Today.

...Complex numbers, polynomials today. FFT.

Multiplying polynomials.

$$
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)
$$

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Coefficient of x^{4} in result?

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Coefficient of x^{4} in result?
(A) 6
(B) 5

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Coefficient of x^{4} in result?
(A) 6
(B) 5
(A) 6

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Coefficient of x^{4} in result?
(A) 6
(B) 5
(A) 6 of course!

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Coefficient of x^{4} in result?
(A) 6
(B) 5
(A) 6 of course!

Coeefficient of x^{2} in result?

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Coefficient of x^{4} in result?
(A) 6
(B) 5
(A) 6 of course!

Coeefficient of x^{2} in result?
Uh oh...

Multiplying polynomials.

$$
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)
$$

Multiplying polynomials.
$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$

$$
x^{0}
$$

Multiplying polynomials.

$$
\begin{array}{r}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) \\
x^{0} \quad((1)(4))
\end{array}
$$

Multiplying polynomials.

$$
\begin{aligned}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} \quad((1)(4)) & =4
\end{aligned}
$$

Multiplying polynomials.

$$
\begin{aligned}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) \\
x^{1} & =4
\end{aligned}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3) &
\end{array}
$$

Multiplying polynomials.

$$
\begin{aligned}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & =4 \\
x^{0} & ((1)(4)) \\
x^{1} & ((1)(3)+(2)(4))
\end{aligned}
$$

Multiplying polynomials.

$$
\begin{aligned}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) \\
x^{1} & ((1)(3)+(2)(4))
\end{aligned}
$$

Multiplying polynomials.

$$
\begin{aligned}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) \\
x^{1} & ((1)(3)+(2)(4)) \\
x^{2} &
\end{aligned}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2) &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3) &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2) &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
=13
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & =13 \\
x^{4} & &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & =13 \\
x^{4} & ((3)(2)) &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
x^{4} & ((3)(2)) & =6
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rlrl}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & & =13 \\
x^{4} & ((3)(2)) & & =6 \\
4+11 x+20 x^{2}+13 x^{3}+6 x^{4} & &
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
x^{4} & ((3)(2)) & =6
\end{array}
$$

$4+11 x+20 x^{2}+13 x^{3}+6 x^{4}$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d}$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
x^{4} & ((3)(2)) & =6
\end{array}
$$

$4+11 x+20 x^{2}+13 x^{3}+6 x^{4}$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \quad$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
x^{4} & ((3)(2)) & =6
\end{array}
$$

$4+11 x+20 x^{2}+13 x^{3}+6 x^{4}$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \quad$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d}$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
x^{4} & ((3)(2)) & =6
\end{array}
$$

$4+11 x+20 x^{2}+13 x^{3}+6 x^{4}$
Given:

$$
\begin{array}{ll}
a_{0}+a_{1} x+\cdots a_{d} x^{d} & \text { In example: } a_{0}=1, a_{1}=2, a_{2}=3 \\
b_{0}+b_{1} x+\cdots b_{d} x^{d} & \text { In example: } b_{0}=4, b_{1}=3, b_{2}=2
\end{array}
$$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
x^{4} & ((3)(2)) & =6
\end{array}
$$

$4+11 x+20 x^{2}+13 x^{3}+6 x^{4}$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \quad$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d} \quad$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

Multiplying polynomials.

$$
\begin{array}{rll}
\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right) & \\
x^{0} & ((1)(4)) & =4 \\
x^{1} & ((1)(3)+(2)(4)) & =11 \\
x^{2} & ((1)(2)+(2)(3)+(3)(4))) & =20 \\
x^{3} & ((2)(2)+(3)(3)) & \\
x^{4} & ((3)(2)) & =6
\end{array}
$$

$4+11 x+20 x^{2}+13 x^{3}+6 x^{4}$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \quad$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d} \quad$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i} .
$$

Multiplying polynomials.

$\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$		
$x^{0} \quad((1)(4))$	$=4$	
x^{1}	$((1)(3)+(2)(4))$	$=11$
x^{2}	$((1)(2)+(2)(3)+(3)(4)))$	$=20$
x^{3}	$((2)(2)+(3)(3))$	$=13$
x^{4}	$((3)(2))$	$=6$

$4+11 x+20 x^{2}+13 x^{3}+6 x^{4}$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \quad$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d} \quad$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i} .
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$.

Multiplying polynomials.

Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d}$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$ $b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$ Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i} .
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$.

Multiplying polynomials.

Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \operatorname{In}$ example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i}
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$. Runtime?
(A) $O(d)$
(B) $O(d \log d)$
(C) $O\left(n^{2}\right)$
(D) $O\left(d^{2}\right)$

Multiplying polynomials.

Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \operatorname{In}$ example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i}
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$. Runtime?
(A) $O(d)$
(B) $O(d \log d)$
(C) $O\left(n^{2}\right)$
(D) $O\left(d^{2}\right)$

Time: $O(k)$ multiplications for each k up to $k=2 d$.

Multiplying polynomials.

Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \operatorname{In}$ example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i}
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$.

Runtime?
(A) $O(d)$
(B) $O(d \log d)$
(C) $O\left(n^{2}\right)$
(D) $O\left(d^{2}\right)$

Time: $O(k)$ multiplications for each k up to $k=2 d$.

$$
\Longrightarrow O\left(d^{2}\right)
$$

Multiplying polynomials.

Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d} \ln$ example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i}
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$. Runtime?
(A) $O(d)$
(B) $O(d \log d)$
(C) $O\left(n^{2}\right)$
(D) $O\left(d^{2}\right)$

Time: $O(k)$ multiplications for each k up to $k=2 d$.

$$
\Longrightarrow O\left(d^{2}\right)
$$

or (D)

Multiplying polynomials.

Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d}$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i}
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$. Runtime?
(A) $O(d)$
(B) $O(d \log d)$
(C) $O\left(n^{2}\right)$
(D) $O\left(d^{2}\right)$

Time: $O(k)$ multiplications for each k up to $k=2 d$.

$$
\Longrightarrow O\left(d^{2}\right)
$$

or (D) ..will use n as parameter shortly.

Multiplying polynomials.

Multiply: $\left(1+2 x+3 x^{2}\right)\left(4+3 x+2 x^{2}\right)$
Given:
$a_{0}+a_{1} x+\cdots a_{d} x^{d}$ In example: $a_{0}=1, a_{1}=2, a_{2}=3$
$b_{0}+b_{1} x+\cdots b_{d} x^{d}$ In example: $b_{0}=4, b_{1}=3, b_{2}=2$
Product: $c_{0}+c_{1} x+\cdots c_{2 d} x^{2 d}$

$$
c_{k}=\sum_{0 \leq i \leq k} a_{i} * b_{k-i}
$$

E.g.: $c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}$.

Runtime?
(A) $O(d)$
(B) $O(d \log d)$
(C) $O\left(n^{2}\right)$
(D) $O\left(d^{2}\right)$

Time: $O(k)$ multiplications for each k up to $k=2 d$.

$$
\Longrightarrow O\left(d^{2}\right)
$$

or (D) ..will use n as parameter shortly. so (C) also.

Hmmm...

$O\left(d^{2}\right)$ time!

Hmmm...

$O\left(d^{2}\right)$ time!
Quadratic Time!

Hmmm...

$O\left(d^{2}\right)$ time!
Quadratic Time!
Can we do better?

Hmmm...

$O\left(d^{2}\right)$ time!
Quadratic Time!
Can we do better?
Yes?

Hmmm...

$O\left(d^{2}\right)$ time!
Quadratic Time!
Can we do better?
Yes? No?

Hmmm...

$O\left(d^{2}\right)$ time!
Quadratic Time!
Can we do better?
Yes? No?
How?

Hmmm...

$O\left(d^{2}\right)$ time!
Quadratic Time!
Can we do better?
Yes? No?
How?
Use different representation.

Another representation.

Represent a line?

Another representation.

Represent a line?
Slope and intercept!

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line?

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)?

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?
plug in x-values...

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?
plug in x-values...and evaluate.

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?
plug in x-values...and evaluate.
How to find "line" from points?

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?
plug in x-values...and evaluate.
How to find "line" from points?
Solve two variable system of equations!

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?
plug in x-values...and evaluate.
How to find "line" from points?
Solve two variable system of equations!
How to find polynomial from points?

Another representation.

Represent a line?
Slope and intercept! a_{0}, a_{1}
How many points determine a line? 2
Represent line as two points on line instead of coefficients!
How many points determine a parabola (a quadratic polynomial)? 3
How many points determine a a degree d polynomial?
$d+1$
How to find points on function?
plug in x-values...and evaluate.
How to find "line" from points?
Solve two variable system of equations!
How to find polynomial from points?
Solve $d+1$ variable system of equations!

Point-value representation.

$$
\begin{aligned}
& A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right) \\
& B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)
\end{aligned}
$$

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

$$
C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)
$$

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

$$
C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)
$$

$O(d)$ multiplications!

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

$$
C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)
$$

$O(d)$ multiplications!
Given: a_{0}, \ldots, a_{d} and b_{0}, \ldots, b_{d}.

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

$$
C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)
$$

$O(d)$ multiplications!
Given: a_{0}, \ldots, a_{d} and b_{0}, \ldots, b_{d}.
Evaluate: $A(x), B(x)$ on $2 d+1$ points: $x_{0}, \cdots, x_{2 d}$.

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

$$
C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)
$$

$O(d)$ multiplications!
Given: a_{0}, \ldots, a_{d} and b_{0}, \ldots, b_{d}.
Evaluate: $A(x), B(x)$ on $2 d+1$ points: $x_{0}, \cdots, x_{2 d}$.
Recall(from CS70): unique representation of polynomial.

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

$$
C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)
$$

$O(d)$ multiplications!
Given: a_{0}, \ldots, a_{d} and b_{0}, \ldots, b_{d}. Evaluate: $A(x), B(x)$ on $2 d+1$ points: $x_{0}, \cdots, x_{2 d}$. Recall(from CS70): unique representation of polynomial.
Multiply: $A(x) B(x)$ on points to get points for $C(x)$.

Point-value representation.

$A\left(x_{0}\right), \cdots, A\left(x_{2 d}\right)$
$B\left(x_{0}\right), \cdots, B\left(x_{2 d}\right)$
Product: $C\left(x_{0}\right), \cdots, C\left(x_{2 d}\right)$

$$
C\left(x_{i}\right)=A\left(x_{i}\right) B\left(x_{i}\right)
$$

$O(d)$ multiplications!
Given: a_{0}, \ldots, a_{d} and b_{0}, \ldots, b_{d}. Evaluate: $A(x), B(x)$ on $2 d+1$ points: $x_{0}, \cdots, x_{2 d}$. Recall(from CS70): unique representation of polynomial.
Multiply: $A(x) B(x)$ on points to get points for $C(x)$.
Interpolate: find $c_{0}+c_{1} x+c_{2} x^{2}+\cdots c_{2 d} x^{2 d}$.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

$$
P(x)=\sum_{i} y_{i} \Delta_{i}(x)
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

$$
P(x)=\sum_{i} y_{i} \Delta_{i}(x)
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} .
$$

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{aligned}
& c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
& c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} .
\end{aligned}
$$

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d}
\end{gathered}
$$

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d}
\end{gathered}
$$

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d}
\end{gathered}
$$

Has solution?

