
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 3:
Divide and Conquer II

Announcements
Homework

• HW1 released, due Saturday!

• Get started early! Go to OH and HW Party (Friday) for help

• Use Edstem thread on study group search if you like

Discussion sections

• Start today! Check the discussion tab on webpage.

• You can attend any discussion section, no RSVP needed!

My OH, right after class on Tuesdays

• Meet at the podium or the door

Recap of last time
• Karatsuba’s algorithm with 𝑂 𝑛1.6

→Using divide and conquer with fewer subproblems!

• Reviewed 𝑂 ⋅ and Ω ⋅ notation formally.

• Recurrence relations and the Master theorem!

Recap: Master Theorem

𝑎: Number of sub-problems

𝑏: Factor by which the problem size shrinks at each layer

𝑛𝑑: Amount of computation per node, before/after subproblems are done.

Suppose that 𝑎 ≥ 1, 𝑏 > 1, and 𝑑 ≥ 0 are constants (independent of n).

Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑂 𝑛𝑑 . Then

𝑇 𝑛 =

O 𝑛𝑑 if 𝑎 < 𝑏𝑑

O 𝑛𝑑 log 𝑛 if 𝑎 = 𝑏𝑑

O 𝑛log𝑏 𝑎 if 𝑎 > 𝑏𝑑

The Master Theorem

Recap: Master Theorem

𝑎: Number of sub-problems

𝑏: Factor by which the problem size shrinks at each layer

𝑛𝑑: Amount of computation per node, before/after subproblems are done.

Suppose that 𝑎 ≥ 1, 𝑏 > 1, and 𝑑 ≥ 0 are constants (independent of n).

Suppose 𝑇 𝑛 = 𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑂 𝑛𝑑 . Then

𝑇 𝑛 =

Θ 𝑛𝑑 if 𝑎 < 𝑏𝑑

Θ 𝑛𝑑 log 𝑛 if 𝑎 = 𝑏𝑑

Θ 𝑛log𝑏 𝑎 if 𝑎 > 𝑏𝑑

The Master Theorem

𝑐 ⋅ 𝑛𝑑

This is tight!

Recap: Master Theorem’s Interpretation

Branching causes the number
of problems to explode!

Most work is at the
 bottom of the tree!

O 𝑛log𝑏(𝑎)

Problem size shrinks fast,
so most work is at the

top of the tree!

𝑂 𝑛𝑑

𝑎 vs. 𝑏𝑑

𝑎 > 𝑏𝑑
Tall and narrow

𝑎 < 𝑏𝑑
Wide tree

𝑎 = 𝑏𝑑

Branching perfectly balances
total amount of work per layer.
All layers contribute equally.

𝑶 𝑛𝑑log(𝑛)

This lecture

More on uses of Divide and conquer

• More examples of solving recurrence relations

• Matrix Multiplication

• Median Selection (And next time)

Solving Recursion Example 1
Bound 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛 in terms of Θ . notation

Solving Recursion Example 1
Bound 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛 in terms of Θ . notation

Upper bound: Each term is ≤ 𝑛. So, 𝑇 𝑛 ≤ 𝑛 𝑛.

Lower bound: Take just the last 𝑛/2 terms

𝑇 𝑛 ≥
𝑛

2
+

𝑛

2
+ 1 + 𝑛 ≥

𝑛

2

𝑛

2
.

Not in the form of the
Master Theorem.= 𝑇 𝑛 − 2 + 𝑛 − 1 + 𝑛

= 𝑇 𝑛 − 3 + 𝑛 − 2 + 𝑛 − 1 + 𝑛

= 𝑇 1 + 2 + 3 + ⋯ + 𝑛 − 2 + 𝑛 − 1 + 𝑛

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

Solution Slide

Solving Recursion Example 2
Bound 𝑇 𝑛 = 8𝑇

𝑛

2
+ 𝑂(𝑛2) in terms of O . notation.

