

...Complex numbers, polynomials today. FFT.

 $(1+2x+3x^2)(4+3x+2x^2)$

$$(1+2x+3x^2)(4+3x+2x^2)$$

Coefficient of x^4 in result?

$$(1+2x+3x^2)(4+3x+2x^2)$$

Coefficient of x^4 in result?

(A) 6

(B) 5

$$(1+2x+3x^2)(4+3x+2x^2)$$

Coefficient of x^4 in result?

(A) 6

(B) 5

(A) 6

$$(1+2x+3x^2)(4+3x+2x^2)$$

Coefficient of x^4 in result?

(A) 6

(B) 5

(A) 6 of course!

```
(1+2x+3x^2)(4+3x+2x^2)
```

Coefficient of x^4 in result?

(A) 6

(B) 5

(A) 6 of course!

Coeefficient of x^2 in result?

 $(1+2x+3x^2)(4+3x+2x^2)$

Coefficient of x^4 in result?

(A) 6

(B) 5

(A) 6 of course! Coeefficient of x^2 in result? Uh oh...

 $(1+2x+3x^2)(4+3x+2x^2)$

 $(1+2x+3x^2)(4+3x+2x^2)$ *x*⁰

 $(1+2x+3x^2)(4+3x+2x^2)$ x^0 ((1)(4))

$$(1+2x+3x^2)(4+3x+2x^2) x^0 ((1)(4)) = 4$$

$$(1+2x+3x^2)(4+3x+2x^2) x^0 ((1)(4)) = 4 x^1$$

$$(1+2x+3x^2)(4+3x+2x^2) x^0 \quad ((1)(4)) x^1 \quad ((1)(3)$$

$$(1+2x+3x^2)(4+3x+2x^2)$$

$$x^0 \quad ((1)(4)) = 4$$

$$x^1 \quad ((1)(3)+(2)(4))$$

$$(1+2x+3x^2)(4+3x+2x^2)$$

$$x^0 \quad ((1)(4)) = 4$$

$$x^1 \quad ((1)(3)+(2)(4)) = 11$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2}$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4)))$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3}$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3))$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4}$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4} \quad ((3)(2))$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4} \quad ((3)(2)) = 6$$

 $4 + 11x + 20x^2 + 13x^3 + 6x^4$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 111$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4} \quad ((3)(2)) = 6$$

$$4+11x+20x^{2}+13x^{3}+6x^{4}$$
Given:

 $a_0 + a_1 x + \cdots + a_d x^d$

$$\begin{array}{rl} (1+2x+3x^2)(4+3x+2x^2) & = 4 \\ x^1 & ((1)(3)+(2)(4)) & = 11 \\ x^2 & ((1)(2)+(2)(3)+(3)(4))) & = 20 \\ x^3 & ((2)(2)+(3)(3)) & = 13 \\ x^4 & ((3)(2)) & = 6 \end{array}$$

$$\begin{array}{r} 4+11x+20x^2+13x^3+6x^4 \\ \text{Given:} \\ a_0+a_1x+\cdots a_dx^d & \text{In example: } a_0=1, a_1=2, a_2=3 \end{array}$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4} \quad ((3)(2)) = 6$$

$$4+11x+20x^{2}+13x^{3}+6x^{4}$$
Given:
$$a_{0}+a_{1}x+\cdots a_{d}x^{d} \qquad \text{In example: } a_{0}=1, a_{1}=2, a_{2}=0$$

$$b_{0}+b_{1}x+\cdots b_{d}x^{d}$$

3

$$\begin{array}{rl} (1+2x+3x^2)(4+3x+2x^2) \\ & x^0 & ((1)(4)) & = 4 \\ & x^1 & ((1)(3)+(2)(4)) & = 11 \\ & x^2 & ((1)(2)+(2)(3)+(3)(4))) & = 20 \\ & x^3 & ((2)(2)+(3)(3)) & = 13 \\ & x^4 & ((3)(2)) & = 6 \end{array}$$

$$\begin{array}{rl} 4+11x+20x^2+13x^3+6x^4 \\ \text{Given:} \\ a_0+a_1x+\cdots a_dx^d & & \text{In example: } a_0=1, a_1=2, a_2=3 \\ & b_0+b_1x+\cdots b_dx^d & & \text{In example: } b_0=4, b_1=3, b_2=2 \end{array}$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4} \quad ((3)(2)) = 6$$

$$4+11x+20x^{2}+13x^{3}+6x^{4}$$

 $4 + 11x + 20x^2 + 13x^3 + 6$

Given:

 $\begin{array}{ll} a_0 + a_1 x + \cdots + a_d x^d & \text{In example: } a_0 = 1, a_1 = 2, a_2 = 3 \\ b_0 + b_1 x + \cdots + b_d x^d & \text{In example: } b_0 = 4, b_1 = 3, b_2 = 2 \\ \text{Product: } c_0 + c_1 x + \cdots + c_{2d} x^{2d} \end{array}$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4} \quad ((3)(2)) = 6$$

 $4 + 11x + 20x^2 + 13x^3 + 6x^4$

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

$$(1+2x+3x^{2})(4+3x+2x^{2})$$

$$x^{0} \quad ((1)(4)) = 4$$

$$x^{1} \quad ((1)(3)+(2)(4)) = 11$$

$$x^{2} \quad ((1)(2)+(2)(3)+(3)(4))) = 20$$

$$x^{3} \quad ((2)(2)+(3)(3)) = 13$$

$$x^{4} \quad ((3)(2)) = 6$$

 $4 + 11x + 20x^2 + 13x^3 + 6x^4$

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$.
Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$.

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

1

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$. Runtime?

- (A) O(d)
- (B) $O(d \log d)$
- (C) O(n²)
- (D) $O(d^2)$

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$. Runtime?

- (A) O(d)
- (B) $O(d \log d)$
- (C) O(n²)
- (D) $O(d^2)$

Time: O(k) multiplications for each k up to k = 2d.

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$. Runtime?

- (A) O(d)
- (B) $O(d \log d)$
- (C) $O(n^2)$

(D) $O(d^2)$

Time: O(k) multiplications for each k up to k = 2d. $\implies O(d^2)$.

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

1

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$. Runtime?

- (A) O(d)
- (B) $O(d \log d)$
- (C) $O(n^2)$
- (D) $O(d^2)$

Time: O(k) multiplications for each k up to k = 2d. $\implies O(d^2)$. or (D)

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$. Runtime?

- (A) O(d)
- (B) $O(d \log d)$
- (C) $O(n^2)$

(D) $O(d^2)$

Time: O(k) multiplications for each k up to k = 2d. $\implies O(d^2)$.

or (D) .. will use n as parameter shortly.

Given:

 $a_0 + a_1 x + \cdots + a_d x^d$ In example: $a_0 = 1, a_1 = 2, a_2 = 3$ $b_0 + b_1 x + \cdots + b_d x^d$ In example: $b_0 = 4, b_1 = 3, b_2 = 2$ Product: $c_0 + c_1 x + \cdots + c_{2d} x^{2d}$

$$c_k = \sum_{0 \le i \le k} a_i * b_{k-i}.$$

E.g.: $c_2 = a_2b_0 + a_1b_1 + a_0b_2$. Runtime?

