
Strongly
Connected

Components

⑰ -
17542
⑰ -⑰ Meta-graph

⑳
->·

X
⑭ explore sinkov

Magic algorithm : gives us vertex v in sirk SC

via DFS ! (with a twist ..)

Suppose we run DFS.
For all SCCs@ , define finish(C) = C's highest post(o)
Claim : Let O- be SCC's

.

Then finish(c) > finish (C) .

Pf : (i) Suppose DFS visits &first .:Then post(v)] finish (C) .

(ii) Suppose DFS visits C'first . ~ explores theseThen only visits(Aer done w/d

: all posts in C Can't happen !
> finish (C') . ⑳->O Graph is DAG .

Claim : The highest post (v) is in source SCC.
↑

Assume not

- biggest
even bigger ! post

The reverse graph Meta graphsource

⑰6 sing
sink

G ⑭
⑪ source⑪

Claim : G and GR have same SCCs.
In meta graphs : o edges are reversedS

· sources and sinks are swapped
Run DFS on GR . Compute postic values

~ w/highest posty : oin GR) in source SC)
· (in 6) in Sink SCC

IfC (i n 64) then highest poste in C
② (inG) < in C

SCC algorithm explore
⑪ Y ↓ ↓
highest postplu) in CLin ⑳explore

FindSC(s(6)explore (6,v for all v , visited [v] = falsevisited[uy = true
sccum(r] = count Run DFS on GR

for v s . t . Cr , rIEE
to compute postR

if visited [v] : false Count =I
explore (6,1) for ver (in reverse posti order

if visited [v] = false

explore (G, u)
count = count + 1

Paths in Graphs

Single-source shortest paths (SSSP)
Input : Graph 6 ,

"source" vertex sell

Output : f wEU , k(s ,v) = length of shortest path from s to r

I O I Unweighted : all edges length 1

! Breadth-first search

Positive lengths : 1 : -> S1 ,2,3,...3

Dijkstra

Arbitrary length edges
Bellman-Ford

Application : Kevin Bacon number
2

2

1

I

3 ⑤ I

Unweighted graphs
O

·⑭
I have not yet seen)G neighbors of neighbors
dist 2

G

③ - I

G ↳

Breadth-first search
tots (6

, s] ⑪
dist[s] = 0
↓ us

,
dist[uT =D

Q = ES3 (quere containing st-
while Q is not empty

↑ v = dequere(Q) Q : S1AXPER #
for all v s .t

. (v ,v] E
if dist[v] = o

enqueue (Q , vl Runtime : O(ntm) time
↑

dist[r]=dist[v]+ linear
, same as De

DFS is just BFS my stack

Positive lengths
,

4

I
Dijkstra's algorithm

& 1 . Compute vi = closest vertex to
⑤ . 3) Q and d(S

,vi

~ 2. Compute Ve = 2nd closest to s
6 and d(s

, v2)
Vz

3, 1 Vs 3 14
[

K = the set of "known" vertices :

at some step
= Ev, .. -, Vi)

U = "Unknown" vertices u =V/k

Q : Given K = Ev , , .., vi].
How to compute Vit ? = closest vertex not in

K

in K Closer to !
in U

~ink

Som oth (shortest -vi path)

Vix = endpoint oftheshta
· or distri = dist() + llunt

~ minimizes dist[u] +e(, vitil
G

Dijkstra has dist[v] for each VEX/

dist[v] = d(s
,
v) if weKE min dist[u] + l(u,v)

veK

·Dem After addingWith to K

I If (Vin
,w)EEw

[dist[w]
= min[dist[n]

,

Su dist[viti]
G ~date (vit

, w)
+ elvimw)

dijkstra (G, 1 , s) Priority quere
Contains a set ofdists =Oist suz =@ Celement , key) pairs

U = V (insert (v , dist[ui) # r)
-- integer

while (is not emp +y

· Insert (elem
, key)

Choose veU with minimum · Decrease Key (elem, key)Remove from U . dist[u]
↓ v = DeleteMin 4) (Replacesalen's old key

for each v sit . (v ,v] E
w/ new Key

dist [v] = min (dist[v] , · DeleteMin 1)
dist [u] +&(v

,
v)

DecreaseKey (v , dist[r])

Dijkstra's runtime
Insert n times
DeleteMin n times
Decrease Key m times

=>i Fronted
n -

heal

Mikkel Thorp 2004 : O(nloglogn +m)

