
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 8
Greedy Algorithms

Announcements
Midterm 1 on Feb 25.
→ Scope: everything up to and including Feb 20 lecture.
→ See Ed for past midterm megathreads
→ Stay tuned for logistics post next week

Homeworks:
→HW 3 is due this Saturday
→ HW 4 will be posted on Sunday

Anonymous feedback form is set up
→ Access through Edstem logistics thread.

Last two lectures
Lots of graph algorithms
• BFS, DFS
• Applications of BFS, DFS

Today and Next 2 Lecture: Greedy Algorithms

Algorithms that build up a solution

piece by piece, always choosing the next piece

that offers the most obvious and immediate benefit!

Examples of problems where greedy works
Scheduling
Satisfiability
Huffman Coding (next lecture probably)
Minimum spanning trees (next lecture)

(Interval) Scheduling
Input: collection of 𝑛 jobs specified by their time intervals 𝑠1, 𝑒1 , … , 𝑠𝑛, 𝑒𝑛 .
Goal: Find the largest subset of jobs, that have no time conflicts.

Application example:
• intervals denote activities you are interested in.
→ classes take, times you can hangout with friends, time for rest, appointments, …
• You want to do as many activities as possible!

2 3
5

1
4

6

𝑠1 𝑒1

(Interval) Scheduling
Input: collection of 𝑛 jobs specified by their time intervals 𝑠1, 𝑒1 , … , 𝑠𝑛, 𝑒𝑛 .
Goal: Find the largest subset of jobs, that have no time conflicts.

2 3
5

1
4

6

𝑠1 𝑒1

Let’s pick greedily! Which interval should we pick next?
• Shortest job?
• Earliest start time?
• Earliest end time?

Discuss

Pick the earliest finish time, and repeat!

2 3
5

1
4

6

Algorithm:
While the set of intervals is non-empty
 Add interval 𝑗 with the earliest finish time 𝑒𝑗.
 Remove any conflicted interval 𝑖 from the set, i.e., 𝑠𝑗, 𝑒𝑗 ∩ 𝑠𝑖, 𝑒𝑖 ≠ ∅

Pick the earliest finish time, and repeat!

2 3
5

1
4

6

Algorithm:
While the set of intervals is non-empty
 Add interval 𝑗 with the earliest finish time 𝑒𝑗.
 Remove any conflicted interval 𝑖 from the set, i.e., 𝑠𝑗, 𝑒𝑗 ∩ 𝑠𝑖, 𝑒𝑖 ≠ ∅

Pick the earliest finish time, and repeat!

2 3
5

1
4

6

Algorithm:
While the set of intervals is non-empty
 Add interval 𝑗 with the earliest finish time 𝑒𝑗.
 Remove any conflicted interval 𝑖 from the set, i.e., 𝑠𝑗, 𝑒𝑗 ∩ 𝑠𝑖, 𝑒𝑖 ≠ ∅

Pick the earliest finish time, and repeat!

2 3
5

1
4

6

Algorithm:
While the set of intervals is non-empty
 Add interval 𝑗 with the earliest finish time 𝑒𝑗.
 Remove any conflicted interval 𝑖 from the set, i.e., 𝑠𝑗, 𝑒𝑗 ∩ 𝑠𝑖, 𝑒𝑖 ≠ ∅

Pick the earliest finish time, and repeat!

2 3
5

1
4

6

Algorithm:
While the set of intervals is non-empty
 Add interval 𝑗 with the earliest finish time 𝑒𝑗.
 Remove any conflicted interval 𝑖 from the set, i.e., 𝑠𝑗, 𝑒𝑗 ∩ 𝑠𝑖, 𝑒𝑖 ≠ ∅

Pick the earliest finish time, and repeat!

2 3
5

1
4

6

Algorithm:
While the set of intervals is non-empty
 Add interval 𝑗 with the earliest finish time 𝑒𝑗.
 Remove any conflicted interval 𝑖 from the set, i.e., 𝑠𝑗, 𝑒𝑗 ∩ 𝑠𝑖, 𝑒𝑖 ≠ ∅

Pick the earliest finish time, and repeat!