- (A) O(d)
- (B) $O(d \log d)$
- (C) O(n²)

(D) $O(d^2)$

Time: O(k) multiplications for each k up to k = 2d. $\implies O(d^2)$.

or (D) ...will use n as parameter shortly. so (C) also.

 $O(d^2)$ time!

 $O(d^2)$ time! Quadratic Time!

 $O(d^2)$ time! Quadratic Time! Can we do better?

O(*d*²) time! Quadratic Time! Can we do better? Yes?

O(*d*²) time! Quadratic Time! Can we do better? Yes? No?

O(*d*²) time! Quadratic Time! Can we do better? Yes? No? How?

O(d²) time! Quadratic Time! Can we do better? Yes? No? How? Use different representation.

Represent a line?

Represent a line? Slope and intercept!

Represent a line? Slope and intercept! a_0, a_1

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line?

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)?

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree *d* polynomial?

d + 1

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree *d* polynomial?

d+1

How to find points on function?

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree *d* polynomial?

d+1

How to find points on function? plug in *x*-values...

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d+1

How to find points on function? plug in *x*-values...and evaluate.

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d+1

How to find points on function? plug in *x*-values...and evaluate.

How to find "line" from points?

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d+1

How to find points on function? plug in *x*-values...and evaluate.

How to find "line" from points? Solve two variable system of equations!

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d+1

How to find points on function? plug in *x*-values...and evaluate.

How to find "line" from points? Solve two variable system of equations!

How to find polynomial from points?

Represent a line? Slope and intercept! a_0, a_1

How many points determine a line? 2 Represent line as two points on line instead of coefficients!

How many points determine a parabola (a quadratic polynomial)? 3

How many points determine a a degree d polynomial?

d+1

- How to find points on function? plug in *x*-values...and evaluate.
- How to find "line" from points? Solve two variable system of equations!
- How to find polynomial from points? Solve d + 1 variable system of equations!

 $A(x_0), \cdots, A(x_{2d})$ $B(x_0), \cdots, B(x_{2d})$

 $\begin{array}{l} A(x_0), \cdots, A(x_{2d}) \\ B(x_0), \cdots, B(x_{2d}) \end{array}$ Product: $C(x_0), \cdots, C(x_{2d})$

 $\begin{array}{l} A(x_0), \cdots, A(x_{2d}) \\ B(x_0), \cdots, B(x_{2d}) \end{array}$ Product: $C(x_0), \cdots, C(x_{2d})$

 $C(x_i) = A(x_i)B(x_i)$

$$\begin{array}{l} A(x_0), \cdots, A(x_{2d}) \\ B(x_0), \cdots, B(x_{2d}) \\ \\ \text{Product: } C(x_0), \cdots, C(x_{2d}) \end{array}$$

$$C(x_i) = A(x_i)B(x_i)$$

O(d) multiplications!

$$\begin{array}{l} A(x_0), \cdots, A(x_{2d}) \\ B(x_0), \cdots, B(x_{2d}) \\ \\ \text{Product: } C(x_0), \cdots, C(x_{2d}) \end{array}$$

$$C(x_i) = A(x_i)B(x_i)$$

O(d) multiplications!

Given: a_0, \ldots, a_d and b_0, \ldots, b_d .

$$A(x_0), \dots, A(x_{2d})$$

$$B(x_0), \dots, B(x_{2d})$$

Product: $C(x_0), \dots, C(x_{2d})$

$$C(x_i) = A(x_i)B(x_i)$$

O(d) multiplications!

Given: a_0, \ldots, a_d and b_0, \ldots, b_d . Evaluate: A(x), B(x) on 2d + 1 points: x_0, \cdots, x_{2d} .
Point-value representation.

$$A(x_0), \dots, A(x_{2d})$$

$$B(x_0), \dots, B(x_{2d})$$

Product: $C(x_0), \dots, C(x_{2d})$

$$C(x_i) = A(x_i)B(x_i)$$

O(d) multiplications!

Given: a_0, \ldots, a_d and b_0, \ldots, b_d . Evaluate: A(x), B(x) on 2d + 1 points: x_0, \cdots, x_{2d} . Recall(from CS70): unique representation of polynomial.

Point-value representation.

$$A(x_0), \cdots, A(x_{2d})$$

$$B(x_0), \cdots, B(x_{2d})$$

Product: $C(x_0), \cdots, C(x_{2d})$

$$C(x_i) = A(x_i)B(x_i)$$

O(d) multiplications!

Given: a_0, \ldots, a_d and b_0, \ldots, b_d . Evaluate: A(x), B(x) on 2d + 1 points: x_0, \cdots, x_{2d} . Recall(from CS70): unique representation of polynomial.

Multiply: A(x)B(x) on points to get points for C(x).

Point-value representation.

$$\begin{array}{l} A(x_0), \cdots, A(x_{2d}) \\ B(x_0), \cdots, B(x_{2d}) \\ \\ \text{Product: } C(x_0), \cdots, C(x_{2d}) \end{array}$$

$$C(x_i) = A(x_i)B(x_i)$$

O(d) multiplications!

Given: a_0, \ldots, a_d and b_0, \ldots, b_d . Evaluate: A(x), B(x) on 2d + 1 points: x_0, \cdots, x_{2d} . Recall(from CS70): unique representation of polynomial.

Multiply: A(x)B(x) on points to get points for C(x).

Interpolate: find $c_0 + c_1 x + c_2 x^2 + \cdots + c_{2d} x^{2d}$.

Points: $(x_0, y_0), ... (x_d, y_d)$.

Points: $(x_0, y_0), \dots (x_d, y_d)$. Lagrange:

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$.

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

$$c_0 + c_1 x_0 + c_2 x_0^2 \cdots c_d x_0^d = y_0.$$

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

$$c_0 + c_1 x_0 + c_2 x_0^2 \cdots c_d x_0^d = y_0.$$

$$c_0 + c_1 x_1 + c_2 x_1^2 \cdots c_d x_1^d = y_1.$$

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$. Thus, $P(x_i) = y_i$. Linear system:

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Has solution?

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$. Thus, $P(x_i) = y_i$. Linear system:

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Has solution? Lagrange.

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$. Thus, $P(x_i) = y_i$. Linear system:

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$
Has solution? Lagrange.

Unique?

Points: $(x_0, y_0), ... (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$. Thus, $P(x_i) = y_i$. Linear system:

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Has solution? Lagrange. Unique?

At most *d* roots in any degree *d* polynomial.

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$. Thus, $P(x_i) = y_i$. Linear system:

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Has solution? Lagrange. Unique?

At most *d* roots in any degree *d* polynomial.

Not unique \implies P(x) and Q(x) where $P(x_i) = Q(x_i)$.

