consistent states.

Feynmann: how to simulate an n particle system.
Internal State: $\alpha_{0\ldots0} |0\cdots0\rangle + \alpha_{0\ldots1} |0\cdots1\rangle + \cdots + \alpha_{1\ldots1} |1\cdots1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.

Full measurement still yields “only” n bits.

Partial measurement yields k bits
and leaves a superposition on consistent states.

Feynmann: how to simulate an n particle system.
Need to maintain 2^n numbers.
Internal State: \(\alpha_{0\cdots0} |0\cdots0\rangle + \alpha_{0\cdots1} |0\cdots1\rangle + \cdots + \alpha_{1\cdots1} |1\cdots1\rangle \).

Internal state described by \(2^n \) amplitudes: complex numbers.

Full measurement still yields “only” \(n \) bits.

Partial measurement yields \(k \) bits
and leaves a superposition on consistent states.

Feynmann: how to simulate an \(n \) particle system.
Need to maintain \(2^n \) numbers.
Still no answer.
n-qubits.

Internal State: $\alpha_{0\cdots0} |0\cdots0\rangle + \alpha_{0\cdots1} |0\cdots1\rangle + \cdots + \alpha_{1\cdots1} |1\cdots1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.

Full measurement still yields “only” n bits.

Partial measurement yields k bits
and leaves a superposition on consistent states.

Feynmann: how to simulate an n particle system.
Need to maintain 2^n numbers.
Still no answer.

Flip it around, what can an n qubit quantum computer do?
Internal State: $\alpha_{0\cdots0} |0\cdots0\rangle + \alpha_{0\cdots1} |0\cdots1\rangle + \cdots + \alpha_{1\cdots1} |1\cdots1\rangle$.

Internal state described by 2^n amplitudes: complex numbers.

Full measurement still yields “only” n bits.

Partial measurement yields k bits
 and leaves a superposition on consistent states.

Feynmann: how to simulate an n particle system.
 Need to maintain 2^n numbers.
Still no answer.

Flip it around, what can an n qubit quantum computer do?
Vectors and Amplitudes:
Vectors and Amplitudes:
state is vector of 2^n amplitudes: one for each pattern of n bits.
Vectors and Amplitudes:
state is vector of 2^n amplitudes: one for each pattern of n bits.
Could be vector $[\alpha_0\ldots 0, \ldots, \alpha_1\ldots 1]$
Vectors and Amplitudes:
state is vector of 2^n amplitudes: one for each pattern of n bits.
Could be vector $[\alpha_0...0, \ldots, \alpha_1...1]$

Dirac or Bra-Ket notation:
Vectors and Amplitudes:
state is vector of 2^n amplitudes: one for each pattern of n bits.
Could be vector $[\alpha_0...0, \ldots, \alpha_1...1]$

Dirac or Bra-Ket notation:
Amplitude of 0, $|0\rangle$.
Vectors and Amplitudes:
state is vector of 2^n amplitudes: one for each pattern of n bits.
Could be vector $[\alpha_0 \ldots 0, \ldots, \alpha_1 \ldots 1]$

Dirac or Bra-Ket notation:
Amplitude of 0, $|0\rangle$.
State is $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Vectors and Amplitudes:
state is vector of 2^n amplitudes: one for each pattern of n bits.
Could be vector $[\alpha_{0\ldots0}, \ldots, \alpha_{1\ldots1}]$

Dirac or Bra-Ket notation:
Amplitude of 0, $|0\rangle$.
State is $\sum_{x\in\{0,1\}^n} \alpha_x |x\rangle$.
Quantum Computer

Start with n qubits,

Input x:

n-bit string.
Quantum Computer

Input x: n-bit string.

Start with n qubits, make superposition,

Exponential action \rightarrow Factor in polynomial time!

Can't watch where the action happens. Measurement is random. This is ok, as long as answer is right with decent probability.

Why different than probability? After all, can generate lots of possibilities.

Partial measure changes remaining state. State \equiv amplitudes.

Quantum Computer

Input x: n-bit string.

Start with n qubits, make superposition, do some quantum op's,
Quantum Computer

Input x: n-bit string.

Start with n qubits, make superposition, do some quantum op’s,
Quantum Computer

Input x: n-bit string.

Start with n qubits, make superposition, do some quantum op’s,
Input x:
n-bit string.

Start with n qubits, make superposition, do some quantum op’s,
Quantum Computer

Start with n qubits, make superposition, do some quantum op’s,

Input x: n-bit string.
Quantum Computer

Start with n qubits, make superposition, do some quantum op's, measure to get n bits.
Quantum Computer

Exponential action

Start with n qubits, make superposition, do some quantum op’s, measure to get n bits.

Input x: n-bit string.

Output y: n-bit string.
Quantum Computer

Start with \(n \) qubits, make superposition, do some quantum op’s, measure to get \(n \) bits.

Exponential action \(\rightarrow \) Factor in polynomial time!
Quantum Computer

Input x: n-bit string.

Start with n qubits, make superposition, do some quantum op’s, measure to get n bits.

Output y: n-bit string.

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.
Quantum Computer

Start with n qubits, make superposition, do some quantum op's, measure to get n bits.

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.
Measurement is random.
Quantum Computer

Start with n qubits, make superposition, do some quantum op’s, measure to get n bits.

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.

