
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 4:
Divide and Conquer III

Announcements

How are discussions going?

Homework party
• Tomorrow (Friday), 10-2 @ Cory courtyard

Nika’s office hour for next week:
• No after-class OH on Tuesday --- Lecture will be by Prof. John Wright.
• Instead Monday (Feb 3) 1:15-2pm @Cory courtyard

This lecture
• Continue with Median selection
→Formalize the discussion of pivots and prove O(n) runtime
• One last example of Divide and Conquer: the Closest Pair problem

Recap of last lecture
Matrix Multiplication:

Strassen’s algorithm
Similar to Karatsuba, we reduce the number of subproblems from 8 to 7.

(Median) Selection
We saw that a good pivot selection gives us O(n)

(Median) Selection

Recap: The 𝑘-select Problem
Input: Given an array 𝑆 of 𝑛 numbers and 𝑘 ∈ {1, 2, . . , 𝑛},
Output: Find the 𝑘th smallest element of 𝑆.

7 4 3 8 1 5 9 14

Some special cases:
SELECT(S, 1): Minimum element of the array
SELECT(S, 𝑛): Maximum element of the array
SELECT(S, 𝑛

2
): Median element of the array

SELECT(S, 1): SELECT(S, 8)

SELECT(S, 4)

Recap: Big Question

Can we perform Median selection
(or any other 𝑘-select generally)

 in 𝑂 𝑛 ?

Recap: Divide and Conquer for SELECT(S, 𝑘)
We want to divide the problem to subproblems. How?
• Given a “pivot” 𝒗. Split the array into three pieces

Given “pivot”

𝑆𝐿: Elements less
than the pivot

𝑆𝑅: Elements larger
than the pivot

𝑆𝑣: Elements
equal to the pivot

2 36 5 21 8 13 11 20 5 4 1

2 4 1 5 5 36 21 8 13 11 20

SELECT(S, 𝑘):
• If 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 : Return SELECT(𝑆𝐿 , 𝑘)
• If 𝑙𝑒𝑛 𝑆𝐿 < 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣): Return 𝑣.
• If 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣) < 𝑘: Return SELECT(𝑆𝑅 , 𝑘 − 𝑙𝑒𝑛 𝑆𝐿 − 𝑙𝑒𝑛(𝑆𝑣))

Recap: The Recurrence Relation

𝑇 𝑛 =
𝑇 𝑙𝑒𝑛 𝑆𝐿 + 𝑂 𝑛 if 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿

𝑇 𝑙𝑒𝑛 𝑆𝑅 + 𝑂 𝑛 if 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣) < 𝑘
𝑂(𝑛) if 𝑙𝑒𝑛 𝑆𝐿 < 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣)

The lengths of 𝑆𝐿 and 𝑆𝑅 depend on the choice of the pivot.

SELECT(S, 𝑘):
• If 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 : Return SELECT(𝑆𝐿 , 𝑘)
• If 𝑙𝑒𝑛 𝑆𝐿 < 𝑘 ≤ 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣): Return 𝑣.
• If 𝑙𝑒𝑛 𝑆𝐿 + 𝑙𝑒𝑛(𝑆𝑣) < 𝑘: Return SELECT(𝑆𝑅 , 𝑘 − 𝑙𝑒𝑛 𝑆𝐿 − 𝑙𝑒𝑛(𝑆𝑣))

𝑇 𝑛 ≤ 𝑇 max 𝑙𝑒𝑛 𝑆𝐿 , 𝑙𝑒𝑛 𝑆𝑅 + 𝑂(𝑛)

Let’s formalize what is a ”good” pivot

Thought Exercise: “Good” Enough Pivot
Let’s pretend that the pivot we picked is always between the 𝑛

4
𝑡ℎ smallest and

3𝑛
4

 th smallest element! What is the runtime of SELECT(S, k)?

𝑆𝐿 𝑆𝑣 𝑆𝑅

Assuming that the pivot is between the 𝑛
4

𝑡ℎ smallest and 3𝑛
4

 th smallest element,
what’s the maximum len(𝑆𝐿) and len(𝑆𝑅)?

Write down the recurrence relationship in this case:

Discuss

Thought Exercise: “Good” Enough Pivot
Let’s pretend that the pivot we picked is always between the 𝑛

4
𝑡ℎ smallest and

3𝑛
4

 th smallest element! What is the runtime of SELECT(S, k)?