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$. Thus, $P(x_i) = y_i$. Linear system:

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Has solution? Lagrange. Unique?

At most *d* roots in any degree *d* polynomial.

Not unique $\implies P(x)$ and Q(x) where $P(x_i) = Q(x_i)$. P(x) - Q(x) has d + 1 roots.

Points: $(x_0, y_0), \dots (x_d, y_d)$.

Lagrange:

$$\Delta_i(x) = \prod_{i \neq j} \frac{x - x_j}{x_i - x_j}$$
$$P(x) = \sum_i y_i \Delta_i(x).$$

Correctness: $\Delta_i(x_j) = 0$ for $x_i \neq x_j$ and $\Delta_i(x_i) = 1$. Thus, $P(x_i) = y_i$. Linear system:

$$c_{0} + c_{1}x_{0} + c_{2}x_{0}^{2} \cdots c_{d}x_{0}^{d} = y_{0}.$$

$$c_{0} + c_{1}x_{1} + c_{2}x_{1}^{2} \cdots c_{d}x_{1}^{d} = y_{1}.$$

$$\vdots$$

$$c_{0} + c_{1}x_{d} + c_{2}x_{d}^{2} \cdots c_{d}x_{d}^{d} = y_{d}.$$

Has solution? Lagrange. Unique?

At most *d* roots in any degree *d* polynomial.

Not unique \implies P(x) and Q(x) where $P(x_i) = Q(x_i)$. P(x) - Q(x) has d + 1 roots. Contradicts not unique.

What is it good for?

What is the point-value representation good for (from CS70)?

Any d points suffices.

Any d points suffices.

"Encode" polynomial with d + k point values.

Any d points suffices.

"Encode" polynomial with d + k point values. Can lose *any* k points and reconstruct.

Any d points suffices.

"Encode" polynomial with d + k point values. Can lose *any* k points and reconstruct.

Any d points suffices.

"Encode" polynomial with d + k point values. Can lose *any* k points and reconstruct.

The original "message/file/polynomial" is recoverable.

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} .

Evaluate $A(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$ on *n* points: x_0, \cdots, x_{n-1} . On one point at at a time:

Evaluate $A(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ on *n* points: x_0, \cdots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2.

Evaluate $A(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$ on *n* points: x_0, \cdots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))

Evaluate $A(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$ on *n* points: x_0, \cdots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13,

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13, then 3 + 2(13) = 29,

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13, then 3 + 2(13) = 29, then 4 + 2(29) = 62.

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13, then 3 + 2(13) = 29, then 4 + 2(29) = 62. In general: $a_0 + x(a_1 + x(a_2 + x(...)))$.
Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13, then 3 + 2(13) = 29, then 4 + 2(29) = 62. In general: $a_0 + x(a_1 + x(a_2 + x(...)))$. *n* multiplications/additions to evaluate one point.

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13, then 3 + 2(13) = 29, then 4 + 2(29) = 62. In general: $a_0 + x(a_1 + x(a_2 + x(...)))$. *n* multiplications/additions to evaluate one point.

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13, then 3 + 2(13) = 29, then 4 + 2(29) = 62. In general: $a_0 + x(a_1 + x(a_2 + x(...)))$. *n* multiplications/additions to evaluate one point.

Evaluate on *n* points

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5 + 4x = 13, then 3 + 2(13) = 29, then 4 + 2(29) = 62. In general: $a_0 + x(a_1 + x(a_2 + x(...)))$. *n* multiplications/additions to evaluate one point. Evaluate on a point.

Evaluate on *n* points. We get $O(n^2)$ time.

Evaluate $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ on *n* points: x_0, \dots, x_{n-1} . On one point at at a time: Example: $4 + 3x + 5x^2 + 4x^3$ on 2. Horners Rule: 4 + x(3 + x(5 + 4x))5+4x = 13, then 3+2(13) = 29, then 4+2(29) = 62. In general: $a_0 + x(a_1 + x(a_2 + x(...)))$. n multiplications/additions to evaluate one point. Evaluate on *n* points. We get $O(n^2)$ time.

Could have just multiplied polynomials!

 $A(x) = A_e(x^2) + x(A_o(x^2))$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial.

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

$$A(x) = A_{e}(x^{2}) + x(A_{o}(x^{2}))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial.

$$A(x) = A_{e}(x^{2}) + x(A_{o}(x^{2}))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2....$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

$$A(x) = A_{e}(x^{2}) + x(A_{o}(x^{2}))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Example:

 $A(x) = 4 + 12x + 20x^2 + 13x^3 + 6x^4 + 7x^5$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3 x + a_5 x^2 \dots$

$$A(x) = 4 + 12x + 20x^{2} + 13x^{3} + 6x^{4} + 7x^{5}$$

= (4 + 20x² + 6x⁴) + (12x + 13x^{3} + 7x^{5})

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

$$A(x) = 4 + 12x + 20x^{2} + 13x^{3} + 6x^{4} + 7x^{5}$$

= $(4 + 20x^{2} + 6x^{4}) + (12x + 13x^{3} + 7x^{5})$
= $(4 + 20x^{2} + 6x^{4}) + x(12 + 13x^{2} + 7x^{4})$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

$$A(x) = 4 + 12x + 20x^{2} + 13x^{3} + 6x^{4} + 7x^{5}$$

= $(4 + 20x^{2} + 6x^{4}) + (12x + 13x^{3} + 7x^{5})$
= $(4 + 20x^{2} + 6x^{4}) + x(12 + 13x^{2} + 7x^{4})$

$$A(x) = A_{e}(x^{2}) + x(A_{o}(x^{2}))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3 x + a_5 x^2 \dots$

$$A(x) = 4 + 12x + 20x^{2} + 13x^{3} + 6x^{4} + 7x^{5}$$

= (4 + 20x^{2} + 6x^{4}) + (12x + 13x^{3} + 7x^{5})
= (4 + 20x^{2} + 6x^{4}) + x(12 + 13x^{2} + 7x^{4})
$$A_{\theta}(x) = 4 + 20x + 6x^{2}$$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3 x + a_5 x^2 \dots$

$$\begin{aligned} A(x) &= 4 + 12x + 20x^2 + 13x^3 + 6x^4 + 7x^5 \\ &= (4 + 20x^2 + 6x^4) + (12x + 13x^3 + 7x^5) \\ &= (4 + 20x^2 + 6x^4) + x(12 + 13x^2 + 7x^4) \\ A_e(x) &= 4 + 20x + 6x^2 \\ A_o(x) &= 12 + 13x + 7x^2 \end{aligned}$$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

$$\begin{aligned} A(x) &= 4 + 12x + 20x^2 + 13x^3 + 6x^4 + 7x^5 \\ &= (4 + 20x^2 + 6x^4) + (12x + 13x^3 + 7x^5) \\ &= (4 + 20x^2 + 6x^4) + x(12 + 13x^2 + 7x^4) \\ A_e(x) &= 4 + 20x + 6x^2 \\ A_o(x) &= 12 + 13x + 7x^2 \\ A(x) &= A_e(x^2) + xA_o(x^2) \end{aligned}$$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

$$\begin{aligned} A(x) &= 4 + 12x + 20x^2 + 13x^3 + 6x^4 + 7x^5 \\ &= (4 + 20x^2 + 6x^4) + (12x + 13x^3 + 7x^5) \\ &= (4 + 20x^2 + 6x^4) + x(12 + 13x^2 + 7x^4) \end{aligned}$$

$$\begin{aligned} A_e(x) &= 4 + 20x + 6x^2 \\ A_o(x) &= 12 + 13x + 7x^2 \\ A(x) &= A_e(x^2) + xA_o(x^2) \end{aligned}$$