Why is this greedy algorithm correct? We’ll see in a minute.

What’s the runtime of this algorithm?
• 𝑂(𝑛) if the intervals are already sorted by finish time.
→ How? Remember job 𝑗 that was added last. Next time when looking at
candidate job 𝑗′, only add it if s𝑗′ > 𝑒𝑗 .
• Otherwise 𝑂(𝑛 log 𝑛) if we have to sort them by the finish time.

2 3
5

1
4

6

Why does greedy work for interval scheduling?
Whenever we make a choice to include an interval in the solution, we
don’t rule out an optimal solution.
→ So, intuitively after we are done, we have an optimal solution.

Intuition for why we never rule out an optimal solution

OPT = 𝑖1 , 𝑖2 , 𝑖3 , … , 𝑖𝑘 , 𝑖𝑘+1

Greedy = 𝑗1 , 𝑗2 , 𝑗3 , … , 𝑗𝑘

𝑖1

𝑗1

𝑖2 𝑖3

In OPT: Swap in 𝑗1for 𝑖1.

Why does greedy work for interval scheduling?
Whenever we make a choice to include an interval in the solution, we
don’t rule out an optimal solution.
→ So, intuitively after we are done, we have an optimal solution.

Intuition for why we never rule out an optimal solution

𝑖1

𝑖2 𝑖3𝑗1OPT = 𝑖1 , 𝑖2 , 𝑖3 , … , 𝑖𝑘 , 𝑖𝑘+1

Greedy = 𝑗1 , 𝑗2 , 𝑗3 , … , 𝑗𝑘

In OPT: Swap in 𝑗1for 𝑖1.

More formal argument: Proof by induction
Claim: For any 𝑚 ≤ 𝑘, there is an optimal schedule OPT that agrees with
greedy’s solution 𝐺, on the first 𝑚 intervals.

Recipe for Greedy Algorithm and Analyses
Greedy makes a series of choices. We show that no choice rules out the optimal
solution. How?

Inductive Hypothesis:

→The first 𝑚 choices of greedy match the first 𝑚 steps of some optimal solution.

→Or, after greedy makes 𝑚 choices, achieving optimal solution is still a possibility.

Base case: → At the beginning, achieving optimal is still possible!

Inductive step: Use problem-specific structure

If the first 𝑚 choices match, we can change OPT’s 𝑚 + 1𝑠𝑡 choice to that of greedy’s, and
still have a valid solution that no worst than OPT.

Conclusion: The greedy algorithm outputs an optimal solution.

Horn Formula
Variables: 𝑥1, … , 𝑥𝑛 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}, a literal is 𝑥𝑖 or ഥ𝑥𝑖.
Clauses:
1. “Implication clause” (with no negatived variable)

𝑥𝑖 ∧ 𝑥𝑗 ∧ ⋯ ⇒ 𝑥𝑘

2. “Pure negative clauses”
ഥ𝑥𝑖 ∨ ഥ𝑥𝑗 ∨ ⋯

1 1

Equivalent to
ഥ𝑥𝑖 ∨ ഥ𝑥𝑗 ∨ ⋯ ∨ 𝑥𝑘

Horn Formula: AND of 𝑚 Horn clauses

Horn Clause’s Significance

Why care about these clauses?

→Used in computational logic, theorem proving, etc.

→Prolog is based on Horn clauses.

1 1

Horn-SAT
Input:
 A Horn formula (AND of Horn clauses)
Output:
 Find an assignment for the variables that makes the Horn formula
True, if such and assignment exists.

