Lecture in a Minute

Depth First Search.
 Call explore until explore the whole graph.
Connected Components.
 Tree/back edges.
 Back edge \iff cycle

Pre/Post Ordering.
 Interval of time “on stack”.
 Quick cycle test.

Directed Graphs.
 Tree/Back/Forward/Cross edges.
 From pre/post!
 Back Edge \iff cycle!

Topological Sort.
 Alg 1: Inverse Post order number.
 Inverse order of “stack” pop.
 Alg 2: Peeling off sources.
Explore.

Graph $G = (V, E)$.

Size of adjacency list representation? $O(|V| + |E|)$.

Explore(v):
1. Set $\text{visited}[v] := \text{true}$.
2. For each edge (v,w) in E
3. if not $\text{visited}[w]$: Explore(w)

Property:
All and only nodes reachable from A are reached by explore.

Idea:
Reachable means there is a path, and there is no first unexplored node since the previous node would explore it.

Runtime: $O(|V| + |E|)$.

The time is proportional to total size of the adjacency lists.
Depth first search.

Process whole graph.

DFS(G)
1: For each node u,
2: visited[u] = false.
3: For each node u,
4: if not visited[u] explore(u)

Running time: $O(|V| + |E|)$.

Intuitively: tree for each “connected component”.
Several trees or Forest! Output connected components?
DFS and connected components.

Change explore a bit:

explore(v):
2. previsit(v)
3. For each edge (v,w) in E
4. if not visited[w]: explore(w).
5. postvisit(v)

Previsit(v):

DFS(G):
0. Set cc := 0.
 1. for each v in V:
 2. if not visited[v]:
 3. explore(v)
 4. ccnum = ccnum+1

Each node will be labelled with connected component number.
Runtime: $O(|V| + |E|)$.
Connected Components.

explore(v):
2. previsit(v)
3. For each edge (v,w) in E
4. if not visited[w]: explore(w).
5. postvisit(v)

Previsit(v):

DFS(G):
0. Set cc := 0.
1. for each v in V:
2. if not visited[v]:
3. explore(v)
4. ccnum = ccnum+1
Introspection: pre/post.

Previsit(v):
1. Set $\text{pre}[v] := \text{clock}$.
2. $\text{clock} := \text{clock}+1$

Postvisit(v):
1. Set $\text{post}[v] := \text{clock}$.
2. $\text{clock} := \text{clock}+1$

DFS(G):
0. Set $\text{clock} := 0$.

...

Clock: goes up to 2 times number of tree edges.
First pre: 0

Property: For any two nodes, u and v, $[\text{pre}(u), \text{post}(u)]$ and $[\text{pre}(v), \text{post}(v)]$ are either disjoint or one is contained in other.

Interval is “clock interval on stack.”

Either both on stack at some point (contained) or not (disjoint.)
Let’s just watch it work!
Example: Pre/Post numbering.

Explored edge \((u, v)\) first from \(u\).

Tree edge iff \([\text{pre}[v], \text{post}[v]] \in [\text{pre}[u], \text{post}[u]]\).
\(u\) on stack before \(v\).

Back edge iff \([\text{pre}[u], \text{post}[u]] \in [\text{pre}[v], \text{post}[v]]\).
\(v\) on stack when \(v\) on stack. Path from \(v\) to \(u\)! Cycle!

No edge between \(u\) and \(v\) if disjoint intervals.
Directed graphs.

\[G = (V, E) \]
vertices \(V \).
edges \(E \subseteq V \times V \).

Edge: \((u, v) \)
From \(u \) to \(v \).
Tail – \(u \)
Head – \(v \)
DFS on directed graphs.

Terminology:

Root: Starting point.

v is ancestor of u:
v on path from/to root.

v is descendant of u:
u is an ancestor of v.
Depth first search: directed.