This is ok, as long as answer is right with decent probability.
Quantum Computer

Input x: n-bit string. \rightarrow \rightarrow \rightarrow \rightarrow Output y: n-bit string.

Start with n qubits, make superposition, do some quantum op’s, measure to get n bits.

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.

This is ok, as long as answer is right with decent probability.

Why different than probability?
Quantum Computer

Input x: n-bit string.

Start with n qubits, make superposition, do some quantum op’s, measure to get n bits.

Output y: n-bit string.

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.

This is ok, as long as answer is right with decent probability.

Why different than probability?

After all, can generate lots of possibilities.
Quantum Computer

Start with n qubits, make superposition, do some quantum op’s, measure to get n bits.

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.
 This is ok, as long as answer is right with decent probability.

Why different than probability?
After all, can generate lots of possibilities.
Quantum Computer

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.

This is ok, as long as answer is right with decent probability.

Why different than probability?

After all, can generate lots of possibilities.

Partial measure changes remaining state. State \equiv amplitudes.
Quantum Computer

Exponential action → Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.

This is ok, as long as answer is right with decent probability.

Why different than probability?
After all, can generate lots of possibilities.
Partial measure changes remaining state. State ≡ amplitudes.
Conditional probability?
Quantum Computer

Start with \(n \) qubits, make superposition, do some quantum op’s, measure to get \(n \) bits.

Exponential action \(\rightarrow \) Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.
 This is ok, as long as answer is right with decent probability.

Why different than probability?
After all, can generate lots of possibilities.
Partial measure changes remaining state. State \(\equiv \) amplitudes.
 Conditional probability?

Can add/subtractSCALE amplitudes using Quantum gates.
Quantum Computer

Exponential action \rightarrow Factor in polynomial time!

Can’t watch where the action happens.

Measurement is random.
 This is ok, as long as answer is right with decent probability.

Why different than probability?
After all, can generate lots of possibilities.
Partial measure changes remaining state. State \equiv amplitudes.
 Conditional probability?

Can add/subtract/scale amplitudes using Quantum gates.
 Not clear how to do it for probability.
Circuits.

Quantum Fourier Transform Circuit:

Input: \(\sum_{x \in \{0, 1\}^n} \alpha_x |x\rangle \).

Output: \(\sum_{x \in \{0, 1\}^n} \beta_x |x\rangle \).

Where \(\beta_x \) is Fourier Transform of \(\alpha_x \).

Note: \(n \)-qubit circuit, computing on \(2^n \) amplitudes!

Randomized computations can't compute on probabilities.

Measurement: gives \(x \) with probability \(|\beta_x|^2 \).

No access to \(\beta_x \).

Just get index \(x \) with probability according to Fourier coefficient \(\beta_x \).

Quantum Fourier Sampling.

Actual output is one \(x \)!

Classical Functions: \(f(x) \)

Quantum Analog: copies input and computes \(f(x) \).

Input: \(\sum_{x \in \{0, 1\}^n} \alpha_x |x, 0\rangle \).

Output: \(\sum_{x \in \{0, 1\}^n} \alpha_x |x, f(x)\rangle \).

Random computations are fine with this; same \(\alpha_x \).
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.

Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β_x is the Fourier Transform of α_x.

Note: n-qubit circuit, computing on 2^n amplitudes!

Randomized computations can't compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.

No access to β_x.

Just get index x with probability according to Fourier coefficient β_x.

Quantum Fourier Sampling.

Actual output is one x!

Classical Functions: $f(x)$

Quantum Analog: copies input and computes $f(x)$.

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x, 0\rangle$.

Output: $\sum_{x \in \{0,1\}^n} \alpha_x |x, f(x)\rangle$.

Random computations are fine with this; same α_x.
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β_x is Fourier Transform of α_x.

Note: n-qubit circuit, computing on 2^n amplitudes.

Randomized computations can't compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Just get index x with probability according to Fourier coefficient β_x.

Quantum Fourier Sampling.

Actual output is one x!

Classical Functions: $f(x)$
Quantum Analog: copies input and computes $f(x)$.

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x,0\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \alpha_x |x, f(x)\rangle$.

Random computations are fine with this; same α_x.
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.
Note: n-qubit circuit, computing on 2^n amplitudes!
Circuits.

Quantum Fourier Transform Circuit:

Input: \(\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \).
Output: \(\sum_{x \in \{0,1\}^n} \beta_x |x\rangle \).

Where \(\beta \) is Fourier Transform of \(\alpha \).
Note: \(n \)-qubit circuit, computing on \(2^n \) amplitudes!

Randomized computations can’t compute on probabilities.
Circuits.

Quantum Fourier Transform Circuit:

Input: \(\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \).
Output: \(\sum_{x \in \{0,1\}^n} \beta_x |x\rangle \).

Where \(\beta \) is Fourier Transform of \(\alpha \).
Note: \(n \)-qubit circuit, computing on \(2^n \) amplitudes!

Randomized computations can’t compute on probabilities.

Measurement:
Quantum Fourier Transform Circuit:

Input: $\sum_{x\in\{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x\in\{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.

Note: n-qubit circuit, computing on 2^n amplitudes!

Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.

Note: n-qubit circuit, computing on 2^n amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.
Note: n-qubit circuit, computing on 2^n amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Just get index x with probability according to Fourier coefficient β_x.
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.

Note: n-qubit circuit, computing on 2^n amplitudes!

Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Just get index x with probability according to Fourier coefficient β_x.

