CS 170 Efficient Algorithms and Intractable Problems

Lecture 4: Divide and Conquer III

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

How are discussions going?

Homework party

• Tomorrow (Friday), 10-2 @ Cory courtyard

Nika's office hour for next week:

- No after-class OH on Tuesday --- Lecture will be by Prof. John Wright.
- Instead Monday (Feb 3) 1:15-2pm @Cory courtyard

Recap of last lecture

Matrix Multiplication: Strassen's algorithm Similar to Karatsuba, we reduce the number of subproblems from 8 to 7.

(Median) Selection We saw that a good pivot selection gives us O(n)

This lecture

- Continue with Median selection
- \rightarrow Formalize the discussion of pivots and prove O(n) runtime
- One last example of Divide and Conquer: the Closest Pair problem

(Median) Selection

Recap: The *k*-select Problem

<u>Input:</u> Given an array *S* of *n* numbers and $k \in \{1, 2, ..., n\}$,

<u>Output:</u> Find the *k*th smallest element of *S*. SELECT(S, 1): SELECT(S, 8) 7 4 3 8 1 5 9 14 7 4 3 8 1 5 9 14 SELECT(S, 4)

Some special cases: **SELECT**(S, 1): Minimum element of the array **SELECT**(S, n): Maximum element of the array **SELECT**(S, $\left[\frac{n}{2}\right]$): Median element of the array

Recap: Big Question

Can we perform Median selection (or any other k-select generally) in O(n)?

Recap: Divide and Conquer for SELECT(S, k)

We want to divide the problem to subproblems. How?

• Given a "**pivot**" **v**. Split the array into three pieces

S_L: Elements less than the pivot

2

 S_v : Elements equal to the pivot

 S_R : Elements larger than the pivot

SELECT(S, k):

- If $k \leq len(S_L)$: Return SELECT(S_L, k)
- If $len(S_L) < k \le len(S_L) + len(S_v)$: Return v.
- If $len(S_L) + len(S_v) < k$: Return SELECT $(S_R, k len(S_L) len(S_v))$

Recap: The Recurrence Relation

SELECT(S, *k*):

- If $k \leq len(S_L)$: Return SELECT (S_L, k)
- If $len(S_L) < k \le len(S_L) + len(S_v)$: Return v.
- If $len(S_L) + len(S_v) < k$: Return SELECT $(S_R, k len(S_L) len(S_v))$

$$T(n) = \begin{cases} T(len(S_L)) + O(n) & \text{if } k \leq len(S_L) \\ T(len(S_R)) + O(n) & \text{if } len(S_L) + len(S_v) < k \\ O(n) & \text{if } len(S_L) < k \leq len(S_L) + len(S_v) \end{cases}$$

 $T(n) \le T(\max\{len(S_L), len(S_R)\}) + O(n)$

The lengths of S_L and S_R depend on the choice of the pivot.

Let's formalize what is a "good" pivot

Thought Exercise: "Good" Enough Pivot

Let's pretend that the pivot we picked is always between the $\frac{n}{4}$ th smallest and $\frac{3n}{4}$ th smallest element! What is the runtime of SELECT(S, k)?

Write down the recurrence relationship in this case:

Thought Exercise: "Good" Enough Pivot

Let's pretend that the pivot we picked is always between the $\frac{n}{4}$ th smallest and $\frac{3n}{4}$ th smallest element! What is the runtime of SELECT(S, k)?

$$S_L$$
 S_v S_R

So the runtime can be expressed by
$$T(n) \le T\left(\frac{3n}{4}\right) + O(n)$$

What's the runtime?

•
$$a = 1, b = 4/3, d = 1, a < b^d$$

• O(n) runtime.

Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. Then $T(n) = \begin{cases} 0(n^d) & \text{if } a < b^d \\ 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$

In the Tree Method

Let's repeat the runtime analysis with the tree method: If in every round we got a "good" pivot, then we multiply the size by $\leq 3/4$.

Single node at layer *i* of size $n\left(\frac{3}{4}\right)^{l}$.