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} . \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d} .
\end{gathered}
$$

Has solution? Lagrange.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} . \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d} .
\end{gathered}
$$

Has solution? Lagrange.
Unique?

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} . \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d} .
\end{gathered}
$$

Has solution? Lagrange.
Unique?
At most d roots in any degree d polynomial.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} . \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d} .
\end{gathered}
$$

Has solution? Lagrange.
Unique?
At most d roots in any degree d polynomial.
Not unique $\Longrightarrow P(x)$ and $Q(x)$ where $P\left(x_{i}\right)=Q\left(x_{i}\right)$.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} . \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d} .
\end{gathered}
$$

Has solution? Lagrange.
Unique?
At most d roots in any degree d polynomial.
Not unique $\Longrightarrow P(x)$ and $Q(x)$ where $P\left(x_{i}\right)=Q\left(x_{i}\right)$. $P(x)-Q(x)$ has $d+1$ roots.

Interpolation

Points: $\left(x_{0}, y_{0}\right), \ldots\left(x_{d}, y_{d}\right)$.
Lagrange:

$$
\begin{aligned}
& \Delta_{i}(x)=\Pi_{i \neq j} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& P(x)=\sum_{i} y_{i} \Delta_{i}(x) .
\end{aligned}
$$

Correctness: $\Delta_{i}\left(x_{j}\right)=0$ for $x_{i} \neq x_{j}$ and $\Delta_{i}\left(x_{i}\right)=1$. Thus, $P\left(x_{i}\right)=y_{i}$. Linear system:

$$
\begin{gathered}
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2} \cdots c_{d} x_{0}^{d}=y_{0} . \\
c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2} \cdots c_{d} x_{1}^{d}=y_{1} . \\
\vdots \\
c_{0}+c_{1} x_{d}+c_{2} x_{d}^{2} \cdots c_{d} x_{d}^{d}=y_{d} .
\end{gathered}
$$

Has solution? Lagrange.
Unique?
At most d roots in any degree d polynomial.
Not unique $\Longrightarrow P(x)$ and $Q(x)$ where $P\left(x_{i}\right)=Q\left(x_{i}\right)$.
$P(x)-Q(x)$ has $d+1$ roots. Contradicts not unique.

What is it good for?

What is the point-value representation good for (from CS70)?

What is it good for?

What is the point-value representation good for (from CS70)?
Error tolerance.

What is it good for?

What is the point-value representation good for (from CS70)?
Error tolerance.
Any d points suffices.

What is it good for?

What is the point-value representation good for (from CS70)?
Error tolerance.
Any d points suffices.
"Encode" polynomial with $d+k$ point values.

What is it good for?

What is the point-value representation good for (from CS70)?
Error tolerance.
Any d points suffices.
"Encode" polynomial with $d+k$ point values.
Can lose any k points and reconstruct.

What is it good for?

What is the point-value representation good for (from CS70)?
Error tolerance.
Any d points suffices.
"Encode" polynomial with $d+k$ point values.
Can lose any k points and reconstruct.

What is it good for?

What is the point-value representation good for (from CS70)?
Error tolerance.
Any d points suffices.
"Encode" polynomial with $d+k$ point values.
Can lose any k points and reconstruct.
The original "message/file/polynomial" is recoverable.

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2 .

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$,

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$,

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.
In general: $a_{0}+x\left(a_{1}+x\left(a_{2}+x(\ldots)\right)\right)$.

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.
In general: $a_{0}+x\left(a_{1}+x\left(a_{2}+x(\ldots)\right)\right)$.
n multiplications/additions to evaluate one point.

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.
In general: $a_{0}+x\left(a_{1}+x\left(a_{2}+x(\ldots)\right)\right)$.
n multiplications/additions to evaluate one point.

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.
In general: $a_{0}+x\left(a_{1}+x\left(a_{2}+x(\ldots)\right)\right)$.
n multiplications/additions to evaluate one point.
Evaluate on n points

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.
In general: $a_{0}+x\left(a_{1}+x\left(a_{2}+x(\ldots)\right)\right)$.
n multiplications/additions to evaluate one point.
Evaluate on n points. We get $O\left(n^{2}\right)$ time.

Polynomial Evaluation.

Evaluate $A(x)=a_{0}+a_{1} x+\cdots a_{n-1} x^{n-1}$ on n points: x_{0}, \cdots, x_{n-1}.
On one point at at a time:
Example: $4+3 x+5 x^{2}+4 x^{3}$ on 2.
Horners Rule: $4+x(3+x(5+4 x))$
$5+4 x=13$, then $3+2(13)=29$, then $4+2(29)=62$.
In general: $a_{0}+x\left(a_{1}+x\left(a_{2}+x(\ldots)\right)\right)$.
n multiplications/additions to evaluate one point.
Evaluate on n points. We get $O\left(n^{2}\right)$ time.
Could have just multiplied polynomials!