Quantum Fourier Sampling.
Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.
Note: n-qubit circuit, computing on 2^n amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Just get index x with probability according to Fourier coefficient β_x.
Quantum Fourier Sampling. Actual output is one x!
Circuits.

Quantum Fourier Transform Circuit:

Input: \(\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \).
Output: \(\sum_{x \in \{0,1\}^n} \beta_x |x\rangle \).

Where \(\beta \) is Fourier Transform of \(\alpha \).
Note: \(n \)-qubit circuit, computing on \(2^n \) amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives \(x \) with probability \(|\beta_x|^2 \).
No access to \(\beta_x \).
Just get index \(x \) with probability according to Fourier coefficient \(\beta_x \).
Quantum Fourier Sampling. Actual output is one \(x \)!

Classical Functions: \(f(x) \)
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.

Note: n-qubit circuit, computing on 2^n amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Just get index x with probability according to Fourier coefficient β_x.
Quantum Fourier Sampling. Actual output is one x!

Classical Functions: $f(x)$
Quantum Analog: copies input and computes $f(x)$.
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.

Note: n-qubit circuit, computing on 2^n amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Just get index x with probability according to Fourier coefficient β_x.
Quantum Fourier Sampling. Actual output is one x!

Classical Functions: $f(x)$
Quantum Analog: copies input and computes $f(x)$.

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x, 0\rangle$.
Circuits.

Quantum Fourier Transform Circuit:

Input: \(\sum_{x \in \{0, 1\}^n} \alpha_x |x\rangle \).
Output: \(\sum_{x \in \{0, 1\}^n} \beta_x |x\rangle \).

Where \(\beta \) is Fourier Transform of \(\alpha \).
Note: \(n \)-qubit circuit, computing on \(2^n \) amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives \(x \) with probability \(|\beta_x|^2 \).
No access to \(\beta_x \).
Just get index \(x \) with probability according to Fourier coefficient \(\beta_x \).
Quantum Fourier Sampling. Actual output is one \(x \)!

Classical Functions: \(f(x) \)
Quantum Analog: copies input and computes \(f(x) \).

Input: \(\sum_{x \in \{0, 1\}^n} \alpha_x |x, 0\rangle \).
Output: \(\sum_{x \in \{0, 1\}^n} \alpha_x |x, f(x)\rangle \).
Circuits.

Quantum Fourier Transform Circuit:

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \beta_x |x\rangle$.

Where β is Fourier Transform of α.

Note: n-qubit circuit, computing on 2^n amplitudes!
Randomized computations can’t compute on probabilities.

Measurement: gives x with probability $|\beta_x|^2$.
No access to β_x.
Just get index x with probability according to Fourier coefficient β_x.

Quantum Fourier Sampling. Actual output is one x!

Classical Functions: $f(x)$
Quantum Analog: copies input and computes $f(x)$.

Input: $\sum_{x \in \{0,1\}^n} \alpha_x |x, 0\rangle$.
Output: $\sum_{x \in \{0,1\}^n} \alpha_x |x, f(x)\rangle$.

Random computations are fine with this; same α_x.
Classical/Quantum Circuit.

Classical

Quantum
Quantum Fourier Transform: more detail

n-qubits.

$\beta_0 \cdots \beta_0, \ldots, \beta_1 \cdots \beta_1$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_2^n)$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.

Gates act on all states in parallel.

(like randomized computations.)

Can compute (even subtract) with amplitudes!

(which randomized computations can't do much.)

FFT or multiply by $M(\omega_2^n)$ finds “period” of periodic input.
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_{0\ldots0}, \ldots, \alpha_{1\ldots1}$.
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_{0...0}, \ldots, \alpha_{1...1}$.

QFT:

- Fourier transform of amplitudes: $\beta_{0...0}, \ldots, \beta_{1...1}$.
- Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_2^n)$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.

Gates act on all states in parallel. (like randomized computations.)

Can compute (even subtract) with amplitudes! (which randomized computations can't do much.)

FFT or multiply by $M(\omega_2^n)$ finds "period" of periodic input.
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_0\ldots_0, \ldots, \alpha_{1\ldots1}$.

QFT:
 - Fourier transform of amplitudes: $\beta_0\ldots_0, \ldots, \beta_{1\ldots1}$.
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_0\ldots_0, \ldots, \alpha_1\ldots_1$.

QFT:

Fourier transform of amplitudes: $\beta_0\ldots_0, \ldots, \beta_1\ldots_1$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_2^n)$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.

Gates act on all states in parallel. (like randomized computations.)

Can compute (even subtract) with amplitudes! (which randomized computations can't do much.)

FFT or multiply by $M(\omega_2^n)$ finds "period" of periodic input.
Quantum Fourier Transform: more detail

\(n \)-qubits.

\(2^n \) amplitudes: \(\alpha_0\ldots_0, \ldots, \alpha_1\ldots_1. \)

QFT:

Fourier transform of amplitudes: \(\beta_0\ldots_0, \ldots, \beta_1\ldots_1. \)

Measure: get each \(n \)-bit string \(y \) with probability \(|\beta_y|^2 \).
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_0\ldots_0, \ldots, \alpha_1\ldots_1$.

QFT:

Fourier transform of amplitudes: $\beta_0\ldots_0, \ldots, \beta_1\ldots_1$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform:
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_0\ldots 0, \ldots, \alpha_1\ldots 1$.

