CS 170 Efficient Algorithms and Intractable Problems

Lecture 9 Huffman Codes and Minimum Spanning Trees

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Midterm 1 next week, Feb 25 (look out for the Midterm Logistics post)

- \rightarrow You can post about past exams on Ed (we have past exam mega threads)
- → Scope: Everything up and including Feb 20 lectures.
- \rightarrow Review sessions: Details will be announced
- → Feel free to ask exam questions in OH/HWP. But we recommend you do that earlier in the week. Fridays will be busy due to HW.

Homework:

- \rightarrow HW4 due on Saturday
- → HW5 is optional (not graded). It'll be posted with solutions, so review the solutions!

Last Lecture and Today: Greedy Algorithms

Algorithms that build up a solution

piece by piece, always choosing the next piece

that offers the most obvious and immediate benefit!

We saw: Scheduling Satisfiability

Today:

Optimal encoding Minimum Spanning Trees (1 alg next time)

Recap: A Pattern in Greedy Algorithm and Analyses

Greedy makes a series of choices. We show that no choice rules out the optimal solution. How?

Inductive Hypothesis:

 \rightarrow The first *m* choices of greedy match the first *m* steps of some optimal solution.

 \rightarrow Or, after greedy makes *m* choices, achieving optimal solution is still a possibility.

<u>Base case:</u> \rightarrow At the beginning, achieving optimal is still possible!

Inductive step: Use problem-specific structure

If the first m choices match, we can change OPT's $m + 1^{st}$ choice to that of greedy's, and still have a valid solution that no worst than OPT.

Conclusion: The greedy algorithm outputs an optimal solution.

Today

More on greedy algorithms:

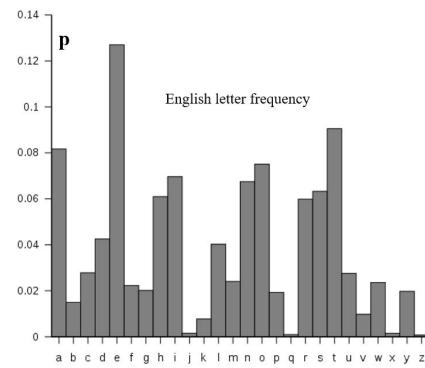
- Huffman Coding
- Minimum Spanning Trees

Data Compression and Encoding

Common encodings of English characters use a fixed length of code per character.

If the goal is to save space, can we encode the alphabet better?

- If we know which letters are more common
- Use shorter codes for very common characters (like e, a, s, t).



Example of encodings

Assume we just have 4 letters, A, B, C, D with associated frequencies.

Freq.	Letter	Encoding #1	Encoding #2	Encoding #3
0.4	Α			
0.2	В			
0.3	С			
0.1	D			
Total cost				

Encoding #2 is lossy: 000 might represent AB or BA, not clear which one. Encoding #1 and #3: No code is a prefix of another.

 \rightarrow There is only one way to interpret any code.

Example of encodings

Assume we just have 4 letters, A, B, C, D with associated frequencies.

Freq.	Letter	Encoding #1	Encoding #2	Encoding #3
0.4	A	00	0	0
0.2	В	01	00	110
0.3	С	10	1	10
0.1	D	11	01	111
Total cost		2 <i>N</i>	$(0.4 + 0.3) \times N + (0.1 + 0.2) \times 2N$ = 1.3N	$0.4 \times N + 0.3 \times 2N + (0.2 + 0.1)$ $\times 3N = 1.9N$

Encoding #2 is lossy: 000 might represent AB or BA, not clear which one. Encoding #1 and #3: No code is a prefix of another.

 \rightarrow There is only one way to interpret any code.

Any Prefix codes and Trees

means "A" has freq. 0.4.

Prefix free code: No code x is a prefix of another code z.

Any prefix-free code on *n* letters can be represented as a binary tree with *n* leaves.

- Leaves indicate the coded letter
- The code is the "address" of a letter in the tree

0 ()03 10 В 02 110

Any tree with the letters at the leaves, also represent a prefix-free code.