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
A(x)=4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5}
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
A(x) & =4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
& =\left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right)
\end{aligned}
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
A(x)= & 4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
= & \left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right) \\
& =\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right)
\end{aligned}
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
A(x)= & 4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
= & \left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right) \\
& =\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right)
\end{aligned}
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
\left.\begin{array}{rl}
A(x)= & 4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
= & \left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right) \\
& =\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right) \\
A_{e}(x)= & 4
\end{array}\right)+20 x+6 x^{2}
\end{aligned}
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
A(x)= & 4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
= & \left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right) \\
& =\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right) \\
A_{e}(x)= & 4+20 x+6 x^{2} \\
A_{o}(x)= & 12+13 x+7 x^{2}
\end{aligned}
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
& A(x)=4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
& =\left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right) \\
& =\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right) \\
& A_{e}(x)=4+20 x+6 x^{2} \\
& A_{o}(x)=12+13 x+7 x^{2} \\
& A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
\end{aligned}
$$

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
& A(x)=4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
& =\left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right) \\
& =\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right) \\
& A_{e}(x)=4+20 x+6 x^{2} \\
& A_{o}(x)=12+13 x+7 x^{2} \\
& A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
\end{aligned}
$$

Plug in x^{2} into A_{e} and A_{o}

Evaluation of polynomials: Recursive.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Example:

$$
\begin{aligned}
& \begin{aligned}
& A(x)= 4+12 x+20 x^{2}+13 x^{3}+6 x^{4}+7 x^{5} \\
&=\left(4+20 x^{2}+6 x^{4}\right)+\left(12 x+13 x^{3}+7 x^{5}\right) \\
& \quad=\left(4+20 x^{2}+6 x^{4}\right)+x\left(12+13 x^{2}+7 x^{4}\right) \\
& A_{e}(x)=4+20 x+6 x^{2} \\
& A_{o}(x)= 12+13 x+7 x^{2} \\
& A(x)= A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)
\end{aligned}
\end{aligned}
$$

Plug in x^{2} into A_{e} and A_{o} use results to find $A(x)$.

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$.

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$.

$$
T(n)=2 T(n / 2)+1
$$

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$.

$$
T(n)=2 T(n / 2)+1=O(n) .
$$

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$.

$$
T(n)=2 T(n / 2)+1=O(n)
$$

$O(n)$ for 1 point!

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$.

$$
T(n)=2 T(n / 2)+1=O(n) .
$$

$O(n)$ for 1 point!
n points $-O\left(n^{2}\right)$ time to evaluate on n points.

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$.

$$
T(n)=2 T(n / 2)+1=O(n)
$$

$O(n)$ for 1 point!
n points $-O\left(n^{2}\right)$ time to evaluate on n points.
No better than polynomial multiplication!

Recursive Evaluation.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

where
Even coefficient polynomial.

$$
A_{e}(x)=a_{0}+a_{2} x+a_{4} x^{2} \ldots
$$

Odd coefficient polynomial.

$$
A_{o}(x)=a_{1}+a_{3} x+a_{5} x^{2} \ldots
$$

Evaluate recursively:
For a point x :
Compute $A_{e}\left(x^{2}\right)$ and $A_{o}\left(x^{2}\right)$.

$$
T(n)=2 T(n / 2)+1=O(n)
$$

$O(n)$ for 1 point!
n points $-O\left(n^{2}\right)$ time to evaluate on n points.
No better than polynomial multiplication! Bummer.

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.

$$
A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)
$$

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.

$$
\begin{aligned}
& A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right) \\
& A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)
\end{aligned}
$$

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.

$$
\begin{aligned}
& A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right) \\
& A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right) \\
& A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)
\end{aligned}
$$

Recursive on more than one point.

$$
A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)
$$

Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.

$$
\begin{aligned}
& A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right) \\
& A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right) \\
& A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)
\end{aligned}
$$

From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.

$$
A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)
$$

$$
A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)
$$

$$
A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)
$$

From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by
Evaluating $2 \frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by
Evaluating $2 \frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.
$T(n, n)=2 T\left(\frac{n}{2}, \frac{n}{2}\right)+O(n)$

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by
Evaluating $2 \frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.
$T(n, n)=2 T\left(\frac{n}{2}, \frac{n}{2}\right)+O(n)=O(n \log n)$

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by
Evaluating $2 \frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.
$T(n, n)=2 T\left(\frac{n}{2}, \frac{n}{2}\right)+O(n)=O(n \log n)!!!!$

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by
Evaluating $2 \frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.

$$
T(n, n)=2 T\left(\frac{n}{2}, \frac{n}{2}\right)+O(n)=O(n \log n)!!!!
$$

From $O\left(n^{2}\right)$ to $O(n \log n)$

Recursive on more than one point.

$A(x)=A_{e}\left(x^{2}\right)+x\left(A_{o}\left(x^{2}\right)\right)$
Reuse computations.
n points: $\pm x_{0}, \pm x_{1}, \ldots, \pm x_{(n-1) / 2}$.
Also $n=d+1$: number of coefficients.
Two points: $+x_{0}$ and $-x_{0}$ One square: $\left(+x_{0}\right)^{2}=\left(-x_{0}\right)^{2}=x_{0}^{2}$.
$A\left(x_{0}\right)=A_{e}\left(x_{0}^{2}\right)+x_{0} A_{o}\left(x_{0}^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(\left(-x_{0}\right)^{2}\right)+\left(-x_{0}\right) A_{o}\left(\left(-x_{0}\right)^{2}\right)$
$A\left(-x_{0}\right)=A_{e}\left(x_{0}^{2}\right)-x_{0} A_{o}\left(x_{0}^{2}\right)$
From $A_{e}\left(x_{o}^{2}\right)$ and $A_{o}\left(x_{0}^{2}\right)$ compute both $A\left(-x_{0}\right)$ and $A\left(x_{0}\right)$?
From $A_{e}\left(x_{i}^{2}\right)$ and $A_{o}\left(x_{i}^{2}\right)$ compute both $A\left(-x_{i}\right)$ and $A\left(x_{i}\right)$?
Evaluate n coefficient polynomial on n points by
Evaluating $2 \frac{n}{2}$ coefficient polynomials on $\frac{n}{2}$ points.