QFT:

Fourier transform of amplitudes: $\beta_0\ldots 0, \ldots, \beta_1\ldots 1$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_{2^n})$ with $O(n^2)$ gates.
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_0\ldots_0, \ldots, \alpha_1\ldots_1$.

QFT:
Fourier transform of amplitudes: $\beta_0\ldots_0, \ldots, \beta_1\ldots_1$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_{2^n})$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.

Gates act on all states in parallel. (like randomized computations.)
Can compute (even subtract) with amplitudes! (which randomized computations can't do much.)

FFT or multiply by $M(\omega_{2^n})$ finds "period" of periodic input.
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_{0\ldots0}, \ldots, \alpha_{1\ldots1}$.

QFT:
Fourier transform of amplitudes: $\beta_{0\ldots0}, \ldots, \beta_{1\ldots1}$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_{2^n})$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.
Gates act on all states in parallel.
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_{0\ldots0}, \ldots, \alpha_{1\ldots1}$.

QFT:
- Fourier transform of amplitudes: $\beta_{0\ldots0}, \ldots, \beta_{1\ldots1}$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_{2^n})$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.
- Gates act on all states in parallel.
- (like randomized computations.)
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_{00}, \ldots, \alpha_{11}$.

QFT:
Fourier transform of amplitudes: $\beta_{00}, \ldots, \beta_{11}$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_{2^n})$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.
Gates act on all states in parallel.
(like randomized computations.)
Can compute (even subtract) with amplitudes!
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_{0\ldots0}, \ldots, \alpha_{1\ldots1}$.

QFT:
Fourier transform of amplitudes: $\beta_{0\ldots0}, \ldots, \beta_{1\ldots1}$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_{2^n})$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.
Gates act on all states in parallel.
(like randomized computations.)
Can compute (even subtract) with amplitudes!
(which randomized computations can’t do much.)
Quantum Fourier Transform: more detail

n-qubits.

2^n amplitudes: $\alpha_{0\ldots0}, \ldots, \alpha_{1\ldots1}$.

QFT:
Fourier transform of amplitudes: $\beta_{0\ldots0}, \ldots, \beta_{1\ldots1}$.

Measure: get each n-bit string y with probability $|\beta_y|^2$.

Fourier Transform: multiplies by $M(\omega_2^n)$ with $O(n^2)$ gates.

Size of circuit is polynomial in n.
Gates act on all states in parallel.
(like randomized computations.)
Can compute (even subtract) with amplitudes!
(which randomized computations can’t do much.)

FFT or multiply by $M(\omega_2^n)$ finds “period” of periodic input.
Factoring and Roots of Unity

Factoring can be accomplished by finding non-negative square roots.
Factoring and Roots of Unity

Factoring can be accomplished by finding non-negative square roots.

Claim: If x is a non-trivial root of 1 modulo N then $gcd(x + 1, N)$ is a non-trivial factor of N.

Harder claim: If N is an odd composite than for at least half of the x's, either $gcd(x, N) \neq 1$ or the order r of x is even and $x^{r/2}$ is a nontrivial square root of 1 mod N.

Example: $4^2 \equiv 1 \pmod{15} \Rightarrow 4 - 1$ or $4 + 1$ are non-trivial factors of fifteen.

More generally: $x^2 \equiv 1 \pmod{15} \Rightarrow x^2 - 1 = (x + 1)(x - 1) = 0 \pmod{15}$.
Factoring and Roots of Unity

Factoring can be accomplished by finding non-negative square roots.

Claim: If x is a non-trivial root of 1 modulo N then $\gcd(x + 1, N)$ is a non-trivial factor of N.

Harder claim: If N is an odd composite than for at least half of the x’s, either $\gcd(x, N) \neq 1$ or the order r of x is even and $x^{r/2}$ is a nontrivial square root of 1 mod N.
Factoring can be accomplished by finding non-negative square roots.

Claim: If x is a non-trivial root of 1 modulo N then $\gcd(x + 1, N)$ is a non-trivial factor of N.

Harder claim: If N is an odd composite than for at least half of the x’s, either $\gcd(x, N) \neq 1$ or the order r of x is even and $x^{r/2}$ is a nontrivial square root of 1 mod N.

Example: 15

$4^2 = 1 \pmod{15} \implies 4 - 1$ or $4 + 1$ are non-trivial factors of fifteen.
Factoring and Roots of Unity

Factoring can be accomplished by finding non-negative square roots.

Claim: If x is a non-trivial root of 1 modulo N then $\gcd(x + 1, N)$ is a non-trivial factor of N.

Harder claim: If N is an odd composite than for at least half of the x’s, either $\gcd(x, N) \neq 1$ or the order r of x is even and $x^{r/2}$ is a nontrivial square root of 1 mod N.

Example: 15

$4^2 = 1 \pmod{15} \implies 4 - 1$ or $4 + 1$ are non-trivial factors of fifteen.

More generally: $x^2 = 1 \pmod{15} \implies x^2 - 1 = (x + 1)(x - 1) = 0 \pmod{15}.$
Initialize with state:

\[
\sum_{m=0}^{M-1} a_m = 0 |a, 0\rangle
\]

Compute:

\[
\sum_{m=0}^{M-1} a_m = 0 |a, f(a)\rangle, f(a) = x^a
\]

Measure second register:

First register now has period \(r \)!