Tree/forward edge \((u, v)\): \(\text{int}(v)\) in \(\text{int}(u)\).
Forward \((A, F)\): [10,11] in [0,13] or [0,[10,11],13]

Back edge \((u, v)\): \(\text{int}(v)\) contains \(\text{int}(u)\).
\((C, B)\): [3,4] in [1,8] or [1, [3, 4], 8]

Cross edge \((u, v)\): \(\text{int}(v)\) before \(\text{int}(u)\).
\((F, D)\): [2,5] before [10,11]
Directed Acyclic Graphs: Depth First Search

Edge: \((u, v)\)

From \(u\) to \(v\).

Tail – \(u\)

Head – \(v\)

Tree edge – “Direct call tree of explore.”

Forward edge – “Edge to descendant (not in tree)”

Back edge – “Edge to ancestor”

Cross edge – None of the above.

\(v\) already explored before \(u\) is visited.
Directed Acyclic Graph

Directed Graph ...without cycles. Cycle: $v_0 \rightarrow v_1 \rightarrow \ldots v_k \rightarrow v_0$.
Why?

“Hello” before “Goodbye”
Example.

Acyclic Graph?
Depth first search: directed.

Back edge \((u, v)\): int\((v)\) contains int\((u)\).

\[
\text{int}(C) = [3, 4] \quad \text{and} \quad \text{int}(B) = [1, 8].
\]

Back edge (\(u, v\))
...edge to ancestor

tree edges from \(v\) to \(u\).

Back edge means cycle! \(\Rightarrow\) not acyclic!
Thm: A graph has a cycle if and only if there is back edge.

Proof:
Back edge \implies cycle!

There is a cycle

$v_0 \to v_1 \to v_2 \cdots \to v_k \to v_0$

Assume that v_0 is the first node explored.
(without loss of generality since can renumber vertices.)

All nodes on cycle explored when \texttt{explore}(v_0) returns

For each v_i: int[v_i] \in int[v_0]!

\implies (v_k, v_0) is a back edge.

Cycle \implies back edge!
Thm: A graph has a cycle if and only if there is back edge.

Run DFS. $O(|V| + |E|)$ time.

For each edge (u, v): is $\text{int}(u)$ in $\text{int}(v)$. $O(|E|)$ time.

$O(|V| + |E|)$ time algorithm for checking if graph is acyclic.
Directed Acyclic Graph

Hello

Goodbye

“Hello” before “Goodbye”

No cycles! Can tell in linear time!

Ohhh...Kayyyy...
Really want to find ordering for build!
Where things are cool!
Linearize.

Topological Sort: For $G = (V, E)$, find ordering where each edge goes from earlier vertex to later in acyclic graph.
A linear order:

A, E, F, B, G, D, C

In DFS: When is A popped off stack?

Last! E second to last. ...
Topological Sort: DFS

Property: Every edge in a DAG \((u, v)\) has \(post(u) > post(v)\).
No back edges!
Tree and Forward edge \((u, v)\):
 \(\text{int}(u)\) contains \(\text{int}(v)\): \(pre(u), pre[v], post[v], post[u]\)
Cross edge \((u, v)\): \(\text{int}(u) > \text{int}(v)\)
Top Sort: output in reverse post order number.
Runtime: \(O(|V| + |E|)\).
 ..procedure PostVisit outputs during DFS
 ..reverse.
Source/sinks in a DAG.

Source is node with no incoming arcs.
Sink is node with no outcoming arcs.

Highest post order node is source.
Lowest post order node is sink.

Property: Every DAG has at least one source and sink.

Topological Sort Algorithm: Find source, output, repeat.

Naively: $O(nm)$.. there is a better implementation.

Useful on Monday.
Lecture in a Minute

Depth First Search.
 Call explore until explore the whole graph.
 Connected Components.
 Tree/back edges.
 Back edge \iff cycle

Pre/Post Ordering.
 Interval of time “on stack”.
 Quick cycle test.

Directed Graphs.
 Tree/Back/Forward/Cross edges.
 From pre/post!
 Back Edge \iff cycle!

Topological Sort.
 Alg 1: Inverse Post order number.
 Inverse order of “stack” pop.
 Alg 2: Peeling off sources.