Plug in x^2 into A_e and A_o

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2...$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3 x + a_5 x^2 \dots$

Example:

$$\begin{aligned} A(x) &= 4 + 12x + 20x^2 + 13x^3 + 6x^4 + 7x^5 \\ &= (4 + 20x^2 + 6x^4) + (12x + 13x^3 + 7x^5) \\ &= (4 + 20x^2 + 6x^4) + x(12 + 13x^2 + 7x^4) \\ A_e(x) &= 4 + 20x + 6x^2 \\ A_o(x) &= 12 + 13x + 7x^2 \\ A(x) &= A_e(x^2) + xA_o(x^2) \end{aligned}$$

Plug in x^2 into A_e and A_o use results to find A(x).

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial.

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2....$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2....$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3 x + a_5 x^2 \dots$

Evaluate recursively:

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2....$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3 x + a_5 x^2 \dots$

Evaluate recursively: For a point *x*:

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2....$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Evaluate recursively: For a point *x*:

Compute $A_e(x^2)$ and $A_o(x^2)$.

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2x + a_4x^2....$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Evaluate recursively: For a point *x*:

Compute $A_e(x^2)$ and $A_o(x^2)$.

T(n) = 2T(n/2) + 1

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Evaluate recursively: For a point *x*:

Compute $A_e(x^2)$ and $A_o(x^2)$. T(n) = 2T(n/2) + 1 = O(n).

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Evaluate recursively: For a point *x*:

Compute $A_e(x^2)$ and $A_o(x^2)$. T(n) = 2T(n/2) + 1 = O(n).

O(n) for 1 point!

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Evaluate recursively: For a point *x*:

Compute $A_e(x^2)$ and $A_o(x^2)$.

$$T(n) = 2T(n/2) + 1 = O(n).$$

O(n) for 1 point!

n points – $O(n^2)$ time to evaluate on *n* points.

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Evaluate recursively: For a point *x*:

Compute $A_e(x^2)$ and $A_o(x^2)$.

$$T(n) = 2T(n/2) + 1 = O(n).$$

O(n) for 1 point!

n points – $O(n^2)$ time to evaluate on *n* points.

No better than polynomial multiplication!

$$A(x) = A_e(x^2) + x(A_o(x^2))$$

where

Even coefficient polynomial. $A_e(x) = a_0 + a_2 x + a_4 x^2 \dots$

Odd coefficient polynomial. $A_o(x) = a_1 + a_3x + a_5x^2....$

Evaluate recursively: For a point *x*:

Compute $A_e(x^2)$ and $A_o(x^2)$.

$$T(n) = 2T(n/2) + 1 = O(n).$$

O(n) for 1 point!

n points – $O(n^2)$ time to evaluate on *n* points.

No better than polynomial multiplication! Bummer.

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$.

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$
$A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $A(x_0) = A_e(x_0^2) + x_0 A_o(x_0^2)$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $A(x_0) = A_e(x_0^2) + x_0 A_o(x_0^2)$ $A(-x_0) = A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2)$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $A(x_0) = A_e(x_0^2) + x_0 A_o(x_0^2)$ $A(-x_0) = A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2)$ $A(-x_0) = A_e(x_0^2) - x_0 A_o(x_0^2)$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

$$A(x_0) = A_e(x_0^2) + x_0 A_o(x_0^2)$$

$$A(-x_0) = A_e((-x_0)^2) + (-x_0)A_o((-x_0)^2)$$

$$A(-x_0) = A_e(x_0^2) - x_0 A_o(x_0^2)$$

From $A_e(x_0^2)$ and $A_e(x_0^2)$ compute both $A(-x_0)$ and $A(x_0)^2$

From $A_e(x_0)$ and $A_o(x_0)$ compute both $A(-x_0)$ and $A(x_0)$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $\begin{aligned} A(x_0) &= A_e(x_0^2) + x_0 A_o(x_0^2) \\ A(-x_0) &= A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2) \\ A(-x_0) &= A_e(x_0^2) - x_0 A_o(x_0^2) \end{aligned}$ From $A_e(x_0^2)$ and $A_o(x_0^2)$ compute both $A(-x_0)$ and $A(x_0)$? From $A_e(x_i^2)$ and $A_o(x_i^2)$ compute both $A(-x_i)$ and $A(x_i)$?

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $\begin{aligned} A(x_0) &= A_e(x_0^2) + x_0 A_o(x_0^2) \\ A(-x_0) &= A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2) \\ A(-x_0) &= A_e(x_0^2) - x_0 A_o(x_0^2) \end{aligned}$ From $A_e(x_0^2)$ and $A_o(x_0^2)$ compute both $A(-x_0)$ and $A(x_0)$? From $A_e(x_i^2)$ and $A_o(x_i^2)$ compute both $A(-x_i)$ and $A(x_i)$? Evaluate *n* coefficient polynomial on *n* points by