Claim:

Resulting \(\alpha \) has nonzero amplitudes with period \(r \).

\[
x^a = z \text{ for } a = j, j+r, j+2r, \ldots \text{ since } x^r = 1.
\]

Claim:

QFT of period \(k \) signal = \(\Rightarrow \) periodic signal of \(M/k \) with 0 shift!

Do several times:

Run and measure QFT output, Result is multiple of \(M/(r) \).

Compute GCD of results: will likely be \(M/(r) \).

Order of \(x \) is \(r \).

Check GCD \((N, x^r/2 + 1) \).

Details: need period \(r \) to divide \(M \).

What is \(M \)?

2\(n \).

Need more sophisticated analysis...

but same ideas.
Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]
Roots and Unity and Fourier Transform

Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute:
Initialize with state:
$$\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a,0\rangle$$

Compute:
$$\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a,f(a)\rangle, \quad f(a) = x^a$$
Roots and Unity and Fourier Transform

Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!
Roots and Unity and Fourier Transform

Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle , \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
Roots and Unity and Fourier Transform

Initialize with state: \[
\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle
\]

Compute: \[
\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a
\]

Measure second register: first register now has period \(r! \)

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).

\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots\]
Roots and Unity and Fourier Transform

Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period r!

Claim: Resulting α has nonzero amplitudes with period r.
\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots \text{ since } x^r = 1. \]
Roots and Unity and Fourier Transform

Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \)

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^r = 1 \).
Roots and Unity and Fourier Transform

Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \)

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^r = 1 \).

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \)
Roots and Unity and Fourier Transform

Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots \text{ since } x^r = 1. \]

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!
Roots and Unity and Fourier Transform

Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \)

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^r = 1 \).

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!

Do several times:
Roots and Unity and Fourier Transform

Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \)

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^r = 1 \).

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!

Do several times:
Run and measure QFT output,
Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \)

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^r = 1 \).

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!

Do several times:
- Run and measure QFT output,
 - Result is multiple of \(M/(r) \).
Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
 \(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^r = 1 \).

Claim: QFT of period \(k \) signal \(\rightarrow \) periodic signal of \(M/k \) with 0 shift!

Do several times:
 Run and measure QFT output,
 Result is multiple of \(M/(r) \).
Roots and Unity and Fourier Transform

Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots \text{ since } x^r = 1. \]

Claim: QFT of period \(k \) signal \(\Rightarrow \) periodic signal of \(M/k \) with 0 shift!

Do several times:
 - Run and measure QFT output,
 - Result is multiple of \(M/(r) \).

Compute GCD of results:
Roots and Unity and Fourier Transform

Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots \text{ since } x^r = 1. \]

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!

Do several times:
- Run and measure QFT output,
 - Result is multiple of \(M/(r) \).

Compute GCD of results: will likely be \(M/(r) \).
Initialize with state: $\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle$

Compute: $\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle$, $f(a) = x^a$

Measure second register: first register now has period r!

Claim: Resulting α has nonzero amplitudes with period r.
$x^a = z$ for $a = j, j + r, j + 2(r), \ldots$ since $x^r = 1$.

Claim: QFT of period k signal \implies periodic signal of M/k with 0 shift!

Do several times:
 Run and measure QFT output,
 Result is multiple of $M/(r)$.

Compute GCD of results: will likely be $M/(r)$.
Order of x is r.

Roots and Unity and Fourier Transform

Initialize with state: $$\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle$$

Compute: $$\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a$$

Measure second register: first register now has period $$r$$!

Claim: Resulting $$\alpha$$ has nonzero amplitudes with period $$r$$.
$$x^a = z$$ for $$a = j, j + r, j + 2(r), \ldots$$ since $$x^r = 1$$.

Claim: QFT of period $$k$$ signal $$\implies$$ periodic signal of $$M/k$$ with 0 shift!

Do several times:
- Run and measure QFT output,
 - Result is multiple of $$M/(r)$$.

Compute GCD of results: will likely be $$M/(r)$$.
Order of $$x$$ is $$r$$. Check GCD($$N, x^{r/2} + 1$$).
Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \)

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^{r} = 1 \).

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!

Do several times:
 Run and measure QFT output,
 Result is multiple of \(M/(r) \).

Compute GCD of results: will likely be \(M/(r) \).
Order of \(x \) is \(r \). Check GCD(\(N, x^{r/2} + 1 \)).

Details: need period \(r \) to divide \(M \).
Roots and Unity and Fourier Transform

Initialize with state: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \)

Compute: \(\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \)

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \). \(x^a = z \) for \(a = j, j + r, j + 2(r), \ldots \) since \(x^r = 1 \).

Claim: QFT of period \(k \) signal \(\Rightarrow \) periodic signal of \(M/k \) with 0 shift!

Do several times:
- Run and measure QFT output,
 - Result is multiple of \(M/(r) \).

Compute GCD of results: will likely be \(M/(r) \).

Order of \(x \) is \(r \). Check GCD\((N, x^{r/2} + 1) \).

Details: need period \(r \) to divide \(M \). What is \(M \)?
Roots and Unity and Fourier Transform

Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots \text{ since } x^r = 1. \]

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!

Do several times:
- Run and measure QFT output,
 Result is multiple of \(M/(r) \).

Compute GCD of results: will likely be \(M/(r) \).

Order of \(x \) is \(r \). Check GCD\((N, x^{r/2} + 1) \).