1 1

Implication clause
𝑥𝑖 ∧ 𝑥𝑗 ∧ ⋯ ⇒ 𝑥𝑘

Pure negative clauses
ഥ𝑥𝑖 ∨ ഥ𝑥𝑗 ∨ ⋯

Greedy Algorithm for Horn-SAT

1 1

For all 𝑖, set 𝑥𝑖 = 𝐹𝑎𝑙𝑠𝑒
While there exists 𝑥𝑖 ∧ ⋯ ∧ 𝑥𝑗 ⇒ 𝑥𝑘 = 𝐹𝑎𝑙𝑠𝑒
 Set 𝑥𝑘 = 𝑇𝑟𝑢𝑒
If every pure negative clause ഥ𝑥𝑖 ∨ ⋯ ∨ ഥ𝑥𝑗 = 𝑇𝑟𝑢𝑒
 Return (𝑥1, … , 𝑥𝑛)
Else
 Return “not satisfiable”

Variable assignments:
𝑥
𝑦
𝑧
𝑤

Horn-Formula Clauses:

𝑤 ∧ 𝑦 ∧ 𝑧 ⇒ 𝑥
𝑥 ∧ 𝑧 ⇒ 𝑤

𝑥 ⇒ 𝑦
⇒ 𝑥

𝑥 ∧ 𝑦 ⇒ 𝑤
(ഥ𝑤 ∨ ҧ𝑥 ∨ ത𝑦)

Why does Greedy Work for Horn-SAT?
What’s the pattern in this case?

We want to establish that when Greedy sets a variable 𝑥𝑖 = 𝑇𝑟𝑢𝑒, it does not
ruin a satisfying assignment.

In fact, we will prove
→ The set of variables set to True by the Greedy algorithm, are also set to True
in any satisfying assignment.

Proof of Claim
Claim: The variables set to True by Greedy, are also True in the satisfying solution.
Proof: By induction on the iteration of the While loop
Base case: In the 0th iteration of the While loop, nothing is set to True.
Induction hypothesis: The first 𝑚 variables set to True by Greedy are also True in
every satisfying solution.
Inductive step:
• Let 𝑥𝑚+1 be the 𝑚 + 1𝑠𝑡 variable set to True by Greedy.
→ Only happens if there was an unsatisfied implication 𝑥𝑖 ∧ ⋯ ∧ 𝑥𝑗 ⇒ 𝑥𝑚+1 before
the 𝑚 + 1 iteration of the while loop. i.e., 𝑥𝑚+1 = 𝐹𝑎𝑙𝑠𝑒 and 𝑥𝑖 ∧ ⋯ ∧ 𝑥𝑗 = 𝑇𝑟𝑢𝑒.
→ If 𝑥𝑖 ∧ ⋯ ∧ 𝑥𝑗 = 𝑇𝑟𝑢𝑒 before the m+1 iteration of Greedy, then 𝑥𝑖 ∧ ⋯ ∧ 𝑥𝑗 =
𝑇𝑟𝑢𝑒 also in the satisfying solution.
• The only way to satisfy this clause in SAT is to also have 𝑥𝑚+1 = 𝑇𝑟𝑢𝑒.

Horn-SAT Proof completed
Claim: The greedy solution is correct.
1) If Greedy outputs a solution, then the solution is satisfiable.
This is true because the While loop and If condition check that all clauses are satisfied

2) If the Horn Formula is satisfiable, then Greedy outputs a satisfiable solution.
Assume to the contrary that this is not true. So, Greedy outputs “unsatisfiable” even
though a satisfying assignment exists.
→In Greedy’s assignment, there is a violated pure clause (ഥ𝑥𝑖 ∨ ⋯ ∨ ҧ𝑥𝑗)
→So, every variable in this clause is set to True
→By previous slide, these variables are also set to True in any satisfiable solution and

this clause is also violated by the satisfying assignment
→Contradiction!

Next up: Codes!

Data Compression and Encoding
Common encodings of English characters use a fixed length of code per character.

If the goal is to save space, can we encode the alphabet better?
• If we know which letters are more common
• Use shorter codes for very common characters (like e, a, s, t).

Example of encodings
Assume we just have 4 letters, A, B, C, D with associated frequencies.

Freq. Letter Encoding #1 Encoding #2 Encoding #3

0.4 𝐴

0.2 𝐵

0.3 𝐶

0.1 𝐷

Total cost

Example of encodings
Assume we just have 4 letters, A, B, C, D with associated frequencies.