$$
T(n, n)=2 T\left(\frac{n}{2}, \frac{n}{2}\right)+O(n)=O(n \log n)!!!!
$$

From $O\left(n^{2}\right)$ to $O(n \log n)!!!$

Explore recursion.

Recursive Condition:

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.

Explore recursion.

Recursive Condition:

n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square,

Explore recursion.

Recursive Condition:

n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square,
$\pm x_{1}$ both have x_{1}^{2} as square.

Explore recursion.

Recursive Condition:

n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square,
$\pm x_{1}$ both have x_{1}^{2} as square.

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square,
$\pm x_{1}$ both have x_{1}^{2} as square.

Next step:

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square, $\pm x_{1}$ both have x_{1}^{2} as square.

Next step:
$\frac{n}{2}$ points: squares should only be $n / 4$ distinct numbers

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square, $\pm x_{1}$ both have x_{1}^{2} as square.

Next step:
$\frac{n}{2}$ points: squares should only be $n / 4$ distinct numbers
But all our $\frac{n}{2}$ points are squares

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square, $\pm x_{1}$ both have x_{1}^{2} as square.

Next step:
$\frac{n}{2}$ points: squares should only be $n / 4$ distinct numbers
But all our $\frac{n}{2}$ points are squares ...and positive!

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square, $\pm x_{1}$ both have x_{1}^{2} as square.

Next step:
$\frac{n}{2}$ points: squares should only be $n / 4$ distinct numbers
But all our $\frac{n}{2}$ points are squares ...and positive!
Need the $\frac{n}{2}$ points to come in Positive/Negatives pairs!

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square, $\pm x_{1}$ both have x_{1}^{2} as square.

Next step:
$\frac{n}{2}$ points: squares should only be $n / 4$ distinct numbers
But all our $\frac{n}{2}$ points are squares ...and positive!
Need the $\frac{n}{2}$ points to come in Positive/Negatives pairs!
How can squares be negative?

Explore recursion.

Recursive Condition:
n points: $\frac{n}{2}$ pairs of distinct numbers with common squares.
E.g., $\pm x_{0}$ both have x_{0}^{2} as square, $\pm x_{1}$ both have x_{1}^{2} as square.

Next step:
$\frac{n}{2}$ points: squares should only be $n / 4$ distinct numbers
But all our $\frac{n}{2}$ points are squares ...and positive!
Need the $\frac{n}{2}$ points to come in Positive/Negatives pairs!
How can squares be negative?
Complex numbers!

Pairs with common squares.

Want n numbers:

Pairs with common squares.

Want n numbers:

$$
x_{0}, \ldots, x_{n-1}
$$

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|$

Pairs with common squares.

Want n numbers:

$$
\begin{aligned}
& x_{0}, \ldots, x_{n-1} \text { where } \\
& \quad\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2},
\end{aligned}
$$

Pairs with common squares.

Want n numbers:

```
x
    |{\mp@subsup{x}{0}{2},\ldots,\mp@subsup{x}{n-1}{2}}|=\frac{n}{2}
    and
```


Pairs with common squares.

Want n numbers:

$$
\begin{aligned}
& x_{0}, \ldots, x_{n-1} \text { where } \\
& \left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2} \\
& \text { and }
\end{aligned}
$$

$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|$

Pairs with common squares.

Want n numbers:

```
x},\ldots,\mp@subsup{x}{n-1}{}\mathrm{ where
    |{\mp@subsup{x}{0}{2},\ldots,\mp@subsup{x}{n-1}{2}}|=\frac{n}{2},
    and
```

 \(\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}\),

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$, and
$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}$, ...and ...

Pairs with common squares.

Want n numbers:

$$
\begin{aligned}
& x_{0}, \ldots, x_{n-1} \text { where } \\
& \quad\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}, \\
& \text { and } \\
& \quad\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}, \\
& \ldots \text { and }, \ldots \\
& \quad\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid
\end{aligned}
$$

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and
$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}$,
...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1
$$

Pairs with common squares.

Want n numbers:

$$
\begin{aligned}
& x_{0}, \ldots, x_{n-1} \text { where } \\
& \quad\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2} \text {, } \\
& \text { and }\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}, \\
& \ldots \text { and } \ldots \ldots \\
& \quad\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
\end{aligned}
$$

Each recursive level evaluates:

Pairs with common squares.

Want n numbers:

```
\(x_{0}, \ldots, x_{n-1}\) where
    \(\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}\),
    and
    \(\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}\),
    ...and ...
    \(\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1\).
```

Each recursive level evaluates: polynomials of half the degree on half as many points.

Pairs with common squares.

Want n numbers:

```
\(x_{0}, \ldots, x_{n-1}\) where
    \(\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}\),
    and
    \(\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}\),
    ...and ...
    \(\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1\).
```

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and
$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}$,
...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.