Details: need period \(r \) to divide \(M \). What is \(M \)? \(2^n \).
Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots \text{ since } x^r = 1. \]

Claim: QFT of period \(k \) signal \(\implies \) periodic signal of \(M/k \) with 0 shift!

Do several times:
- Run and measure QFT output,
 - Result is multiple of \(M/(r) \).

Compute GCD of results: will likely be \(M/(r) \).
Order of \(x \) is \(r \). Check GCD(\(N, x^{r/2} + 1 \)).

Details: need period \(r \) to divide \(M \). What is \(M \)? \(2^n \).
 Need more sophisticated analysis...
Initialize with state: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, 0\rangle \]

Compute: \[\frac{1}{\sqrt{M}} \sum_{a=0}^{M-1} |a, f(a)\rangle, \quad f(a) = x^a \]

Measure second register: first register now has period \(r \)!

Claim: Resulting \(\alpha \) has nonzero amplitudes with period \(r \).
\[x^a = z \text{ for } a = j, j + r, j + 2(r), \ldots \text{ since } x^r = 1. \]

Claim: QFT of period \(k \) signal \(\Rightarrow \) periodic signal of \(M/k \) with 0 shift!

Do several times:

- Run and measure QFT output,
 - Result is multiple of \(M/(r) \).

Compute GCD of results: will likely be \(M/(r) \).

Order of \(x \) is \(r \). Check GCD\((N, x^{r/2} + 1) \).

Details: need period \(r \) to divide \(M \). What is \(M \)? \(2^n \).
 - Need more sophisticated analysis...but same ideas.
Mini-Conclusion.

Quantum Fourier Transform \implies Factoring!
What’s a gate look like?

Hadamard Gate.

\[
\begin{align*}
|0\rangle & \xrightarrow{\text{H}} \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\
|1\rangle & \xrightarrow{\text{H}} \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle
\end{align*}
\]
What’s a gate look like?

Hadamard Gate.

\[
\begin{align*}
|0\rangle & \rightarrow \sqrt{\frac{1}{2}}|0\rangle + \sqrt{\frac{1}{2}}|1\rangle \\
|1\rangle & \rightarrow \sqrt{\frac{1}{2}}|0\rangle - \sqrt{\frac{1}{2}}|1\rangle
\end{align*}
\]

Two bits.
What's a gate look like?

Hadamard Gate.

\[|0\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \quad \quad |1\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \]

Two bits.

\[H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) \]
What's a gate look like?

Hadamard Gate.

\[|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \quad |1\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \]

Two bits.

\[H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle. \]

Notice: added amplitudes and even subtracted amplitudes! Not so easy or even possible with probability.

Hadamard: Reflection over line at angle \(\frac{\pi}{8} \) on the \((x, y)\)-plane.

Controlled Not Gate.

\[|00\rangle |00\rangle |10\rangle |11\rangle \]

Note: Operating on \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \) + \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \).

One gets \(\alpha_0 |0\rangle + \alpha_1 |0\rangle + \alpha_0 |1\rangle + \alpha_1 |1\rangle \).
What’s a gate look like?

Hadamard Gate.

\[
\begin{align*}
|0\rangle & \rightarrow \sqrt{2} \left(\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \right) \\
|1\rangle & \rightarrow \sqrt{2} \left(\frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \right)
\end{align*}
\]

Two bits.

\[
H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle.
\]

Notice: added amplitudes
What’s a gate look like?

Hadamard Gate.

\[|0\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \quad \quad |1\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \]

Two bits.

\[H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle. \]

Notice: added amplitudes and even subtracted amplitudes!
What’s a gate look like?

Hadamard Gate.

\[
|0\rangle \quad \xrightarrow{\text{H}} \quad \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\
|1\rangle \quad \xrightarrow{\text{H}} \quad \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle
\]

Two bits.

\[
H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle.
\]

Notice: added amplitudes and even subtracted amplitudes!

Not so easy or even possible with probability.
What’s a gate look like?

Hadamard Gate.

\[
\begin{align*}
|0\rangle & \rightarrow H |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\
|1\rangle & \rightarrow H |1\rangle - \frac{1}{\sqrt{2}} |0\rangle
\end{align*}
\]

Two bits.

\[
H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle.
\]

Notice: added amplitudes and even subtracted amplitudes!

Not so easy or even possible with probability.

Hadamard: Reflection over line at angle \(\pi/8\) on the \((x, y)\)-plane.
What’s a gate look like?

Hadamard Gate.

\[
\begin{align*}
|0\rangle & \xrightarrow{H} \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \\
|1\rangle & \xrightarrow{H} \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle
\end{align*}
\]

Two bits.

\[H(\alpha_0|0\rangle + \alpha_1|1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}}|0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}}|1\rangle.\]

Notice: added amplitudes and even subtracted amplitudes!

Not so easy or even possible with probability.

Hadamard: Reflection over line at angle \(\pi/8\) on the \((x, y)\)-plane.

\[x = \alpha_0, \quad y = \alpha_1.\]
What’s a gate look like?

Hadamard Gate.

\[|0\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \quad |1\rangle \xrightarrow{H} \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \]

Two bits.

\[H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle. \]

Notice: added amplitudes and even subtracted amplitudes!

Not so easy or even possible with probability.

Hadamard: Reflection over line at angle \(\pi/8\) on the \((x, y)\)-plane.

\[x = \alpha_0, \quad y = \alpha_1. \]

Controlled Not Gate.

\[|00\rangle \quad |01\rangle \quad |10\rangle \quad |11\rangle \]

Note:

Operating on \(\alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle\).
What’s a gate look like?