Total contribution at layer *i* is $\leq c \cdot n \left(\frac{3}{4}\right)^{i}$.

n

What is the total amount of work in all layers?

$$T(n) \le \sum_{i=0}^{\log_{4/3}(n)} c n \left(\frac{3}{4}\right)^i \in O(n)$$

Another Thought Exercise on Good Pivots

Let's pretend that the pivot we picked is always between the $\frac{n}{10}$ th smallest and $\frac{9n}{10}$ th smallest element! What is the runtime of SELECT(S, k)?

$$S_L$$
 S_v S_R

Then,
$$len(S_R) \le \frac{9n}{10}$$
 and $len(S_L) \le \frac{9n}{10}$. So, the recurrence is $T(n) \le T\left(\frac{9n}{10}\right) + O(n)$

In this case as well,

•
$$a = 1, b = 10/9, d = 1, a < b^d$$

• O(n) runtime!

Suppose
$$T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$$
. Then

$$T(n) = \begin{cases} 0(n^d) & \text{if } a < b^d \\ 0(n^d \log(n)) & \text{if } a = b^d \\ 0(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Summarizing Our Thoughts

Any pivot that's kind of in the middle is a good enough pivot

- → Call Pivots between the $\frac{n}{4}$ th smallest and $\frac{3n}{4}$ th smallest elements "good" pivots
- → There are more than half of the elements in the array are "good" pivots
- \rightarrow If we pick a random element, we have 50% chance of getting a "good" pivot

We don't need a "good" pivot at every round.

- \rightarrow We just need to get "good" pivots often enough
- \rightarrow Every time we have a "good" pivot, the problem size shrinks to $\frac{3}{4}$ of the last one.

If we pick a random element as pivot, the expected runtime is fast!

There is randomized algorithm that solves SELECT(S, k) in expected runtime of O(n)!

This algorithm is called QuickSelect and selects a uniformly random pivot on every turn.

Randomized Algorithms and Expected Runtime

We typically think about runtime of an Alg on the **worst possible** problem instance.

Randomized Algorithms:

- 1. Write down the algorithm description.
- 2. Adversary sees the description and picks a bad instance.
- 3. Run the algorithm and throw the dice.

The adversary (choice of bad problem instance) doesn't depend on the randomness.

The running time is a **random variable.**

• It makes sense to talk about **expected running time**.

Expected Running Time and Divide and Conquer

We are interested in **expected runtime**.

 $\mathbb{E}[T(n)]$

averages over runtimes T(i) based on the probability of getting a subproblem of size i.

 $\mathbb{E}[T(n)]$ is small when large size *i* has very low probability of happening

Trees Revisited

In reality, in some rounds we are using bad pivots and in some rounds we are using "good" pivots.

Whenever we get a "good" pivot, we multiply the problem size by $\leq 3/4$.

In some steps, we don't get a good pivot.

Divide the tree method to phases, indicating when the problem size shrinks by 3/4.

Trees Revisited

Partition layers to "phases":

- Phase *i* include layers $[s_i, s_{i+1})$.
- s_{i+1} : layer when the problem size first becomes $\leq \frac{3}{4}$ problem size of layer s_i .

Length of a Phase

The length of *Phase*_i :

- Random variable
- Eqv. how many tries it gets to shrink the problem size to ³/₄
- Length of phase ≤ # random pivots until we get a "good" pivot in phase i.

Lemma

 Total runtime:

$$Iog_{4/3}(n)$$
 $T(n) \leq \sum_{i=0}^{\log_{4/3}(n)} len(Phase_i) c n \left(\frac{3}{4}\right)^i$

Random variable

Discuss

Every time we choose a pivot at random, with probability 50%, it is a ``good". So, $Pr[len(Phase_i) = 1] = 0.5$. What is $Pr[len(Phase_i) = 2]$?

What is
$$Pr[len(Phase_i) = 3]$$
?

What is $Pr[len(Phase_i) = m]$?

For ease, assume no element is repeated. Remove this assumption at home!

Expected Phase Length

We want to compute the expected phase length $len(Phase_i)$

$$\mathbb{E}[len(Phase_i)] = \sum_{m=1}^{\infty} m \Pr[len(Phase_i) = m]$$

Compute $\mathbb{E}[len(Phase_i)]$?

