
Directed graphs



-> back
DFS tree

#hi①-E-
[4,5]

explore (G, u) dfs (G)
↓ isited [v] =true boolean array visited [n]
pre[r] = clock Limit to all OI

clock = clockt) Clock = 1

for Y S.t . (U,VIEE
int array pre[n], post [n]

is visited [v] =false for all xeV
if visited [x] = falsePostExploreC explore (G, x)clock-clockt



Classifying edges using prod post#
Pre Say (v, v) e Epre Post post

Clock-y)bu
#Su : tree, forward ↳
[u][y]y : impossible

: crossitLVot......
Ev [uJuJu : back

&30 3r : impossible
Fact : (v , x) is back edge post (v) < post(y)



Application #1 : Cycle detection

Book index :

for loop : 30 , 74-76

a rgs : see arguments arguments : 80, 91

infinite loop : see loop, infinite

2 &
loop , infinite : see infinite loop

Q : Does my graph have a cycle!



Def : A directed acyclic graph (DAG)
is a directed graph w/ no cycles.

Claim : Suppose we run DFS on 6 .
Then G is a RAG iff no back edges .

Pf : (1) If back edge => G is not a DAG .

Y cyclea

(2) G is not a DAG = back edge
-
-> X, + Xz -> V3 + .. - + Vk
-- back edge !

Cycle detection alg : Run DFS .
Output "DAG" if no back edges
# (v,vEE, check post (v) < post(x)



Application #2 : Topological SortIM IM2 IM3

Hulk -

Thor
- Avengers Thor2 Avengers2

CA CA2 dependency graph
=Output :-
⑭ ...



(Note : edges are
reversed)



Topological sort 0 0

Input : DAG G = (V,E) *Output : Ordering of vertices X1, ..., Yn
st . all edges go left- right

Claim : Suppose we DFS on 6 .
Then for all (vrIeE

, post(v) > post(x) .

Pf : G is a DAG => no back edges
=> post (v) < post (v) for all edges. D

* lg : Run DFS on 6 .

Sort vertices from highest to lowest post# .

Output : post Post post
12 9

XvX-w -



Application #3 : Connected components

Undirected : G ⑧ 3

Directed : omgo connected ?
j Y

Questions : 1
. How do we define connected

components in digraphs ?
2. How do we compute them?



Strongly Connected Components (SCCs)
Def : Vertices v and X are strongly connected

if there is a path from to y and to o

Claim : wwy is an equivalence relation (i) reflexive(ii) symmetric
(iii) transitive

The Meta-graph·ourlh XXX⑰
① sink
Sink

·

Claim : The matagraph
↓ is a DAG,Y



Today : Algorithm to compute SCCs

Kosaraju Sharir

1978 1981



Computing SCCs
explore
⑭ explore delete

⑮ explore deleteCOJKL 1

Suppose we had a magic algorithm which could tell
us a Vertex u sink SCC

If we explore starting at u ,
we explore all vertices in us SCC .

Magic algorithm : DFS ! (with a twist