The Master Theorem

Solving Recursion Example 2
Bound 𝑇 𝑛 = 8𝑇

𝑛

2
+ 𝑂(𝑛2) in terms of O . notation.

Master theorem with 𝑎 = 8, 𝑏 = 2, 𝑑 = 2.

Case 3: 𝑎 = 8 > 4 = 𝑏𝑑

𝑇 𝑛 = 𝑂 𝑛log2 8 = 𝑂(𝑛3)

𝑃1 𝑃2 𝑃3 𝑃4

The Master Theorem

Solution Slide

Matrix Multiplication

Matrix Operations
We showed that integer multiplication can be done faster than the grade
school algorithm.

→Why stop there? Can we multiply Matrices faster than we did in high
school?

Product of two 𝑛 × 𝑛 matrices 𝑋 and 𝑌, is a 𝑛 × 𝑛
matrix 𝑍: Entry 𝑧𝑖,𝑗 is dot-product of 𝑋(row 𝑖) and

𝑌(col 𝑗).

𝑖

𝑗 𝑗

𝑖
× =

X Y Z

Matrix Multiplication in Everyday Life!
Large language models rely on multiplying large (in dimensionality) matrices!

This slide is just for general knowledge. No need to learn about
“attention” in this lecture. But if you are interested, take CS189!

The animal didn't cross the street because it was too tired. …
wide

To generate text, we need to understand the
relationship between these words.

This is done through a mechanism called
“attention” that learns how each word pays
attention to other words. There are lots of
attentions and layers in each model.

Matrix Multiplication Everyday Life!

This slide is just for general knowledge. No need to learn about
“attention” in this lecture. But if you are interested, take CS189!

CS189, Lecture 11At the heart of attention is a large matrix
multiplications.

Older models: Q, K, and V are about 213 ×
213

Newer models: Not disclosed, likely higher.

Every few sentences you generate likely
needs 100s-1000s of these large matrix
multiplications!

Words are vectors Dot products quantify relationship

Matrix Operations

Dot-product

• What is the runtime of computing the dot-product of two vectors of size 𝑛?

Matrix Multiplication

• What is the runtime of the high-school 𝑛 × 𝑛 matrix multiplication algorithm?

• For integer multiplication, “problem size” was the number of digits

• For matrix multiplication, it is the dimensionality.
→We assume each cell has small number of bits, say 32-64.
→So, we can multiply/add two elements of the matrices in 𝑂(1).
→But the sizes of matrices used in practice can be high.

Discuss

Breaking Matrix Multiplication to Subproblems

Let’s try the same trick we used in integer multiplication: Break the
matrix to matrices of size

𝑛

2
×

𝑛

2
.

𝐴 𝐵

𝐶 𝐷

𝐸 𝐹

𝐺 𝐻

𝐴𝐸 + 𝐵𝐺 𝐴𝐹 + 𝐵𝐻

𝐶𝐸 + 𝐷𝐺 𝐶𝐹 + 𝐷𝐻

𝑛

2

𝑛

2

𝑛

2

𝑛

2

𝑛

2

𝑛

2

𝑛

2

𝑛

2

× =

𝑃1 𝑃2 𝑃3 𝑃4

𝑃5 𝑃6 𝑃7 𝑃8

Each subproblem 𝑃𝑖 is a matrix multiplication of two
𝑛

2
×

𝑛

2
 matrices

Recurrence Relationship
• At each layer, we have 8 problems

→ Each problem of size
𝑛

2
.

We have to do a bunch of other operations

• Finding A, B, …, H by shifting 𝑛-digit arrays.

• Adding
𝑛

2
 ×

𝑛

2
 matrices.

• Appending matrices to make one 𝑛 × 𝑛 matrix

𝐴𝐸 + 𝐵𝐺 𝐴𝐹 + 𝐵𝐻

𝐶𝐸 + 𝐷𝐺 𝐶𝐹 + 𝐷𝐻

𝑃1 𝑃2 𝑃3 𝑃4

𝑃5 𝑃6 𝑃7 𝑃8

𝑂(?)

