
Graphs !

About me
John Wright
4th year at Berkeley
Office : Soda 683

Office hours : Tuesday 3-4 pm

Graphs (directed)cundirected)

- -
0-Q-③ ①+

6 = (V, E) CurIeE if ver

Parameters: n = 1V)
m = (E) (man)

d ⑤in -
deglu) =3

Facebook friendgraph · n = 2 .
91 billion users

Cundirected) ·

any user has 338 friends
m = 500 billion edges

Question : Who are my friends?

Google Maps Q: Shortest path to boba?

centrance u

Maze solving
Q : Isa connected

to v ?

exit y

Representing graphs on computers
V = El, ..., n3

(1)

adjacentrepresentati6 Gislet

(2) adjacency list representation cunordered)

-
①- - E Clinked list)

Adjacency Matrix Adjacency list

size

answer

time to : is CurIeE ?S enumerate
us neighbors

Facebook graph w/ a dacency matrix
size n2 = (2.91 billion (2 space

= 8 .
5x108 = 1 million TB

computing friends list = 2 .
91 billion steps

Graph Exploration
Useful for :

1
.
Is there a path from u to v?

2 . Is G connected?

3. What are G's connected components?

Connectivity for undirected graphs (path from uto x?)

· ⑦I
⑪

explore (6 . 0)
visited [U] = true boolean visited [n]

(init
a

gray all O's)

for Y s .t . (v, v) EE
if visited [v] = false
explore (6,v)

Property : explore (6, 0) visits exactly the vertices V
s.t . G has path from u to

Pf : 1 . X explored >> path from o to x

2. path from o to x E explore Y

Assume false
, so v

not explored
visited but path from to x
-

-
should call explore(G, 01 · Contradiction!

Connectivity for undirected graphs (path from uto x?)

·d I
D ⑪

explore (6 . 0) dfs(6)
visited [U] = true boolean array visited [n](init to all O's

for Y s .t . (v, v) EE for VEV
if visited [v] = false if visited [v] = false

explore (6,v) explore (G, x)

Computing G's connected components (undirected

B 8 ⑧
(3 connected

components)
2 3

I

explore (6 . 0) dfs(6)
visited [U] = true boolean array visited [n](init to all O's)ccnum[u] = count count =I

int array num[n]
for Y s .t . (v, v) EE for VEX/
if visited [v] = false if visited [v] = false

explore (6,v) explore (G, x)
count = count + 1

FDFS free

tree
⑬D-E
N⑦medga

⑪ d

Runtime of DFS
-

Only call explore (G, v) exactly once , for each

Runtime of explore (G,u) :

DFS search tree

#--

Free⑪E

explore(Gl true dfs(6)
boolean
(initarrayvisitedis

pre[u] = clock clock = 1
clock = clock + 1

for Y s .t . (v, v) EE
int array pre[n] , post[n]

if visited [v] = false for vel/
explore (6,v) if visited [v] = false

post[v] = clock explore (Gr)
cloak = clock + 1

Classifying edges using pref post #s
Say (v, vIEE
Pre pre post post

clocdJ
r
In

Application #1 : Cycle detection

Book index :

for loop : 30 , 74-76

a rgs : see arguments arguments : 80, 91

infinite loop : see loop, infinite

2 &
loop , infinite : see infinite loop

Q : Does my graph have a cycle ?

Def : A directed acyclic graph (DAG)
is a directed graph w/ no cycles.

Claim : Suppose we run DFS on G .

Then G is a DAG iff

Application #2 : Topological Sort↳IM IM2 IM3 ⑪
Hulk -

Thor
- Avengers Thor2 Avengers &-

CA CA2 depending graph
Output :

-=
⑪

(Note : edges are
reversed)

Topological sort
Input : DAG G = (VE)
Output : Ordering of vertices V , , .

.

.,Un
sit . all edges go left- right

Claim : Suppose we DFS on G
.

Then for all (v , rIEE , post(v) > post(v)
Pf : G is a DAG => no back edges

=> post(U) > post (v) for all edges.

Alg : Run DFS on G .
A

Sort vertices from highest post to lowest.

post post post
Output I 12 Il

u-vX
...

Application #3 : Connected components in digraphs

⑰ -

⑭
·⑰I
-Q