So the runtime can be expressed by 𝑇 𝑛 ≤ 𝑇 3𝑛
4

+ 𝑂(𝑛)

What’s the runtime?
• 𝑎 = 1, 𝑏 = 4/3, 𝑑 = 1, 𝑎 < 𝑏𝑑

• 𝑂(𝑛) runtime.

𝑆𝐿 𝑆𝑣 𝑆𝑅

The Master Theorem

In the Tree Method
Let’s repeat the runtime analysis with the tree
method: If in every round we got a “good” pivot,
then we multiply the size by ≤ 3/4.

Single node at layer 𝑖 of size 𝑛 3
4

𝑖
.

Total contribution at layer 𝑖 is ≤ 𝑐 ⋅ 𝑛 3
4

𝑖
.

What is the total amount of work in all layers?

𝑛

3𝑛/4

1

…

9𝑛/16

𝑇 𝑛 ≤ ෍
𝑖=0

log4/3(𝑛)

𝑐 𝑛
3
4

𝑖

∈ 𝑂(𝑛)

Another Thought Exercise on Good Pivots
Let’s pretend that the pivot we picked is always between the 𝑛

10
𝑡ℎ smallest and

9𝑛
10

 th smallest element! What is the runtime of SELECT(S, k)?

𝑆𝐿 𝑆𝑣 𝑆𝑅

Then, 𝑙𝑒𝑛 𝑆𝑅 ≤ 9𝑛
10

 and 𝑙𝑒𝑛 𝑆𝐿 ≤ 9𝑛
10

. So, the recurrence is 𝑇 𝑛 ≤ 𝑇 9𝑛
10

+ 𝑂(𝑛)

In this case as well,
• 𝑎 = 1, 𝑏 = 10/9, 𝑑 = 1, 𝑎 < 𝑏𝑑

• 𝑂(𝑛) runtime!

The Master Theorem

Summarizing Our Thoughts
Any pivot that’s kind of in the middle is a good enough pivot

→ Call Pivots between the 𝑛
4

𝑡ℎ smallest and 3𝑛
4

 th smallest elements “good” pivots

→ There are more than half of the elements in the array are “good” pivots
→If we pick a random element, we have 50% chance of getting a “good” pivot

We don’t need a “good” pivot at every round.
→We just need to get “good” pivots often enough

→ Every time we have a “good” pivot, the problem size shrinks to 3
4
 of the last one.

If we pick a random element as pivot, the expected runtime is fast!

There is randomized algorithm that
 solves SELECT(𝑆, 𝑘) in expected runtime of 𝑂 𝑛 !

This algorithm is called QuickSelect and selects a uniformly
random pivot on every turn.

Randomized Algorithms and Expected Runtime
We typically think about runtime of an Alg on the worst possible
problem instance.

Randomized Algorithms:
1. Write down the algorithm description.
2. Adversary sees the description and picks a bad instance.

3. Run the algorithm and throw the dice.

The adversary (choice of bad problem instance) doesn’t depend on the randomness.

The running time is a random variable.
• It makes sense to talk about expected running time.

Expected Running Time and Divide and Conquer
We are interested in expected runtime.

𝔼[𝑇(𝑛)] is small when large size 𝑖 has very low probability of happening

𝔼 𝑇 𝑛

 averages over runtimes 𝑇(𝑖) based on the probability
of getting a subproblem of size 𝑖.

Trees Revisited
In reality, in some rounds we are using
bad pivots and in some rounds we are
using “good” pivots.
Whenever we get a “good” pivot, we
multiply the problem size by ≤ 3/4.

In some steps, we don’t get a good pivot.

Divide the tree method to phases,
indicating when the problem size shrinks
by 3/4 .

𝑛

𝑛 − 5

3𝑛
4

− 6

1

…

9𝑛
16

− 100

…

𝑛 − 8

Trees Revisited
Partition layers to “phases”:
• Phase 𝑖 include layers [𝑠𝑖, 𝑠𝑖+1).
• 𝑠𝑖+1: layer when the problem size first

becomes ≤ 3
4
 problem size of layer 𝑠𝑖 .

𝑛

𝑛 − 5

3𝑛
4

− 6

1

…

9𝑛
16

− 100

…

Phase 0

Phase 1

Phase
≤ log4/3(𝑛)

𝑛 − 8

Total runtime:

In phase 𝑖, problem size ≤ 3
4

𝑖
𝑛.