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $\begin{aligned} A(x_0) &= A_e(x_0^2) + x_0 A_o(x_0^2) \\ A(-x_0) &= A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2) \\ A(-x_0) &= A_e(x_0^2) - x_0 A_o(x_0^2) \end{aligned}$ From $A_e(x_0^2)$ and $A_o(x_0^2)$ compute both $A(-x_0)$ and $A(x_0)$? From $A_e(x_i^2)$ and $A_o(x_i^2)$ compute both $A(-x_i)$ and $A(x_i)$? Evaluate *n* coefficient polynomial on *n* points by Evaluating 2 $\frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $\begin{aligned} A(x_0) &= A_e(x_0^2) + x_0 A_o(x_0^2) \\ A(-x_0) &= A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2) \\ A(-x_0) &= A_e(x_0^2) - x_0 A_o(x_0^2) \\ \text{From } A_e(x_0^2) \text{ and } A_o(x_0^2) \text{ compute both } A(-x_0) \text{ and } A(x_0)? \\ \text{From } A_e(x_i^2) \text{ and } A_o(x_i^2) \text{ compute both } A(-x_i) \text{ and } A(x_i)? \\ \text{Evaluate } n \text{ coefficient polynomial on } n \text{ points by} \\ \text{Evaluating 2 } \frac{n}{2} \text{ coefficient polynomials on } \frac{n}{2} \text{ points.} \\ T(n,n) &= 2T(\frac{n}{2}, \frac{n}{2}) + O(n) \end{aligned}$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $\begin{aligned} A(x_0) &= A_e(x_0^2) + x_0 A_o(x_0^2) \\ A(-x_0) &= A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2) \\ A(-x_0) &= A_e(x_0^2) - x_0 A_o(x_0^2) \\ \text{From } A_e(x_0^2) \text{ and } A_o(x_0^2) \text{ compute both } A(-x_0) \text{ and } A(x_0)? \\ \text{From } A_e(x_i^2) \text{ and } A_o(x_i^2) \text{ compute both } A(-x_i) \text{ and } A(x_i)? \\ \text{Evaluate } n \text{ coefficient polynomial on } n \text{ points by} \\ \text{Evaluating 2 } \frac{n}{2} \text{ coefficient polynomials on } \frac{n}{2} \text{ points.} \\ T(n,n) &= 2T(\frac{n}{2}, \frac{n}{2}) + O(n) = O(n \log n) \end{aligned}$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $\begin{aligned} A(x_0) &= A_e(x_0^2) + x_0 A_o(x_0^2) \\ A(-x_0) &= A_e((-x_0)^2) + (-x_0) A_o((-x_0)^2) \\ A(-x_0) &= A_e(x_0^2) - x_0 A_o(x_0^2) \\ \text{From } A_e(x_0^2) \text{ and } A_o(x_0^2) \text{ compute both } A(-x_0) \text{ and } A(x_0)? \\ \text{From } A_e(x_i^2) \text{ and } A_o(x_i^2) \text{ compute both } A(-x_i) \text{ and } A(x_i)? \\ \text{Evaluate } n \text{ coefficient polynomial on } n \text{ points by} \\ \text{Evaluating } 2 \frac{n}{2} \text{ coefficient polynomials on } \frac{n}{2} \text{ points.} \\ T(n,n) &= 2T(\frac{n}{2}, \frac{n}{2}) + O(n) = O(n \log n) \text{ !!!!} \end{aligned}$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $A(x_0) = A_e(x_0^2) + x_0 A_o(x_0^2)$ $A(-x_0) = A_e((-x_0)^2) + (-x_0)A_e((-x_0)^2)$ $A(-x_0) = A_e(x_0^2) - x_0 A_o(x_0^2)$ From $A_e(x_0^2)$ and $A_o(x_0^2)$ compute both $A(-x_0)$ and $A(x_0)$? From $A_e(x_i^2)$ and $A_o(x_i^2)$ compute both $A(-x_i)$ and $A(x_i)$? Evaluate *n* coefficient polynomial on *n* points by Evaluating 2 $\frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points. $T(n,n) = 2T(\frac{n}{2},\frac{n}{2}) + O(n) = O(n \log n)$!!!! From $O(n^2)$ to $O(n \log n)$

 $A(x) = A_e(x^2) + x(A_o(x^2))$ Reuse computations.

n points: $\pm x_0, \pm x_1, \dots, \pm x_{(n-1)/2}$. Also n = d + 1: number of coefficients.

Two points: $+x_0$ and $-x_0$ One square: $(+x_0)^2 = (-x_0)^2 = x_0^2$.

 $A(x_0) = A_e(x_0^2) + x_0 A_o(x_0^2)$ $A(-x_0) = A_e((-x_0)^2) + (-x_0)A_e((-x_0)^2)$ $A(-x_0) = A_e(x_0^2) - x_0 A_o(x_0^2)$ From $A_e(x_0^2)$ and $A_o(x_0^2)$ compute both $A(-x_0)$ and $A(x_0)$? From $A_e(x_i^2)$ and $A_o(x_i^2)$ compute both $A(-x_i)$ and $A(x_i)$? Evaluate *n* coefficient polynomial on *n* points by Evaluating 2 $\frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points. $T(n,n) = 2T(\frac{n}{2},\frac{n}{2}) + O(n) = O(n \log n)$!!!! From $O(n^2)$ to $O(n \log n)$!!!

Recursive Condition:

Recursive Condition: *n* points: $\frac{n}{2}$ pairs of distinct numbers with common squares.

Recursive Condition: *n* points: $\frac{n}{2}$ pairs of distinct numbers with common squares. E.g., $\pm x_0$ both have x_0^2 as square,

Recursive Condition: *n* points: $\frac{n}{2}$ pairs of distinct numbers with common squares. E.g., $\pm x_0$ both have x_0^2 as square, $\pm x_1$ both have x_1^2 as square.

Recursive Condition: *n* points: $\frac{n}{2}$ pairs of distinct numbers with common squares. E.g., $\pm x_0$ both have x_0^2 as square, $\pm x_1$ both have x_1^2 as square.

```
Recursive Condition:

n points: \frac{n}{2} pairs of distinct numbers with common squares.

E.g., \pm x_0 both have x_0^2 as square,

\pm x_1 both have x_1^2 as square.

....
```

Next step:

```
Recursive Condition:

n points: \frac{n}{2} pairs of distinct numbers with common squares.

E.g., \pm x_0 both have x_0^2 as square,

\pm x_1 both have x_1^2 as square.

....
```

Next step:

 $\frac{n}{2}$ points: squares should only be n/4 distinct numbers

```
Recursive Condition:

n points: \frac{n}{2} pairs of distinct numbers with common squares.

E.g., \pm x_0 both have x_0^2 as square,

\pm x_1 both have x_1^2 as square.

.....

Next step:
```

 $\frac{n}{2}$ points: squares should only be n/4 distinct numbers

But all our $\frac{n}{2}$ points are squares

```
Recursive Condition:

n points: \frac{n}{2} pairs of distinct numbers with common squares.

E.g., \pm x_0 both have x_0^2 as square,

\pm x_1 both have x_1^2 as square.

....
```

Next step:

 $\frac{n}{2}$ points: squares should only be n/4 distinct numbers

But all our $\frac{n}{2}$ points are squares ...and positive!

```
Recursive Condition:

n points: \frac{n}{2} pairs of distinct numbers with common squares.

E.g., \pm x_0 both have x_0^2 as square,

\pm x_1 both have x_1^2 as square.
```

Next step:

 $\frac{n}{2}$ points: squares should only be n/4 distinct numbers

But all our $\frac{n}{2}$ points are squares ...and positive!

Need the $\frac{n}{2}$ points to come in Positive/Negatives pairs!

```
Recursive Condition:

n points: \frac{n}{2} pairs of distinct numbers with common squares.

E.g., \pm x_0 both have x_0^2 as square,

\pm x_1 both have x_1^2 as square.
```

Next step:

 $\frac{n}{2}$ points: squares should only be n/4 distinct numbers

But all our $\frac{n}{2}$ points are squares ...and positive!

