
Directed graphs

DFS search tree

#--

Free⑪E

explore(Gl true dfs(6)
boolean
(initarrayvisitedis

pre[u] = clock clock = 1
clock = clock + 1

for Y s .t . (v, v) EE
int array pre[n] , post[n]

if visited [v] = false for vel/
explore (6,v) if visited [v] = false

post[v] = clock explore (Gr)
cloak = clock + 1

Classifying edges using pref post #s
Say (v, vIEE
Pre pre post post

clock-J
.
J-

Application #1 : Cycle detection

Book index :

for loop : 30 , 74-76

a rgs : see arguments arguments : 80, 91

infinite loop : see loop, infinite

2 &
loop , infinite : see infinite loop

Q : Does my graph have a cycle ?

Def : A directed acyclic graph (DAG)
is a directed graph w/ no cycles.

Claim : Suppose we run DFS on G .

Then G is a DAG iff no back edges.
Pf : (1) If back edge =G is not a DAG .

cyl
(2) G is not a DAG => back edge
-my v .+ V+ Ve + ... - UR

-back edge !

Cycl detection alg : Run DFS .
Output "DAG" if no back edges
(H (v, vIEE, check post (v) > post())

Application #2 : Topological Sort↳IM IM2 IM3 ⑪
Hulk -

Thor
- Avengers Thor2 Avengers &-

CA CA2 depending graph
Output :

-=
⑪

(Note : edges are
reversed)

Topological sort
Input : DAG G = (VE)
Output : Ordering of vertices V , , .

.

.,Un
sit . all edges go left- right

Claim : Suppose we DFS on G
.

Then for all (v , rIEE , post(v) > post(v)
Pf : G is a DAG => no back edges

=> post(U) > post (v) for all edges.

Alg : Run DFS on G .
A

Sort vertices from highest post to lowest.

post post post
Output I 12 Il

u-vX
...

Connected components

Undirected :D
Directed : - O (connected?)

U Y

Questions : 1 . How do we define connected components
im digraphs?~2. How do we compute them?

Strongly Connected Components (SCCs)
Def: Vertices v and r are strongly connected

if there is a path from u to r and from v to

Allaim: wer is an equivalence relation (i) reflexive
(ii) symmetric

The Meta-graph·
(iii) transitive

#
XXX

↓ ↓ ①
sink

-

->·
Sink

Today : Algorithm to compute SCCs

Kosaraju Sharir

1978 1981

Computing SCCs

explore
⑰

ore delete

⑭explore del e

Suppose we had a magic algorithm which could tell us
a Vertex ~ in a sink SCC

If we explore starting atu ,
we explore all vertices in that SCC

Magic algorithm : DFS ! (with a twist ...)

Suppose we run DFS.
For all SCCs@ , define finish(C) = C's highest post(o)
Claim : Let O- be SCC's

.

Then finish(c) > finish (C) .

Pf : (i) Suppose DFS visits &first .:Then post(v)] finish (C) .

(ii) Suppose DFS visits C'first . ~ explores theseThen only visits(Aer done w/d

: all posts in C Can't happen !
> finish (C') . ⑳->O Graph is DAG .

Claim : The highest post (v) is in source SCC.
↑

Assume not

- biggest
even bigger ! post

The reverse graph Meta graphsource

⑰6 sing
sink

G ⑭
⑪ source⑪

Claim : G and GR have same SCCs.
In meta graphs : o edges are reversedS

· sources and sinks are swapped
Run DFS on GR . Compute postic values

~ w/highest posty : oin GR) in source SC)
· (in 6) in Sink SCC

IfC (i n 64) then highest poste in C
② (inG) < in C

SCC algorithm explore
⑪ Y ↓ ↓
highest postplu) in CLin ⑳explore

FindSC(s(6)explore (6,v for all v , visited [v] = falsevisited[uy = true
sccum(r] = count Run DFS on GR

for v s . t . Cr , rIEE
to compute postR

if visited [v] : false Count =I
explore (6,1) for ver (in reverse posti order

if visited [v] = false

explore (G, u)
count = count + 1