Lemma

Lemma

𝑇 𝑛 ≤ ෍
𝑖=0

log4/3(𝑛)

𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) 𝑐 𝑛
3
4

𝑖

Length of a Phase

𝑇 𝑛 ≤ ෍
𝑖=0

log4/3(𝑛)

𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) 𝑐 𝑛
3
4

𝑖

Lemma
Total runtime:The length of 𝑃ℎ𝑎𝑠𝑒𝑖 ∶

• Random variable
• Eqv. how many tries it gets to shrink the

problem size to ¾
• Length of phase ≤ # random pivots until we

get a “good” pivot in phase i. Random variable

Every time we choose a pivot at random, with probability 50%, it is a ``good’’. So,
Pr 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) = 1 = 0.5 .
What is Pr 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) = 2 ?
What is Pr 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) = 3 ?
What is Pr 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) = 𝑚 ?

Discuss

For ease, assume no element is repeated.
Remove this assumption at home!

Expected Phase Length
We want to compute the expected phase length 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖)

𝔼 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) = ෍
𝑚=1

∞

𝑚 Pr 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) = 𝑚

Compute 𝔼 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) ?
Discuss

Computing the Expected Runtime
Total expected runtime

𝔼 𝑇 𝑛 ≤ 𝔼 ෍
𝑖=0

log4/3(𝑛)

𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) 𝑐 𝑛
3
4

𝑖

= 𝑐 𝑛 ෍
𝑖=0

log4/3(𝑛)

𝔼 𝑙𝑒𝑛 𝑃ℎ𝑎𝑠𝑒𝑖
3
4

𝑖

Recall

𝑇 𝑛 ≤ ෍
𝑖=0

log4/3(𝑛)

𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) 𝑐 𝑛
3
4

𝑖

Recall

𝔼 𝑙𝑒𝑛(𝑃ℎ𝑎𝑠𝑒𝑖) ≤ 2

≤ 𝑐 𝑛 ෍
𝑖=0

log4/3(𝑛)

2
3
4

𝑖

∈ 𝑂 𝑛

More on SELECT(S, 𝑘)
We gave a randomized algorithm, with expected 𝑂 𝑛 runtime.

There is also a cool deterministic algorithm, whose runtime is always 𝑂(𝑛).
→ It requires a more involved pivot selection mechanism
→ We won’t talk about it in class.

The Big Picture of Divide and Conquer

Problem

subproblemsubproblem

First divide the problem to subproblems
→Subproblems are solved recursively

Then combine the subproblems solutions to provide the answer to the big problem.

Non-trivial Divide Step:
QuickSelect, Strassen’s, Karatsuba

Next: An example of non-trivial combine step

ClosestPair
Input: Given 𝑛 points on the plane S = 𝑝𝑖 = 𝑥𝑖, 𝑦𝑖 ∣ 𝑖 = 1, … , 𝑛
Output: Closest pair of points (𝑝𝑖, 𝑝𝑗).

Naïve Algorithm:
• Compute all (𝑝𝑖, 𝑝𝑗) distances, and output

the pair with closest distance.
• 𝑂 𝑛2 pairs, so 𝑂 𝑛2 runtime.

Can we do better?
Can we get 𝑂 𝑛 ln(𝑛) ?

𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝8

𝑝7

𝑝9

𝑝10

Divide
Since we are shooting for 𝑂 𝑛 ln(𝑛) , we might as well make two sorted
lists according to the x-axis and y-axis at the beginning.

How should we divide?
• Divide on x-axis, along the median!
• Split the list (keep it sorted)

We have two subproblems
• SL = 𝑝6, 𝑝7, 𝑝2, 𝑝8, 𝑝5

• SR = 𝑝9, 𝑝10, 𝑝4, 𝑝1, 𝑝3

𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝8

𝑝7

𝑝9

𝑝10

Where is the closest pair?
We should solve the two subproblems recursively:
• ClosestPair(SL) = 𝑝6, 𝑝2 and ClosestPair(SR) = 𝑝1, 𝑝3

• One of these could be the closest pair in S
• Or, the closest pair crosses the median!

𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝8

𝑝7

𝑝9

𝑝10

Checking for pairs across median naively:
→ Try every pair that crosses the median.
→

n
2

× n
2

∈ Θ 𝑛2

ClosestPair(SL)

ClosestPair(SR)

Idea 1
Let d be the min of two distances ClosestPair(SL) and ClosestPair(SR)

𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6

𝑝8

𝑝7

𝑝9

𝑝10

Then restrict attention to the strip of width d on each side of the median
distance d

d d

This is not good enough
• In the worst-case, all points can be

in this strip → Still take Θ 𝑛2 .

Better Idea
Any point 𝑝 in this strip, needs to be measured only against points in region 𝑅.

𝑝

d d

d

d

Region 𝑅

Claim

There are 𝑂(1) points in 𝑅!

Divide and Conquer Algorithm
Let’s believe in this claim that every 𝑝 in strip needs to be measured
against only 𝑂(1) other points. What is the algorithm and runtime?

ClosestPair 𝑝𝑖 = 𝑥𝑖, 𝑦𝑖 ∣ 𝑖 = 1, … , 𝑛
1. 𝑝𝐿, 𝑝𝐿

′ ← ClosestPair 𝑝1, … , 𝑝𝑛/2
2. 𝑝𝑅, 𝑝𝑅

′ ← ClosestPair 𝑝𝑛
2+1, … , 𝑝𝑛

3. 𝑑 ← min 𝑑𝑖𝑠𝑡 𝑝𝐿, 𝑝𝐿
′ , 𝑑𝑖𝑠𝑡(𝑝𝑅, 𝑝𝑅

′)
4. Compute points in the strip
5. For any point in the strip, compare the point to the

𝑂 1 relevant points described in previous slide.
Update minimum distance pair if needed.

Write pseudo-code
(esp. steps 4-5)
Start with sorted
arrays, both x and y

𝑂(𝑛)

2𝑇
𝑛
2

𝑇 𝑛 = 2𝑇
𝑛
2 + 𝑂 𝑛 ∈ 𝑂 𝑛 log(𝑛) Via Master Theorem

Proof that O(1) points are in Region R

d

d

d

Region 𝑅

Claim

There are ≤ 8 points in 𝑅!

Proof: Divide region R to 8 squares, if size d
2

× d
2

.

Assume there are more than 8 points in R.
• Pigeon hole: One square has more than 1 point
• The diameter of these squares is less than d, so these points

have distance < d to each other
• They are both on the same side of the median too.
→ Contradicts that d was the defined as the smallest distance
between a pair of points on either side of the median!

More on ClosestPair(S, 𝑘)
We gave a deterministic algorithm, with runtime 𝑂(𝑛 log(𝑛)).

There is also a cool randomized algorithm, whose expected runtime is 𝑂(𝑛).
→ It requires a more involved divide and conquer analysis
→ We won’t talk about it in class.

Next week:
Graph Problems and Algorithms

Wrap up
In the first two weeks of class, we saw many examples of Divide and Conquer

Integer and Matrix Multiplication
(Median) Selection
Closest Pair

Divide and Conquer
→ Is a powerful method
→ Both the divide and combine steps can be versatile

Solving recurrences
Master theorem

Prof. John Wright

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Recap of last lecture
	Slide 4
	Slide 5: Recap: The k-select Problem
	Slide 6: Recap: Big Question
	Slide 7: Recap: Divide and Conquer for SELECT(S, k)
	Slide 8: Recap: The Recurrence Relation
	Slide 9
	Slide 10: Thought Exercise: “Good” Enough Pivot
	Slide 11: Thought Exercise: “Good” Enough Pivot
	Slide 12: In the Tree Method
	Slide 13: Another Thought Exercise on Good Pivots
	Slide 14: Summarizing Our Thoughts
	Slide 15
	Slide 16: Randomized Algorithms and Expected Runtime
	Slide 17: Expected Running Time and Divide and Conquer
	Slide 18: Trees Revisited
	Slide 19: Trees Revisited
	Slide 20: Length of a Phase
	Slide 21: Expected Phase Length
	Slide 23: Computing the Expected Runtime
	Slide 24: More on SELECT(S, k)
	Slide 25: 3 Min Break and Attendance
	Slide 26: The Big Picture of Divide and Conquer
	Slide 27: ClosestPair
	Slide 28: Divide
	Slide 29: Where is the closest pair?
	Slide 30: Idea 1
	Slide 31: Better Idea
	Slide 32: Divide and Conquer Algorithm
	Slide 33: Proof that O(1) points are in Region R
	Slide 34: More on ClosestPair(S, k)
	Slide 35: Wrap up