Recurrence 𝑇 𝑛 = ?

The Master Theorem

Runtime 𝑇 𝑛 = ?

Strassen’s Algorithm
Like Karatsuba’s algorithm, but this time for matrices.

Express the answer with fewer than 8 subproblems of size
𝑛

2
×

𝑛

2
.

→ Subtlety: Matrix multiplication is not “commutative” → order matters!

Strassen’s trick:

𝑄1 = 𝐴 𝐹 − 𝐻
𝑄2 = 𝐴 + 𝐵 𝐻
𝑄3 = 𝐶 + 𝐷 𝐸
𝑄4 = 𝐷 𝐺 − 𝐸
𝑄5 = (𝐴 + 𝐷) 𝐸 + 𝐻
𝑄6 = 𝐵 − 𝐷 (𝐺 + 𝐻)
𝑄7 = (𝐴 − 𝐶) 𝐸 + 𝐹

𝑄5 + 𝑄4 − 𝑄2 + 𝑄6 𝑄1 + 𝑄2

𝑄3 + 𝑄4 𝑄1 + 𝑄5 − 𝑄3 − 𝑄7

𝑋 × 𝑌 =

No need to
memorize this!

Recurrence Relationship
• At each layer, we have 7 problems

→ Each problem of size
𝑛

2
.

All other extra operations, additions, subtractions, …

• Finding A, B, …, H by shifting 𝑛-digit arrays

• Additions 𝐹 − 𝐻 , 𝐴 + 𝐵 , …

• Appending matrices back together.

• All together at most 𝑂(𝑛2)

Runtime 𝑇 𝑛 =

𝑄1 = 𝐴 𝐹 − 𝐻
𝑄2 = 𝐴 + 𝐵 𝐻
𝑄3 = 𝐶 + 𝐷 𝐸
𝑄4 = 𝐷 𝐺 − 𝐸
𝑄5 = (𝐴 + 𝐷) 𝐸 + 𝐻
𝑄6 = 𝐵 − 𝐷 (𝐺 + 𝐻)
𝑄7 = (𝐴 − 𝐶) 𝐸 + 𝐹

𝑄5 + 𝑄4 − 𝑄2 + 𝑄6 𝑄1 + 𝑄2

𝑄3 + 𝑄4 𝑄1 + 𝑄5 − 𝑄3 − 𝑄7

Recurrence Relationship
• At each layer, we have 7 problems

→ Each problem of size
𝑛

2
.

All other extra operations, additions, subtractions, …

• Finding A, B, …, H by shifting 𝑛-digit arrays

• Additions 𝐹 − 𝐻 , 𝐴 + 𝐵 , …

• Appending matrices back together.

• All together at most 𝑂(𝑛2)

Runtime 𝑇 𝑛 =

𝑄1 = 𝐴 𝐹 − 𝐻
𝑄2 = 𝐴 + 𝐵 𝐻
𝑄3 = 𝐶 + 𝐷 𝐸
𝑄4 = 𝐷 𝐺 − 𝐸
𝑄5 = (𝐴 + 𝐷) 𝐸 + 𝐻
𝑄6 = 𝐵 − 𝐷 (𝐺 + 𝐻)
𝑄7 = (𝐴 − 𝐶) 𝐸 + 𝐹

𝑄5 + 𝑄4 − 𝑄2 + 𝑄6 𝑄1 + 𝑄2

𝑄3 + 𝑄4 𝑄1 + 𝑄5 − 𝑄3 − 𝑄7

Using the master theorem 𝑇 𝑛 = ?