Need the $\frac{n}{2}$ points to come in Positive/Negatives pairs! How can squares be negative?

```
Recursive Condition:

n points: \frac{n}{2} pairs of distinct numbers with common squares.

E.g., \pm x_0 both have x_0^2 as square,

\pm x_1 both have x_1^2 as square.
```

Next step:

 $\frac{n}{2}$ points: squares should only be n/4 distinct numbers

But all our $\frac{n}{2}$ points are squares ...and positive!

Need the $\frac{n}{2}$ points to come in Positive/Negatives pairs! How can squares be negative?

Complex numbers!

Want n numbers:

Want n numbers:

 x_0,\ldots,x_{n-1}

Want *n* numbers: x_0, \ldots, x_{n-1} where

Want n numbers:

 x_0, \dots, x_{n-1} where $|\{x_0^2, \dots, x_{n-1}^2\}|$

Want n numbers:

 x_0, \dots, x_{n-1} where $|\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2},$

Want n numbers:

 x_0, \dots, x_{n-1} where $|\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2},$ and

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where} \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and} \\ |\{x_0^4, \dots, x_{n-1}^4\}| \end{array}$

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where} \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and} \\ |\{x_0^4, \dots, x_{n-1}^4\}| = \frac{n}{4}, \end{array}$

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where} \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and} \\ |\{x_0^4, \dots, x_{n-1}^4\}| = \frac{n}{4}, \\ \dots \text{and} \dots \end{array}$

Want n numbers:

 $\begin{array}{l} x_0,\ldots,x_{n-1} \text{ where } \\ |\{x_0^2,\ldots,x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and} \\ |\{x_0^4,\ldots,x_{n-1}^4\}| = \frac{n}{4}, \\ \dots \text{and} \\ \dots \\ \{x_0^{\log n},\ldots,x_{n-1}^{\log n}\}| \end{array}$
Want n numbers:

$$\begin{array}{l} x_{0},\ldots,x_{n-1} \text{ where} \\ |\{x_{0}^{2},\ldots,x_{n-1}^{2}\}| = \frac{n}{2}, \\ \text{and} \\ |\{x_{0}^{4},\ldots,x_{n-1}^{4}\}| = \frac{n}{4}, \\ \dots \text{and} \\ \{x_{0}^{\log n},\ldots,x_{n-1}^{\log n}\}| = 1. \end{array}$$

Want n numbers:

 $\begin{array}{l} x_{0},\ldots,x_{n-1} \text{ where } \\ |\{x_{0}^{2},\ldots,x_{n-1}^{2}\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_{0}^{4},\ldots,x_{n-1}^{4}\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_{0}^{\log n},\ldots,x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where } \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_0^4, \dots, x_{n-1}^4\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_0^{\log n}, \dots, x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points.

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where } \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_0^4, \dots, x_{n-1}^4\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_0^{\log n}, \dots, x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where } \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_0^4, \dots, x_{n-1}^4\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_0^{\log n}, \dots, x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where } \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_0^4, \dots, x_{n-1}^4\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_0^{\log n}, \dots, x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1 Take square roots: 1, -1.

Want n numbers:

 $\begin{array}{l} x_{0},\ldots,x_{n-1} \text{ where } \\ |\{x_{0}^{2},\ldots,x_{n-1}^{2}\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_{0}^{4},\ldots,x_{n-1}^{4}\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_{0}^{\log n},\ldots,x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1 Take square roots: 1, -1. Take square roots: 1, -1, i, -i.

Want n numbers:

 $\begin{array}{l} x_{0},\ldots,x_{n-1} \text{ where } \\ |\{x_{0}^{2},\ldots,x_{n-1}^{2}\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_{0}^{4},\ldots,x_{n-1}^{4}\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_{0}^{\log n},\ldots,x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1 Take square roots: 1, -1. Take square roots: 1,-1, *i*, *-i*. Uh oh.

Want n numbers:

 $\begin{array}{l} x_{0},\ldots,x_{n-1} \text{ where } \\ |\{x_{0}^{2},\ldots,x_{n-1}^{2}\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_{0}^{4},\ldots,x_{n-1}^{4}\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_{0}^{\log n},\ldots,x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1 Take square roots: 1, -1. Take square roots: 1,-1, *i*, -i. Uh oh.

Actually:
$$\pm 1$$
, $\pm i$, $\pm \frac{1}{\sqrt{2}}(1+i)$, $\pm \frac{1}{\sqrt{2}}(-1+i)$,

Want n numbers:

 $\begin{array}{l} x_{0},\ldots,x_{n-1} \text{ where } \\ |\{x_{0}^{2},\ldots,x_{n-1}^{2}\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_{0}^{4},\ldots,x_{n-1}^{4}\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_{0}^{\log n},\ldots,x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1 Take square roots: 1, -1. Take square roots: 1, -1, i, -i. Uh oh.

Actually:
$$\pm 1$$
, $\pm i$, $\pm \frac{1}{\sqrt{2}}(1+i)$, $\pm \frac{1}{\sqrt{2}}(-1+i)$,

Complex numbers!

Want n numbers:

 $\begin{array}{l} x_{0},\ldots,x_{n-1} \text{ where } \\ |\{x_{0}^{2},\ldots,x_{n-1}^{2}\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_{0}^{4},\ldots,x_{n-1}^{4}\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_{0}^{\log n},\ldots,x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1 Take square roots: 1, -1. Take square roots: 1, -1, i, -i. Uh oh.

Actually:
$$\pm 1$$
, $\pm i$, $\pm \frac{1}{\sqrt{2}}(1+i)$, $\pm \frac{1}{\sqrt{2}}(-1+i)$,

Complex numbers!

Uh oh?

Want n numbers:

 $\begin{array}{l} x_0, \dots, x_{n-1} \text{ where } \\ |\{x_0^2, \dots, x_{n-1}^2\}| = \frac{n}{2}, \\ \text{and } \\ |\{x_0^4, \dots, x_{n-1}^4\}| = \frac{n}{4}, \\ \dots \text{and } \dots \\ \{x_0^{\log n}, \dots, x_{n-1}^{\log n}\}| = 1. \end{array}$

Each recursive level evaluates:

polynomials of half the degree on half as many points. *n* represents both degree and number of points.

In reverse: start with a number 1 Take square roots: 1, -1. Take square roots: 1,-1, *i*, -i. Uh oh.

Actually:
$$\pm 1$$
, $\pm i$, $\pm \frac{1}{\sqrt{2}}(1+i)$, $\pm \frac{1}{\sqrt{2}}(-1+i)$,

Complex numbers!