Computing the Expected Runtime

More on **SELECT**(S, k)

We gave a randomized algorithm, with expected O(n) runtime.

There is also a cool deterministic algorithm, whose runtime is always O(n). \rightarrow It requires a more involved pivot selection mechanism \rightarrow We won't talk about it in class.

Then combine the subproblems solutions to provide the answer to the big problem.

Next: An example of non-trivial combine step

ClosestPair

<u>Input</u>: Given *n* points on the plane $S = \{p_i = (x_i, y_i) \mid i = 1, ..., n\}$ <u>Output</u>: Closest pair of points (p_i, p_j) .

Naïve Algorithm:

- Compute all (p_i, p_j) distances, and output the pair with closest distance.
- $O(n^2)$ pairs, so $O(n^2)$ runtime.

Can we do better? Can we get $O(n \ln(n))$?

Divide

Since we are shooting for $O(n \ln(n))$, we might as well make two sorted lists according to the x-axis and y-axis at the beginning.

How should we divide?

- Divide on x-axis, along the *median*!
- Split the list (keep it sorted)

We have two subproblems

- $S_L = \{p_6, p_7, p_2, p_8, p_5\}$
- $S_R = \{p_9, p_{10}, p_4, p_1, p_3\}$

Where is the closest pair?

We should solve the two subproblems recursively:

- ClosestPair(S_L) = (p_6 , p_2) and ClosestPair(S_R) = (p_1 , p_3)
- One of these could be the closest pair in ${\color{black}{S}}$
- <u>Or, the closest pair crosses the median</u>!

Checking for pairs across median naively: \rightarrow Try every pair that crosses the median. $\rightarrow \frac{n}{2} \times \frac{n}{2} \in \Theta(n^2)$

Idea 1

Let d be the min of two distances $ClosestPair(S_L)$ and $ClosestPair(S_R)$

Then restrict attention to the strip of width d on each side of the median distance d

This is not good enough

• In the worst-case, all points can be in this strip \rightarrow Still take $\Theta(n^2)$.

Better Idea

Any point *p* in this strip, needs to be measured only against points in region *R*.

Divide and Conquer Algorithm

Let's believe in this claim that every p in strip needs to be measured against only O(1) other points. What is the algorithm and runtime?

Write pseudo-code (esp. steps 4-5) Start with sorted arrays, both x and y ClosestPair({ $p_i = (x_i, y_i) | i = 1, ..., n$ }) 1. $(p_L, p'_L) \leftarrow \text{ClosestPair}(p_1, ..., p_{n/2})$ 2. $(p_R, p'_R) \leftarrow \text{ClosestPair}(p_{\frac{n}{2}+1}, ..., p_n)$ 3. $d \leftarrow \min\{dist(p_L, p'_L), dist(p_R, p'_R)\}$ 4. Compute points in the strip 5. For any point in the strip, compare the point to the O(1) relevant points described in previous slide. Update minimum distance pair if needed.

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n) \in O(n\log(n))$$

Via Master Theorem

O(n)

Proof that O(1) points are in Region R

There are ≤ 8 points in *R*!

Claim

Proof: Divide region R to 8 squares, if size $\frac{d}{2} \times \frac{d}{2}$.

Assume there are more than 8 points in R.

- <u>Pigeon hole</u>: One square has more than 1 point
- The diameter of these squares is less than d, so these points have distance < d to each other
- They are both on the same side of the median too.
- \rightarrow Contradicts that d was the defined as the smallest distance between a pair of points on either side of the median!

Region *R*

More on ClosestPair(S, k)

We gave a deterministic algorithm, with runtime $O(n \log(n))$.

There is also a cool randomized algorithm, whose expected runtime is O(n). \rightarrow It requires a more involved divide and conquer analysis \rightarrow We won't talk about it in class.

Wrap up

In the first two weeks of class, we saw many examples of Divide and Conquer Integer and Matrix Multiplication (Median) Selection Closest Pair

Divide and Conquer

- \rightarrow Is a powerful method
- \rightarrow Both the divide and combine steps can be versatile

Next week: Graph Problems and Algorithms

Prof. John Wright