Runtime 𝑇 𝑛 = 7 𝑇
𝑛

2
+ 𝑂(𝑛2)

The Master Theorem

(Median) Selection

The 𝑘-select Problem
Given an array 𝑆 of 𝑛 numbers and 𝑘 ∈ {1, 2, . . , 𝑛}, find the 𝑘th smallest
element of it.

7 4 3 8 1 5 9 14

Some special cases:
SELECT(S, 1): Minimum element of the array
SELECT(S, 𝑛): Maximum element of the array

SELECT(S,
𝑛

2
): Median element of the array

SELECT(S, 1): SELECT(S, 8)

SELECT(S, 4)

Simple Algorithms for 𝑘-Select
An 𝑂(𝑛 log 𝑛) algorithm

→ Sort the array, using merge-sort (or another 𝑂 𝑛 log 𝑛 sort).

→ Then go through the array and return the 𝑘-th element.

 Technicality: Arrays are 0-index, so you
should return 𝑆[𝑘 − 1] after sorting!

Remainder of the lecture
Can we do better than 𝑂(𝑛 log 𝑛)?

Can we do 𝑂 𝑛 ?

Simple Algorithms for 𝑘-Select
Can you think of 𝑂(𝑛) algorithm for SELECT(S, 1)?

• FOR loop through the array. Store the minimum so far: If the current
element is less than the stored value, store the current value as min instead.

Can you think of 𝑂(𝑛) algorithm for SELECT(S, 2)?

• Run SELECT(S, 1) and let 𝑆 ← 𝑆\SELECT(S, 1). (remove that element)

• Return SELECT(S, 1)

• Total of 𝑂(𝑛) runtime.

Does this trick produce an 𝑂(𝑛) algorithm for SELECT(S, 𝑛/2)?

• No. We would be running
𝑛

2
 SELECTs each 𝑂 𝑛 .

𝑂(𝑛)

𝑂(𝑛)

Technically: Array 𝑆 is shrinking, so SELECT(S, 1) is

getting faster, but not that much faster len(𝑆) >
𝑛

2
.

Big Question

Can we perform Median selection

(or any other 𝑘-select generally)

 in 𝑂 𝑛 ?

Idea: Divide and Conquer
We want to divide the problem to subproblems. How?

• Imagine we are given a “pivot” 𝒗. Split the array into three pieces

→ 𝑆𝐿: Elements less than the pivot

→ 𝑆𝑣: Elements equal to the pivot

→ 𝑆𝑅: Elements larger than the pivot

Given “pivot”

2 36 5 21 8 13 11 20 5 4 1

The subproblems

Given “pivot”

𝑆𝐿 𝑆𝑅𝑆𝑣

2 36 5 21 8 13 11 20 5 4 1

2 4 1 5 5 36 21 8 13 11 20

We want to compute SELECT(S, 𝑘):

• If 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 :

• If 𝑙𝑒𝑛 𝑆𝐿 < 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣):

• If 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣) < 𝑘:

We should return SELECT(𝑆𝐿, 𝑘)

We should return 𝑣.

We should return SELECT(𝑆𝑅, 𝑘 − 𝑙𝑒𝑛 𝑆𝐿 − 𝑙𝑒𝑛(𝑆𝑣))

The Recurrence Relation

We want to compute SELECT(S, 𝑘):

• If 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 :

• If 𝑙𝑒𝑛 𝑆𝐿 < 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣):

• If 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣) < 𝑘:

We should return SELECT(𝑆𝐿, 𝑘)

We should return 𝑣.

We should return SELECT(𝑆𝑅, 𝑘 − 𝑙𝑒𝑛 𝑆𝐿 − 𝑙𝑒𝑛(𝑆𝑣))

𝑇 𝑛 =

𝑇 𝑙𝑒𝑛 𝑆𝐿 + 𝑂 𝑛 if 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿

𝑇 𝑙𝑒𝑛 𝑆𝑅 + 𝑂 𝑛 if 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣) < 𝑘

𝑂(𝑛) if 𝑙𝑒𝑛 𝑆𝐿 < 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣)

The lengths of 𝑆𝐿 and 𝑆𝑅 depend on the choice of the pivot.