In reverse: start with a number 1

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and
$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}$,
...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and
$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}$,
...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.
Take square roots: $1,-1, i,-i$.

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and
$\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}$,
...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.
Take square roots: $1,-1, i,-i$.
Uh oh.

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and

$$
\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}
$$

...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.
Take square roots: $1,-1, i,-i$.
Uh oh.
Actually: $\pm 1, \pm i, \pm \frac{1}{\sqrt{2}}(1+i), \pm \frac{1}{\sqrt{2}}(-1+i)$,

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and

$$
\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}
$$

...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.
Take square roots: $1,-1, i,-i$.
Uh oh.
Actually: $\pm 1, \pm i, \pm \frac{1}{\sqrt{2}}(1+i), \pm \frac{1}{\sqrt{2}}(-1+i)$,
Complex numbers!

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and

$$
\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}
$$

...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.
Take square roots: $1,-1, i,-i$.
Uh oh.
Actually: $\pm 1, \pm i, \pm \frac{1}{\sqrt{2}}(1+i), \pm \frac{1}{\sqrt{2}}(-1+i)$,
Complex numbers!
Uh oh?

Pairs with common squares.

Want n numbers:
x_{0}, \ldots, x_{n-1} where
$\left|\left\{x_{0}^{2}, \ldots, x_{n-1}^{2}\right\}\right|=\frac{n}{2}$,
and

$$
\left|\left\{x_{0}^{4}, \ldots, x_{n-1}^{4}\right\}\right|=\frac{n}{4}
$$

...and ...

$$
\left\{x_{0}^{\log n}, \ldots, x_{n-1}^{\log n}\right\} \mid=1 .
$$

Each recursive level evaluates: polynomials of half the degree on half as many points. n represents both degree and number of points.
In reverse: start with a number 1
Take square roots: $1,-1$.
Take square roots: $1,-1, i,-i$.
Uh oh.
Actually: $\pm 1, \pm i, \pm \frac{1}{\sqrt{2}}(1+i), \pm \frac{1}{\sqrt{2}}(-1+i)$,
Complex numbers!
Uh oh? Can we get a pattern?

Complex plane

$$
z=a+b i
$$

Polar coordinate: $r(\cos \theta+i \sin \theta)=r e^{i \theta}$ or (r, θ)

Multiplying Complex Numbers

The nth complex roots of unity.

$$
\left(e^{\frac{2 i \pi}{n}+\pi}\right)^{2}=\left(e^{\frac{2 i \pi}{n}}\right)^{2} e^{2 \pi}=\left(e^{\frac{2 i \pi}{n}}\right)^{2}
$$

Solutions to $z^{n}=1$

The nth complex roots of unity.

Solutions to $z^{n}=1$

$$
\left(1, \frac{2 \pi}{n}\right)^{n}=\left(1, \frac{2 \pi}{n} \times n\right)=(1,2 \pi)=1!
$$

The nth complex roots of unity.

Solutions to $z^{n}=1$

$$
\left(1, \frac{2 \pi}{n}\right)^{n}=\left(1, \frac{2 \pi}{n} \times n\right)=(1,2 \pi)=1!
$$

The nth complex roots of unity.

Solutions to $z^{n}=1$

$$
\left(1, \frac{4 \pi}{n}\right)^{n}=\left(1, \frac{4 \pi}{n} \times n\right)=(1,4 \pi)=1!
$$

The nth complex roots of unity.

Solutions to $z^{n}=1$
$\left(1, \frac{2 k \pi}{n}\right)^{n}=\left(1, \frac{2 k \pi}{n} \times n\right)=(1,2 k \pi)=1!$

The nth complex roots of unity.

Solutions to $z^{n}=1$

$$
(1, \theta+\pi)^{2}=(1,2 \theta+2 \pi)=(1,2 \theta)=(1, \theta)^{2} .
$$

The nth complex roots of unity.

Solutions to $z^{n}=1$

$$
(1, \theta+\pi)^{2}=(1,2 \theta+2 \pi)=(1,2 \theta)=(1, \theta)^{2} .
$$

The nth complex roots of unity.

Solutions to $z^{n}=1$

$$
(1, \theta+\pi)^{2}=(1,2 \theta+2 \pi)=(1,2 \theta)=(1, \theta)^{2} .
$$

Squares: $\frac{n}{2}$ th roots.

Quiz

Which are the same as 1 ?

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Quiz

Which are the same as 1 ?
(A) (1) ${ }^{2}$
(B) ($(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{i \pi / 2}\right)^{2}$
(D) $\left(e^{i \pi}\right)^{2}$

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{\pi i / 2}\right)^{2}$
(D) $\left(e^{\pi i}\right)^{2}$

Note: $e^{\pi i}=-1$.

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{\pi i / 2}\right)^{2}$
(D) $\left(e^{\pi i}\right)^{2}$

Note: $e^{\pi i}=-1$. (B) $\left(e^{3 \pi i / 2}\right)^{2}=e^{3 \pi i}=e^{\pi i}$

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{\pi i / 2}\right)^{2}$
(D) $\left(e^{\pi i}\right)^{2}$

Note: $e^{\pi i}=-1$. (B) $\left(e^{3 \pi i / 2}\right)^{2}=e^{3 \pi i}=e^{\pi i}$ (D) $\left(e^{\pi i / 2}\right)^{2}=e^{\pi i}$.