Hadamard Gate.

\[
\begin{align*}
|0\rangle & \xrightarrow{H} \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\
|1\rangle & \xrightarrow{H} \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle
\end{align*}
\]

Two bits.

\[
H(\alpha_0 |0\rangle + \alpha_1 |1\rangle) = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |0\rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} |1\rangle.
\]

Notice: added amplitudes and even subtracted amplitudes!
Not so easy or even possible with probability.

Hadamard: Reflection over line at angle \(\pi/8\) on the \((x, y)\)-plane.

\(x = \alpha_0, y = \alpha_1\).

Controlled Not Gate.

\[
\begin{align*}
|00\rangle & \xrightarrow{\oplus} |00\rangle \\
|10\rangle & \xrightarrow{\oplus} |11\rangle
\end{align*}
\]

Note:

Operating on \(\alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{10} |10\rangle + \alpha_{11} |11\rangle\).

One gets \(\alpha_{00} |00\rangle + \alpha_{01} |01\rangle + \alpha_{11} |10\rangle + \alpha_{10} |11\rangle\).
Quantum Fourier Transform.

Fourier Transform:

- Split into odd and even inputs.
- Recurse: 2 subcircuits.

Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on n^2 roots of unity: $\omega_2, \omega_4, \omega_6, \ldots, \omega_n$.

For each $i \leq n/2$,

$$A(\omega_i) = A_e(\omega_2i) + \omega_i A_o(\omega_2i)$$

$$A(\omega_i + n/2) = A_e(\omega_2i) - \omega_i A_o(\omega_2i)$$

Runtime Recurrence:

$$T(n) = 2T(n/2) + O(n) = O(n \log n)!$$
Quantum Fourier Transform.

Fourier Transform:
Split into odd and even inputs.
Quantum Fourier Transform.

Fourier Transform:
Split into odd and even inputs.
Recurse: 2 subcircuits
Quantum Fourier Transform.

Fourier Transform:
Split into odd and even inputs.
Recurse: 2 subcircuits
Combine Input x_0 and x_1 from subcircuits.
Quantum Fourier Transform.

Fourier Transform:
Split into odd and even inputs.
Recurse: 2 subcircuits
Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity:
Quantum Fourier Transform.

Fourier Transform:
 Split into odd and even inputs.
 Recurse: 2 subcircuits
 Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity:
$\omega^2, \omega^4, \omega^6, \ldots, \omega^n$.
Quantum Fourier Transform.

Fourier Transform:
 - Split into odd and even inputs.
 - Recurse: 2 subcircuits
 - Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity:
$\omega^2, \omega^4, \omega^6, \ldots, \omega^n$.

For each $i \leq n/2$.
Quantum Fourier Transform.

Fourier Transform:
- Split into odd and even inputs.
- Recurse: 2 subcircuits
- Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \ldots, \omega^n$.

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$
Quantum Fourier Transform.

Fourier Transform:
- Split into odd and even inputs.
- Recurse: 2 subcircuits
- Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \ldots, \omega^n$.

For each $i \leq n/2$.

\[
\begin{align*}
A(\omega^i) &= A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i}) \\
A(\omega^{i+n/2}) &= A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})
\end{align*}
\]
Quantum Fourier Transform.

Fourier Transform:
Split into odd and even inputs.
Recurse: 2 subcircuits
Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity:
$\omega^2, \omega^4, \omega^6, \ldots, \omega^n$.

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Runtime Recurrence:
Quantum Fourier Transform.

Fourier Transform:
 Split into odd and even inputs.
 Recurse: 2 subcircuits
 Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \ldots, \omega^n$.

For each $i \leq n/2$.

\[
A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})
\]
\[
A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})
\]

Runtime Recurrence:
\[
T(n) = 2T(n/2) + O(n)
\]
Quantum Fourier Transform.

Fourier Transform:
Split into odd and even inputs.
Recurse: 2 subcircuits
Combine Input x_0 and x_1 from subcircuits.

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity:
$\omega^2, \omega^4, \omega^6, \ldots, \omega^n$.

For each $i \leq n/2$.

\[A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i}) \]

\[A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i}) \]

Runtime Recurrence:
\[T(n) = 2T(n/2) + O(n) = O(n \log n) \]
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$A(\omega^i) = A e^{\omega^2 i} + \omega^i A o(\omega^2 i)$

$A(\omega^i + n/2) = A e^{\omega^2 i} - \omega^i A o(\omega^2 i)$

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n-1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.

Combines amplitudes of x_0 and x_1 in fancy way.

E.g. $\alpha_0 x^\pm \alpha_1 x$ plus scaling.

Note: need to do more than combine, need to multiply some by ω^j.

(Phase.)

See Book for details $O(n)$ gates for phase multiplication.

Use conditional phase gates in construction.

Size: $S(n) = S(n-1) + O(n) = O(n^2)$.

Quantum Fourier Transform.

FFT:

For each \(i \leq n/2 \).
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$
Quantum Fourier Transform.

FFT:

For each \(i \leq n/2 \).

\[
A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})
\]

\[
A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})
\]
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.
Quantum Fourier Transform.

FFT:

For each \(i \leq n/2 \).

\[
A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})
\]

\[
A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})
\]

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on \(n - 1 \) bits.
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n-1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Note: need to do more than combine, need to multiply some by ω^j. (Phase.)