Freq. Letter Encoding #1 Encoding #2 Encoding #3

0.4 𝐴 00 0 0

0.2 𝐵 01 00 110

0.3 𝐶 10 1 10

0.1 𝐷 11 01 111

Total cost 2𝑁 (0.4 + 0.3) × 𝑁 + (0.1 + 0.2) × 2𝑁
= 1.3𝑁

0.4 × 𝑁 + 0.3 × 2𝑁 + 0.2 + 0.1
× 3𝑁 = 1.9𝑁

But encoding #2 is lossy: What does 000 represent? AB or BA?
Encoding #3: No code is a prefix of another.
→ There is only one way to interpret any code.

Prefix free code: No code x is a prefix of another code z.
Any prefix-free code on 𝑛 letters can be represented as a binary tree with 𝑛 leaves.
• Leaves indicate the coded letter
• The code is the “address” of a letter in the tree

Any Prefix codes and Trees

A
0.4

C
0.3

B
0.2

D
0.1

0

0

0 1

1

1

0

10

110 111

means “A” has freq. 0.4.

Any tree with the letters at the leaves, also represent a
prefix-free code.

A
0.4

Imagine we are encoding a length N text:
→ that is written in 𝑛 letters with frequencies 𝑓1, 𝑓2, … , 𝑓𝑛 .

How long is the encoded message?

Tree and Code Size

A
0.4

C
0.3

B
0.2

D
0.1

0

0

0 1

1

1

0

10

110 111

means “A” has freq. 0.4.

length of encoding =
𝑖=1

𝑛

𝑁 ⋅ 𝑓𝑖 ⋅ len(𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑖)

A
0.4

Definition: Cost of a prefix-code/tree is

Cost(tree) =
𝑖=1

𝑛

𝑓𝑖 ⋅ depth(𝑙𝑒𝑎𝑓 𝑖)

Optimal Prefix-free Codes
Input: 𝑛 symbols with frequencies 𝑓1, … , 𝑓𝑛
Output: A tree (prefix-free code) encoding.
Goal: We want to output the tree/code with the smallest cost

Cost(tree) =
𝑖=1

𝑛

𝑓𝑖 ⋅ depth(𝑙𝑒𝑎𝑓 𝑖)

Next time
• More on Huffman
• Minimum Spanning Trees

Wrap up
Greedy Algorithms are simple to design

A bit harder to analyze perhaps!
→ Induction is our friend.
→ Find a nice substructure of the problem

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Last two lectures
	Slide 4: Today and Next 2 Lecture: Greedy Algorithms
	Slide 5: (Interval) Scheduling
	Slide 6: (Interval) Scheduling
	Slide 7: Pick the earliest finish time, and repeat!
	Slide 8: Pick the earliest finish time, and repeat!
	Slide 9: Pick the earliest finish time, and repeat!
	Slide 10: Pick the earliest finish time, and repeat!
	Slide 11: Pick the earliest finish time, and repeat!
	Slide 12: Pick the earliest finish time, and repeat!
	Slide 13: Pick the earliest finish time, and repeat!
	Slide 14: Why does greedy work for interval scheduling?
	Slide 15: Why does greedy work for interval scheduling?
	Slide 16: More formal argument: Proof by induction
	Slide 17: Recipe for Greedy Algorithm and Analyses
	Slide 18: 3 Min Break and Attendance
	Slide 19: Horn Formula
	Slide 20: Horn Clause’s Significance
	Slide 21: Horn-SAT
	Slide 22: Greedy Algorithm for Horn-SAT
	Slide 23: Why does Greedy Work for Horn-SAT?
	Slide 24: Proof of Claim
	Slide 25: Horn-SAT Proof completed
	Slide 26
	Slide 27: Data Compression and Encoding
	Slide 28: Example of encodings
	Slide 29: Example of encodings
	Slide 31: Any Prefix codes and Trees
	Slide 32: Tree and Code Size
	Slide 33: Optimal Prefix-free Codes
	Slide 34: Wrap up