What are good/bad choices of pivot

Order the following pivots from worst pivot (slowest runtime) to the best
pivot (fastest). For intuition, imagine no element is repeated.

1. smallest element (min)

2. 𝑛/4 𝑡ℎ smallest element

3. 𝑛/2 𝑡ℎ smallest element (median)

4. 3𝑛/4 𝑡ℎ smallest element

5. (𝑛 − 1)𝑡ℎ smallest element

Discuss

Intuitively, we want a pivot such that max(𝑙𝑒𝑛 𝑆𝐿 , 𝑙𝑒𝑛 𝑆𝑅) is small.

Thought Exercise: Runtime for Bad Pivot
Let’s pretend that we are unlucky, and we always get a pivot that is the
smallest element of the array. What is the runtime of SELECT(S, k)?

Thought Exercise: Runtime for the Ideal Pivot
Let’s pretend that the pivot we picked is indeed the median!

What is the runtime of SELECT(S, k)?
Uhhh! Wasn’t the whole point that we don’t
know how to find the median in 𝑂(𝑛)?

Yes! This is just a thought exercise
to know the ideal situation.

Thought Exercise: Runtime for the Ideal Pivot
Let’s pretend that the pivot we picked is indeed the median!

Then 𝑙𝑒𝑛 𝑆𝐿 ≤ 𝑛/2 and 𝑙𝑒𝑛 𝑆𝑅 ≤ 𝑛/2.

Uhhh! Wasn’t the whole point that we don’t
know how to find the median in 𝑂(𝑛)?

Yes! This is just a thought exercise
to know the ideal situation.

𝑇 𝑛 ≤ 𝑇
𝑛

2
+ 𝑂(𝑛)

The Master Theorem

What’s the runtime?
𝑎 = 1, 𝑏 = 2, 𝑑 = 1, so 𝑎 < 𝑏𝑑

𝑂(𝑛) runtime.

Next time

• Continue with Median selection

• Formalize the discussion of pivots and
prove O(n) runtime

Wrap up
Matrix Multiplication:

Strassen’s algorithm
Similar to Karatsuba, we reduce the number of subproblems from 8 to 7.

𝑘-Select
We saw that a good pivot selection gives us O(n)
We discussed that a random selection, will likely give a good pivot

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of last time
	Slide 4: Recap: Master Theorem
	Slide 5: Recap: Master Theorem
	Slide 6: Recap: Master Theorem’s Interpretation
	Slide 7: This lecture
	Slide 8: Solving Recursion Example 1
	Slide 9: Solving Recursion Example 1
	Slide 10: Solving Recursion Example 2
	Slide 11: Solving Recursion Example 2
	Slide 12
	Slide 13: Matrix Operations
	Slide 14: Matrix Multiplication in Everyday Life!
	Slide 15: Matrix Multiplication Everyday Life!
	Slide 16: Matrix Operations
	Slide 17: Breaking Matrix Multiplication to Subproblems
	Slide 18: Recurrence Relationship
	Slide 19: Strassen’s Algorithm
	Slide 20: Recurrence Relationship
	Slide 21: Recurrence Relationship
	Slide 22
	Slide 23: The k-select Problem
	Slide 24: Simple Algorithms for k-Select
	Slide 25: Simple Algorithms for k-Select
	Slide 26: Big Question
	Slide 27: Idea: Divide and Conquer
	Slide 28: The subproblems
	Slide 29: The Recurrence Relation
	Slide 30: What are good/bad choices of pivot
	Slide 31: Thought Exercise: Runtime for Bad Pivot
	Slide 32: Thought Exercise: Runtime for the Ideal Pivot
	Slide 33: Thought Exercise: Runtime for the Ideal Pivot
	Slide 34: Wrap up