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{\pi i / 2}\right)^{2}$
(D) $\left(e^{\pi i}\right)^{2}$

Note: $e^{\pi i}=-1$. (B) $\left(e^{3 \pi i / 2}\right)^{2}=e^{3 \pi i}=e^{\pi i}$ (D) $\left(e^{\pi i / 2}\right)^{2}=e^{\pi i}$.
Which are 4th roots of unity? (Hint: take the 4th power.)

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{\pi i / 2}\right)^{2}$
(D) $\left(e^{\pi i}\right)^{2}$

Note: $e^{\pi i}=-1$. (B) $\left(e^{3 \pi i / 2}\right)^{2}=e^{3 \pi i}=e^{\pi i}$ (D) $\left(e^{\pi i / 2}\right)^{2}=e^{\pi i}$.
Which are 4th roots of unity? (Hint: take the 4th power.)
(A) $e^{\pi i / 2}$
(B) $e^{\pi i}$
(C) $e^{\pi i / 3}$
(D) $e^{3 \pi i / 2}$

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{\pi i / 2}\right)^{2}$
(D) $\left(e^{\pi i}\right)^{2}$

Note: $e^{\pi i}=-1$. (B) $\left(e^{3 \pi i / 2}\right)^{2}=e^{3 \pi i}=e^{\pi i}$ (D) $\left(e^{\pi i / 2}\right)^{2}=e^{\pi i}$.
Which are 4th roots of unity? (Hint: take the 4th power.)
(A) $e^{\pi i / 2}$
(B) $e^{\pi i}$
(C) $e^{\pi i / 3}$
(D) $e^{3 \pi i / 2}$
(A), (B)

Quiz

Which are the same as 1 ?
(A) $(1)^{2}$
(B) $(-1)^{2}$
(C) -1
(D) $e^{2 \pi i}$
(E) $\left(e^{\pi i}\right)^{2}$

Which are the same as -1 ?
(A) $(-1)^{2}$
(B) $\left(e^{3 \pi i / 2}\right)^{2}$
(C) $\left(e^{\pi i / 2}\right)^{2}$
(D) $\left(e^{\pi i}\right)^{2}$

Note: $e^{\pi i}=-1$. (B) $\left(e^{3 \pi i / 2}\right)^{2}=e^{3 \pi i}=e^{\pi i}$ (D) $\left(e^{\pi i / 2}\right)^{2}=e^{\pi i}$.
Which are 4th roots of unity? (Hint: take the 4th power.)
(A) $e^{\pi i / 2}$
(B) $e^{\pi i}$
(C) $e^{\pi i / 3}$
(D) $e^{3 \pi i / 2}$
(A), (B) and (D).

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}$

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}$

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square! Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}, n$th root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}, n$th root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}, n$th root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}, n$th root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.
For each $j \leq \frac{n}{2}$.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.
For each $j \leq \frac{n}{2}$.

$$
A\left(\omega^{j}\right)=A_{e}\left(\omega^{2 i}\right)+\omega^{j} A_{o}\left(\omega^{2 j}\right)
$$

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.
For each $j \leq \frac{n}{2}$.

$$
\begin{aligned}
& A\left(\omega^{j}\right)=A_{e}\left(\omega^{2 i}\right)+\omega^{j} A_{o}\left(\omega^{2 j}\right) \\
& A\left(\omega^{j+\frac{n}{2}}\right)=A_{e}\left(\omega^{2 j}\right)-\omega^{j} A_{o}\left(\omega^{2 i}\right)
\end{aligned}
$$

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.
For each $j \leq \frac{n}{2}$.

$$
\begin{aligned}
& A\left(\omega^{j}\right)=A_{e}\left(\omega^{2 i}\right)+\omega^{j} A_{o}\left(\omega^{2 j}\right) \\
& A\left(\omega^{j+\frac{n}{2}}\right)=A_{e}\left(\omega^{2 j}\right)-\omega^{j} A_{o}\left(\omega^{2 i}\right)
\end{aligned}
$$

Runtime Recurrence:

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.
For each $j \leq \frac{n}{2}$.

$$
\begin{aligned}
& A\left(\omega^{j}\right)=A_{e}\left(\omega^{2 i}\right)+\omega^{j} A_{o}\left(\omega^{2 j}\right) \\
& A\left(\omega^{j+\frac{n}{2}}\right)=A_{e}\left(\omega^{2 j}\right)-\omega^{j} A_{o}\left(\omega^{2 i}\right)
\end{aligned}
$$

Runtime Recurrence:
A_{e} and A_{o} are degree $\frac{n}{2}, \frac{n}{2}$ points in recursion.

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}, n$th root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.
For each $j \leq \frac{n}{2}$.

$$
\begin{aligned}
& A\left(\omega^{j}\right)=A_{e}\left(\omega^{2 i}\right)+\omega^{j} A_{o}\left(\omega^{2 j}\right) \\
& A\left(\omega^{j+\frac{n}{2}}\right)=A_{e}\left(\omega^{2 j}\right)-\omega^{j} A_{o}\left(\omega^{2 i}\right)
\end{aligned}
$$

Runtime Recurrence:
A_{e} and A_{o} are degree $\frac{n}{2}, \frac{n}{2}$ points in recursion.
$T(n)=2 T\left(\frac{n}{2}\right)+O(n)$

The FFT!