See Book for details $O(n)$ gates for phase multiplication.

Use conditional phase gates in construction.

Size: $S(n) = S(n-1) + O(n) = O(n^2)$.

Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n - 1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n - 1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.

Combines amplitudes of x_0 and x_1
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

\[A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i}) \]
\[A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i}) \]

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n - 1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.

Combines amplitudes of x_0 and x_1 in fancy way.
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_0(\omega^{2i})$$
$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_0(\omega^{2i})$$

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n - 1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.

Combines amplitudes of x_0 and x_1 in fancy way.

E.g. $\alpha_{0x} \pm \alpha_{1x}$ plus scaling.
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n-1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.

Combines amplitudes of x_0 and x_1 in fancy way.

E.g. $\alpha_{0x} \pm \alpha_{1x}$ plus scaling.
Quantum Fourier Transform.

FFT:
For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.
The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n-1$ bits.
The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.
Combines amplitudes of x_0 and x_1 in fancy way.
E.g. $\alpha_{0x} \pm \alpha_{1x}$ plus scaling.

Note: need to do more than combine, need to multiply some by ω^i.
(Phase.)
Quantum Fourier Transform.

FFT:

For each $i \leq n/2$.

\[A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i}) \]

\[A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i}) \]

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n - 1$ bits.

The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.

Combines amplitudes of x_0 and x_1 in fancy way.

E.g. $\alpha_{0x} \pm \alpha_{1x}$ plus scaling.

Note: need to do more than combine, need to multiply some by ω^i.

(Phase.)

See Book for details
Quantum Fourier Transform.

FFT:

For each \(i \leq n/2 \).

\[
A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})
\]

\[
A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})
\]

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on \(n-1 \) bits.

The circuit will work on amplitudes of strings for both \(x_0 \) and \(x_1 \).

Combine: Add Hadamard Gate on \(n \)th bit.

Combines amplitudes of \(x_0 \) and \(x_1 \) in fancy way.

E.g. \(\alpha_{0x} \pm \alpha_{1x} \) plus scaling.

Note: need to do more than combine, need to multiply some by \(\omega^i \).

(Phase.)

See Book for details

\(O(n) \) gates for phase multiplication.
Quantum Fourier Transform.

FFT:

For each \(i \leq n/2 \).

\[
A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})
\]

\[
A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})
\]

Split: ignore low order bit.

The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on \(n-1 \) bits.

The circuit will work on amplitudes of strings for both \(x_0 \) and \(x_1 \).

Combine: Add Hadamard Gate on \(n \)th bit.

Combines amplitudes of \(x_0 \) and \(x_1 \) in fancy way.

E.g. \(\alpha_{0x} \pm \alpha_{1x} \) plus scaling.

Note: need to do more than combine, need to multiply some by \(\omega^j \).

(Phase.)

See Book for details

\(O(n) \) gates for phase multiplication.

Use conditional phase gates in construction.
Quantum Fourier Transform.

FFT:
For each $i \leq n/2$.

$$A(\omega^i) = A_e(\omega^{2i}) + \omega^i A_o(\omega^{2i})$$

$$A(\omega^{i+n/2}) = A_e(\omega^{2i}) - \omega^i A_o(\omega^{2i})$$

Split: ignore low order bit.
The amplitudes of both will be processed in parallel.

Recurse: build one QFT circuit on $n - 1$ bits.
The circuit will work on amplitudes of strings for both x_0 and x_1.

Combine: Add Hadamard Gate on nth bit.
Combines amplitudes of x_0 and x_1 in fancy way.
E.g. $\alpha_{0x} \pm \alpha_{1x}$ plus scaling.

Note: need to do more than combine, need to multiply some by ω^i.
(Phase.)

See Book for details

$O(n)$ gates for phase multiplication.
Use conditional phase gates in construction.

Size: $S(n) = S(n - 1) + O(n) = O(n^2)$.
Quantum Supremacy

Random Circuit Sampling.
Quantum Supremacy

Random Circuit Sampling.
Random Quantum circuit generates distribution.
Quantum Supremacy

Random Circuit Sampling.
Random Quantum circuit generates distribution.

Classically “can’t” generate that distribution.
Quantum Supremacy

Random Circuit Sampling.
 Random Quantum circuit generates distribution.

Classically “can’t” generate that distribution.
 (Bouland, Fefferman, Nirkhe, Vazirani)
Quantum Supremacy

Random Circuit Sampling.
Random Quantum circuit generates distribution.

Classically “can’t” generate that distribution.
(Bouland, Fefferman, Nirkhe, Vazirani)

Quantum Supremacy

Random Circuit Sampling.
Random Quantum circuit generates distribution.
Classically “can’t” generate that distribution.
(Bouland, Fefferman, Nirkhe, Vazirani)

And that was quantum..
And that was quantum..

And the semester.
And that was quantum..

And the semester.

It is a total privilege teaching you!!!
And that was quantum..

And the semester.

It is a total privilege teaching you!!!
 From me, Professor Raghavendra and the whole staff.
And the semester.

It is a total privilege teaching you!!!
 From me, Professor Raghavendra and the whole staff.

Good luck (skill) on Final...
And the semester.

It is a total privilege teaching you!!!
 From me, Professor Raghavendra and the whole staff.

Good luck (skill) on Final...