Uh oh? Can we get a pattern?

z = a + bi

z = a + biImaginary[↑] (a,b) $r = \sqrt{a^2 + b^2}$ Real

z = a + biImaginary $r = \sqrt{a^2 + b^2}$ $\theta = \tan^{-1}(\frac{b}{a})$ Real

z = a + biImaginary (a,b) $r = \sqrt{a^2 + b^2}$ $\theta = \tan^{-1}(\frac{b}{a})$ ·θ Real

Polar coordinate: $r(\cos \theta + i \sin \theta) = re^{i\theta}$ or (r, θ)

$$(e^{\frac{2i\pi}{n}+\pi})^2 = (e^{\frac{2i\pi}{n}})^2 e^{2\pi} = (e^{\frac{2i\pi}{n}})^2$$

Solutions to $z^n = 1$

Solutions to $z^n = 1$ $(1,\frac{2\pi}{n})^n = (1,\frac{2\pi}{n} \times n) = (1,2\pi) = 1!$

Solutions to $z^n = 1$ $(1, \frac{2\pi}{n})^n = (1, \frac{2\pi}{n} \times n) = (1, 2\pi) = 1!$

Solutions to $z^n = 1$ $(1, \frac{4\pi}{n})^n = (1, \frac{4\pi}{n} \times n) = (1, 4\pi) = 1!$

Solutions to $z^n = 1$ $(1, \frac{2k\pi}{n})^n = (1, \frac{2k\pi}{n} \times n) = (1, 2k\pi) = 1!$

Which are the same as 1?

Which are the same as 1?

 $\begin{array}{l} (A) \ (1)^2 \\ (B) \ (-1)^2 \\ (C) \ -1 \\ (D) \ e^{2\pi i} \\ (E) \ (e^{\pi i})^2 \end{array}$

Which are the same as 1?

(A) (1)² (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

Which are the same as 1?

(A) $(1)^2$ (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

 $\begin{array}{l} (A) \ (-1)^2 \\ (B) \ (e^{3\pi i/2})^2 \\ (C) \ (e^{\pi i/2})^2 \\ (D) \ (e^{\pi i})^2 \end{array}$
Which are the same as 1?

(A) $(1)^2$ (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

 $\begin{array}{l} \text{(A)} (-1)^2 \\ \text{(B)} (e^{3\pi i/2})^2 \\ \text{(C)} (e^{\pi i/2})^2 \\ \text{(D)} (e^{\pi i})^2 \end{array} \\ \text{Note: } e^{\pi i} = -1. \end{array}$

Which are the same as 1?

(A) $(1)^2$ (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

^{(A) (-1)²} ^{(B) ($e^{3\pi i/2}$)² ^{(C) ($e^{\pi i/2}$)² ^{(D) ($e^{\pi i}$)²</sub> Note: $e^{\pi i} = -1$. (B) $(e^{3\pi i/2})^2 = e^{3\pi i} = e^{\pi i}$}}}

Which are the same as 1?

(A) $(1)^2$ (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

^{(A) (-1)²} ^{(B) ($e^{3\pi i/2}$)² ^{(C) ($e^{\pi i/2}$)² ^{(D) ($e^{\pi i}$)²</sub> Note: $e^{\pi i} = -1$. (B) $(e^{3\pi i/2})^2 = e^{3\pi i} = e^{\pi i}$ (D) $(e^{\pi i/2})^2 = e^{\pi i}$.}}}

Which are the same as 1? (A) (1)² (B) (-1)² (C) -1 (D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$ Which are the same as -1? (A) (-1)² (B) $(e^{3\pi i/2})^2$ (C) $(e^{\pi i/2})^2$ (D) $(e^{\pi i})^2$ Note: $e^{\pi i} = -1$. (B) $(e^{3\pi i/2})^2 = e^{3\pi i} = e^{\pi i}$ (D) $(e^{\pi i/2})^2 = e^{\pi i}$.

Which are 4th roots of unity? (Hint: take the 4th power.)

Which are the same as 1?

(A) $(1)^2$ (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

^{(A) (-1)²} ^{(B) ($e^{3\pi i/2}$)² ^{(C) ($e^{\pi i/2}$)² ^{(D) ($e^{\pi i}$)²</sub> Note: $e^{\pi i} = -1$. (B) $(e^{3\pi i/2})^2 = e^{3\pi i} = e^{\pi i}$ (D) $(e^{\pi i/2})^2 = e^{\pi i}$.}}}

Which are 4th roots of unity? (Hint: take the 4th power.)

 $\begin{array}{l} \text{(A)} \ e^{\pi i/2} \\ \text{(B)} \ e^{\pi i} \\ \text{(C)} \ e^{\pi i/3} \\ \text{(D)} \ e^{3\pi i/2} \end{array}$

Which are the same as 1?

(A) $(1)^2$ (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

^{(A) (-1)²} ^{(B) ($e^{3\pi i/2}$)² ^{(C) ($e^{\pi i/2}$)² ^{(D) ($e^{\pi i}$)²</sub> Note: $e^{\pi i} = -1$. (B) $(e^{3\pi i/2})^2 = e^{3\pi i} = e^{\pi i}$ (D) $(e^{\pi i/2})^2 = e^{\pi i}$.}}}

Which are 4th roots of unity? (Hint: take the 4th power.)

(A) $e^{\pi i/2}$ (B) $e^{\pi i}$ (C) $e^{\pi i/3}$ (D) $e^{3\pi i/2}$ (A), (B)

Which are the same as 1?

(A) $(1)^2$ (B) $(-1)^2$ (C) -1(D) $e^{2\pi i}$ (E) $(e^{\pi i})^2$

Which are the same as -1?

^{(A) (-1)²} ^{(B) ($e^{3\pi i/2}$)² ^{(C) ($e^{\pi i/2}$)² ^{(D) ($e^{\pi i}$)²</sub> Note: $e^{\pi i} = -1$. (B) $(e^{3\pi i/2})^2 = e^{3\pi i} = e^{\pi i}$ (D) $(e^{\pi i/2})^2 = e^{\pi i}$.}}}

Which are 4th roots of unity? (Hint: take the 4th power.)

(A) $e^{\pi i/2}$ (B) $e^{\pi i}$ (C) $e^{\pi i/3}$ (D) $e^{3\pi i/2}$ (A), (B) and (D).

Defn:
$$\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$$
, *n*th root of unity.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}}$

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}}$

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square!

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate
$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-2}$$

on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate
$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-2}$$

on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate
$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$$

on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate
$$A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$$

on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity:

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

For each $j \leq \frac{n}{2}$.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

For each $j \leq \frac{n}{2}$.

 $A(\omega^{j}) = A_{e}(\omega^{2i}) + \omega^{j}A_{o}(\omega^{2j})$

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

For each $j \leq \frac{n}{2}$.

$$\begin{aligned} & \mathcal{A}(\omega^{j}) = \mathcal{A}_{e}(\omega^{2j}) + \omega^{j}\mathcal{A}_{o}(\omega^{2j}) \\ & \mathcal{A}(\omega^{j+\frac{n}{2}}) = \mathcal{A}_{e}(\omega^{2j}) - \omega^{j}\mathcal{A}_{o}(\omega^{2i}) \end{aligned}$$

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

For each $j \leq \frac{n}{2}$.

$$A(\omega^{j}) = A_{e}(\omega^{2j}) + \omega^{j}A_{o}(\omega^{2j})$$
$$A(\omega^{j+\frac{n}{2}}) = A_{e}(\omega^{2j}) - \omega^{j}A_{o}(\omega^{2i})$$

Runtime Recurrence:

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

For each $j \leq \frac{n}{2}$.

$$A(\omega^{j}) = A_{e}(\omega^{2j}) + \omega^{j}A_{o}(\omega^{2j})$$
$$A(\omega^{j+\frac{n}{2}}) = A_{e}(\omega^{2j}) - \omega^{j}A_{o}(\omega^{2j})$$

Runtime Recurrence:

 A_e and A_o are degree $\frac{n}{2}$, $\frac{n}{2}$ points in recursion.