Defn: $\omega=\left(1, \frac{2 \pi}{n}\right)=e^{\frac{2 \pi i}{n}}$, nth root of unity.
Pairs: ω^{i} and $\omega^{i+\frac{n}{2}}=\omega^{i} \omega^{\frac{n}{2}}=-\omega^{i}$. Common square!
Common Squares: are $\frac{n}{2}$ root of unity.
Fast Fourier Transform:
Evaluate $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n-1} x^{n-1}$
on points $\omega^{0}, \omega, \omega^{2}, \ldots, \omega^{n-1}$.
Procedure:
Recursively compute A_{e} and A_{o} on $\frac{n}{2}$ roots of unity:
$\omega^{2}, \omega^{4}, \omega^{6}, \ldots, \omega^{n}$.
For each $j \leq \frac{n}{2}$.

$$
\begin{aligned}
& A\left(\omega^{j}\right)=A_{e}\left(\omega^{2 i}\right)+\omega^{j} A_{o}\left(\omega^{2 j}\right) \\
& A\left(\omega^{j+\frac{n}{2}}\right)=A_{e}\left(\omega^{2 j}\right)-\omega^{j} A_{o}\left(\omega^{2 i}\right)
\end{aligned}
$$

Runtime Recurrence:
A_{e} and A_{o} are degree $\frac{n}{2}, \frac{n}{2}$ points in recursion.
$T(n)=2 T\left(\frac{n}{2}\right)+O(n)=O(n \log n)!$

Quiz 2: review

What is ω_{n}^{n} ?

Quiz 2: review

What is ω_{n}^{n} ? 1

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n}$?

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.
What is $\left(\omega_{n}^{a+n / 2}\right)^{2}$?

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.
What is $\left(\omega_{n}^{a+n / 2}\right)^{2} ? \omega_{n}^{2 a}$

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.
What is $\left(\omega_{n}^{a+n / 2}\right)^{2} ? \omega_{n}^{2 a}$
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.
What is $\left(\omega_{n}^{a+n / 2}\right)^{2} ? \omega_{n}^{2 a}$
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
How many points in the set: $\left\{\left(\omega_{n}\right)^{2},\left(\omega_{n}\right)^{4}, \ldots, \omega_{n}^{2 n}\right\}$?

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.
What is $\left(\omega_{n}^{a+n / 2}\right)^{2} ? \omega_{n}^{2 a}$
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
How many points in the set: $\left\{\left(\omega_{n}\right)^{2},\left(\omega_{n}\right)^{4}, \ldots, \omega_{n}^{2 n}\right\}$?
n/2 points!!!

Quiz 2: review

What is ω_{n}^{n} ? 1
What is $\left(\omega_{n}\right)^{a+n} ? \omega_{n}^{a}$.
What is $\left(\omega_{n}^{a+n / 2}\right)^{2} ? \omega_{n}^{2 a}$
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
How many points in the set: $\left\{\left(\omega_{n}\right)^{2},\left(\omega_{n}\right)^{4}, \ldots, \omega_{n}^{2 n}\right\}$?
n/2 points!!!
FFT: Evaluate degree n polynomial on n points by evaluating two degree $n / 2$ polynomials on $n / 2$ points!

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.

$$
T(n, n)=2 T(n / 2, n)+O(n)
$$

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.

$$
T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)
$$

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n. and the work on each leaf is $O(n)$.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n. and the work on each leaf is $O(n)$.
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n. and the work on each leaf is $O(n)$.
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n},\left(\omega_{n}\right)^{n+2}, \ldots\left(\omega_{n}\right)^{2 n}\right\}$. Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n}\right\}$.
Only $n / 2$ values here.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n. and the work on each leaf is $O(n)$.
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n},\left(\omega_{n}\right)^{n+2}, \ldots\left(\omega_{n}\right)^{2 n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n}\right\}$.
Only $n / 2$ values here.
Evaluate $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n. and the work on each leaf is $O(n)$.
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n},\left(\omega_{n}\right)^{n+2}, \ldots\left(\omega_{n}\right)^{2 n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n}\right\}$.
Only $n / 2$ values here.
Evaluate $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$.
Only need to evaluate A_{e} and A_{o} on $n / 2$ points.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n. and the work on each leaf is $O(n)$.
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n},\left(\omega_{n}\right)^{n+2}, \ldots\left(\omega_{n}\right)^{2 n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n}\right\}$.
Only $n / 2$ values here.
Evaluate $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$.
Only need to evaluate A_{e} and A_{o} on $n / 2$ points.
$T(n, n)=2 T(n / 2, n / 2)+O(n)$.

Summary.

Polynomial Multiplication: $O\left(n^{2}\right)$.
In Point form: $O(n)$.
Polynomial Evaluation: $O\left(n^{2}\right)$.
Polynomial: $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$
Evaluate on n points recursively.
$T(n, n)=2 T(n / 2, n)+O(n)=O\left(n^{2}\right)$.
The number of leaves is n. and the work on each leaf is $O(n)$.
Consider n points: $S_{n}=\left\{\omega_{n},\left(\omega_{n}\right)^{2}, \ldots, \omega_{n}^{n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n},\left(\omega_{n}\right)^{n+2}, \ldots\left(\omega_{n}\right)^{2 n}\right\}$.
Set of squares: $\left.\left.S_{n / 2}=\left\{\omega_{n}^{2}\right), \omega_{n}\right)^{4}, \ldots,\left(\omega_{n}\right)^{n}\right\}$.
Only $n / 2$ values here.
Evaluate $A(x)=A_{e}\left(x^{2}\right)+x A_{o}\left(x^{2}\right)$.
Only need to evaluate A_{e} and A_{o} on $n / 2$ points.
$T(n, n)=2 T(n / 2, n / 2)+O(n)$.
Or $T(n)=2(n / 2)+O(n)=O(n \log n)$

