
Strongly
Connected

Components

source

⑰ explore
2Meth
explore

->

↳⑰I& Sink

*
-G delete

Magic algorithm : gives us vertex v in sink SCC

via DFS ! (with a twist ..)

Suppose we ron DFS
For all SCCs @ ,

define finish(C) = C's highest post(u)
Claim : LetQ be SCCs .

Then finish (C) > finish (C) .
~ explores thes

Pf : (i) Suppose DFS visits (first-Then post (v) > finish (C) .
(ii) Suppose DFS visits ('first -
Then only visits (after done w/C !-

↓ all posts in <
↳

Can't happen
> finish (C) .

DAG .

Claim : The highest post (v) is in source SCC .

Assume not.

even !-Q
biggest

bigger
post

The reverse graph Meta graph
source

C# ①⑪ Sink
GR-QX sink Fe① source
Claim : 6 and GR have same SCCs.
In meta graphs edges are reversed

· sources and sinks are srapped
Run DFS on GR

.

Compute posti values
~ w/ highest postic : o (in GR) in source

· (in 6) in sink

IfQ (in 62) then highest postic inCl
⑪ > inc

SCC algorithm

explore⑪ ↓
2

highest postr(u) in C ⑮ ⑰explore
> in C JKL 1

explore (G, u) Find SCCs (G)
for all v, visited[UT = false

visited[v] = true Run DFS on GR

schum[u]= count to compute postR
Count = 1for 1 S .t . (v,v) E forwel (in reversePd)

if visited [v] = false if visited [v] =false
explore(G,u)explore (G, v) count-count+

Paths in Graphs

Single source shortest paths (SSSP)
Input : Graph G, "source" Vertex Sel
Output : # veY , d(s,u) = length of shortestpath from stoo

I O I Unweighted : all edges length 1

-
① Breadth-first search

2 Positive lengths : 1 : E- 51,2,3, ...3·
Dijkstra

Arbitrary length edges
Bellman-Ford

Application : Kevin Bacon number
2

2

1

I

3 ⑤ I

Unweighted graphs

F
& neighbors of neighbors

(not yet seen)
dist 2

Oi
G

Breadth-first search

dist[s] = 0

bfs (G , 5) ·# uFS , dist[u] =D
Q = ES3 (quere containings)
while Q is not empty
u = dequere(Q) Q : $ ADERF
for all y s .t - (v ,YEE Runtime : O(n +m) time
if dist[v] =0

enqueue (Q,
linear

, same as DFS

dist[v] = dist[r] + 1 DFS is just BFS ~/ stack
.

Positive lengths
V3 4 nev Dijkstra's algorithm
- 1. Computing v1 = closest vertex to s

~ ② and d(s , vi)

- 2. Compute V2 =2 closest to
· Y

and d(s
,
x2)

Y2 , I i

K= the set of "known" vertices at some step
= Ev , ..., Vi]

U = "unknown" vertices = XIK

Q : Given K = Evy-, is .
How to compute Xi+ 1 ? = closest vertex not in K,

in K in Uin K closer to s!
-
->Coviti (shortest strit path)S ------

w
shortest stu path

Vit = endpoint of shortest
known path of this form

· dist=midict() + luv
UEK

Dijkstra has dist[v] for each vEY
dist[v] = d(s , x) if veKE min &dist [r] 3 if veUUEK + l(u ,v)--

help to find Vit !

After adding it to K· If (Vit , wIEEdist[w] = mir Edist [w], 3dist[Vi+ 1]
+ ((Vi+1 ,w)

dijkstra (G, 1 , s) Priority queue
dist[s] = O

n times Contains a set of# uFS , dist[u]=

U= Y (insert (v ,dist2u7) (v) Celement
, key) pairs

while W is not empty ↑ integer
Choose EU with min dist[U]
Remove u from U.

(v = Delete Min() n times
· Insert (elem

, key)
for each y s .t · (vrief · Decreasakey (elem, key
dist[v] = min[dist[v],
m times dist[u]+((v,r13

·DeleteMin()
Decrease Key (v , dist[vS)

Dijkstra's runtime
Insert n times
DeleteMin n times
Decrease Key m times

Implementation Insert DelMin Decrease Total
-

array O(1) O(n] & (1) O(r+m) = O(nY

binary heap loght log() logh) O((ntm) log()

Fibeap O(1) loght O(1) O(nlogn + m)

Mikkel Thorup 2004 : Oculoglogn +m)