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

For each $j \leq \frac{n}{2}$.

$$A(\omega^{j}) = A_{e}(\omega^{2j}) + \omega^{j}A_{o}(\omega^{2j})$$
$$A(\omega^{j+\frac{n}{2}}) = A_{e}(\omega^{2j}) - \omega^{j}A_{o}(\omega^{2j})$$

Runtime Recurrence:

 A_e and A_o are degree $\frac{n}{2}$, $\frac{n}{2}$ points in recursion. $T(n) = 2T(\frac{n}{2}) + O(n)$

Defn: $\omega = (1, \frac{2\pi}{n}) = e^{\frac{2\pi i}{n}}$, *n*th root of unity. Pairs: ω^i and $\omega^{i+\frac{n}{2}} = \omega^i \omega^{\frac{n}{2}} = -\omega^i$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.

Fast Fourier Transform:

Evaluate $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$ on points $\omega^0, \omega, \omega^2, \dots, \omega^{n-1}$.

Procedure:

Recursively compute A_e and A_o on $\frac{n}{2}$ roots of unity: $\omega^2, \omega^4, \omega^6, \dots, \omega^n$.

For each $j \leq \frac{n}{2}$.

$$A(\omega^{j}) = A_{e}(\omega^{2j}) + \omega^{j}A_{o}(\omega^{2j})$$
$$A(\omega^{j+\frac{n}{2}}) = A_{e}(\omega^{2j}) - \omega^{j}A_{o}(\omega^{2j})$$

Runtime Recurrence:

 A_e and A_o are degree $\frac{n}{2}$, $\frac{n}{2}$ points in recursion. $T(n) = 2T(\frac{n}{2}) + O(n) = O(n \log n)!$

What is ω_n^n ?

What is ω_n^n ? 1

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$?

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$? ω_n^a .

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$? ω_n^a . What is $(\omega_n^{a+n/2})^2$?

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$? ω_n^a . What is $(\omega_n^{a+n/2})^2$? ω_n^{2a}

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$? ω_n^a . What is $(\omega_n^{a+n/2})^2$? ω_n^{2a} Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}$.

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$? ω_n^a . What is $(\omega_n^{a+n/2})^2$? ω_n^{2a} Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}$. How many points in the set: $\{(\omega_n)^2, (\omega_n)^4, \dots, \omega_n^{2n}\}$?

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$? ω_n^a . What is $(\omega_n^{a+n/2})^2$? ω_n^{2a} Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}$. How many points in the set: $\{(\omega_n)^2, (\omega_n)^4, \dots, \omega_n^{2n}\}$? *n*/2 points!!!
Quiz 2: review

What is ω_n^n ? 1 What is $(\omega_n)^{a+n}$? ω_n^a . What is $(\omega_n^{a+n/2})^2$? ω_n^{2a} Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}$. How many points in the set: $\{(\omega_n)^2, (\omega_n)^4, \dots, \omega_n^{2n}\}$? *n*/2 points!!!

FFT: Evaluate degree n polynomial on n points by evaluating two degree n/2 polynomials on n/2 points!

```
Polynomial Multiplication: O(n^2).
```

Polynomial Multiplication: $O(n^2)$. In Point form: O(n).

Polynomial Multiplication: $O(n^2)$. In Point form: O(n). Polynomial Evaluation: $O(n^2)$.

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$

```
Polynomial Multiplication: O(n^2).
```

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively.

```
Polynomial Multiplication: O(n^2).
```

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial:
$$A(x) = A_e(x^2) + xA_o(x^2)$$

Evaluate on *n* points recursively.
 $T(n,n) = 2T(n/2,n) + O(n)$

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2,n) + O(n) = O(n^2).$

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2,n) + O(n) = O(n^2)$. The number of leaves is *n*.

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2, n) + O(n) = O(n^2)$. The number of leaves is *n*. and the work on each leaf is O(n).

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2,n) + O(n) = O(n^2)$. The number of leaves is *n*. and the work on each leaf is O(n).

Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}.$

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2,n) + O(n) = O(n^2)$. The number of leaves is *n*. and the work on each leaf is O(n).

Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}.$

Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n, (\omega_n)^{n+2}, \dots, (\omega_n)^{2n}\}.$ Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n\}.$ Only n/2 values here.

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2,n) + O(n) = O(n^2)$. The number of leaves is *n*. and the work on each leaf is O(n).

Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}.$

Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n, (\omega_n)^{n+2}, \dots, (\omega_n)^{2n}\}.$ Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n\}.$ Only n/2 values here.

Evaluate $A(x) = A_e(x^2) + xA_o(x^2)$.

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2, n) + O(n) = O(n^2)$. The number of leaves is *n*. and the work on each leaf is O(n).

Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}.$

Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n, (\omega_n)^{n+2}, \dots, (\omega_n)^{2n}\}.$ Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n\}.$ Only n/2 values here.

Evaluate $A(x) = A_e(x^2) + xA_o(x^2)$. Only need to evaluate A_e and A_o on n/2 points.

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2, n) + O(n) = O(n^2)$. The number of leaves is *n*. and the work on each leaf is O(n).

Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}.$

Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n, (\omega_n)^{n+2}, \dots, (\omega_n)^{2n}\}.$ Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n\}.$ Only n/2 values here.

Evaluate
$$A(x) = A_e(x^2) + xA_o(x^2)$$
.
Only need to evaluate A_e and A_o on $n/2$ points.
 $T(n,n) = 2T(n/2, n/2) + O(n)$.

Polynomial Multiplication: $O(n^2)$.

In Point form: O(n).

Polynomial Evaluation: $O(n^2)$.

Polynomial: $A(x) = A_e(x^2) + xA_o(x^2)$ Evaluate on *n* points recursively. $T(n,n) = 2T(n/2, n) + O(n) = O(n^2)$. The number of leaves is *n*. and the work on each leaf is O(n).

Consider *n* points: $S_n = \{\omega_n, (\omega_n)^2, \dots, \omega_n^n\}.$

Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n, (\omega_n)^{n+2}, \dots, (\omega_n)^{2n}\}.$ Set of squares: $S_{n/2} = \{\omega_n^2\}, \omega_n\}^4, \dots, (\omega_n)^n\}.$ Only n/2 values here.

Evaluate
$$A(x) = A_e(x^2) + xA_o(x^2)$$
.
Only need to evaluate A_e and A_o on $n/2$ points $T(n,n) = 2T(n/2, n/2) + O(n)$.
Or $T(n) = 2(n/2) + O(n) = O(n \log n)$