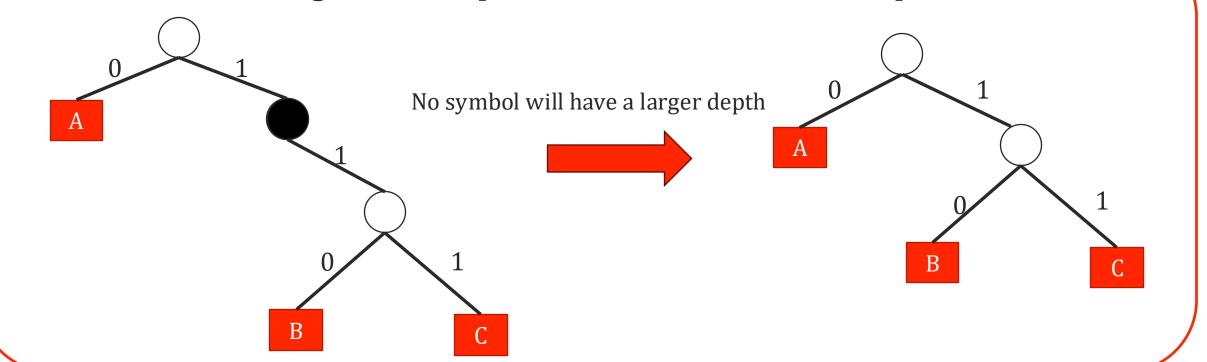
Tree and Code Size means "A" has freq. 0.4. Imagine we are encoding a length N text: \rightarrow that is written in *n* letters with frequencies f_1, f_2, \dots, f_n . How long is the encoded message? 0 length of encoding = $\sum_{i=1}^{N} N \cdot f_i \cdot \text{len}(encoding i)$ A 0.4 C 03 **Definition:** Cost of a prefix-code/tree is 10 $Cost(tree) = \sum_{i=1}^{n} f_i \cdot depth(leaf i)$ В 02 110

Optimal Prefix-free Codes

Input: *n* symbols with frequencies $f_1, ..., f_n$ **Output:** A tree (prefix-free code) encoding. **Goal:** We want to output the tree/code with the smallest cost

$$Cost(tree) = \sum_{i=1}^{n} f_{i} \cdot depth(leaf i)$$

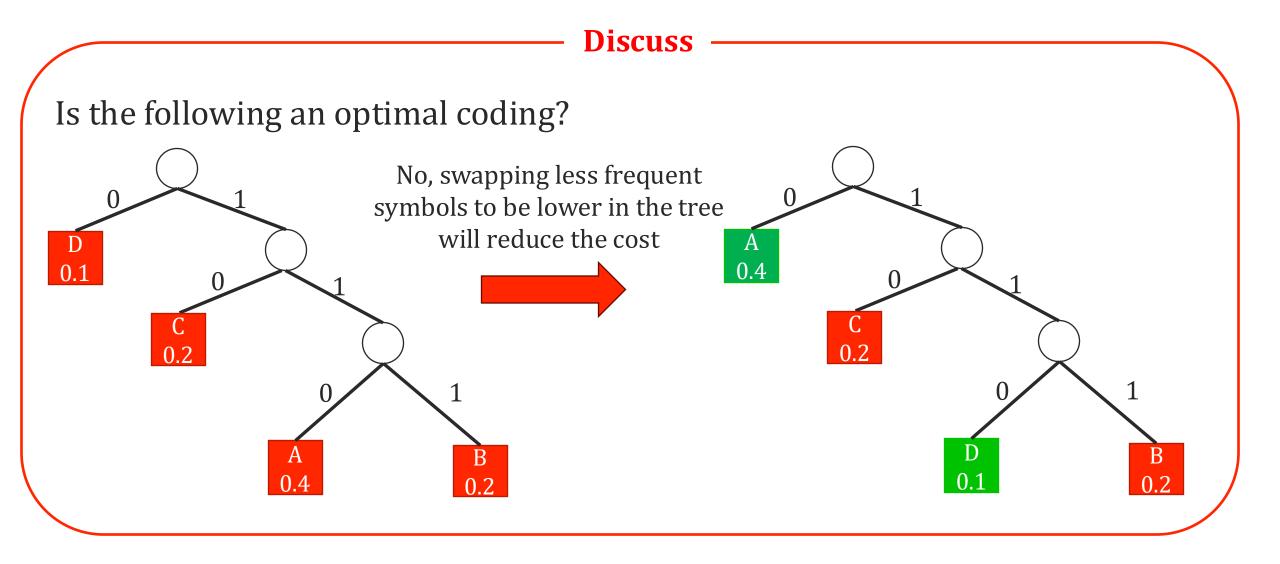
Even without looking at the frequencies, could this tree be optimal?



Claim: There is a "full binary tree" that is an optimal coding.

Proof: we just argued above!

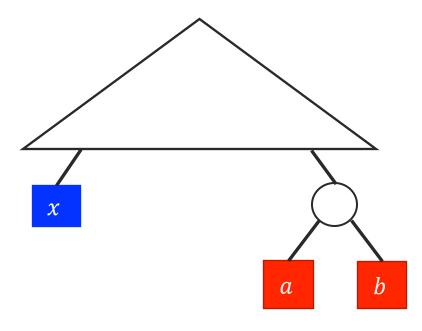
• Means that every non-leaf node has two children.



Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves. **Proof:** By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

- Let symbols *a*, *b* be the deepest pair of siblings.
- \rightarrow A lowest sibling pair exists because we have a full binary tree.
- \rightarrow At least one of *a*, *b* is neither *x* or *y*. Let's say $x \neq a$.

What happens if we swap *x* and *a*?



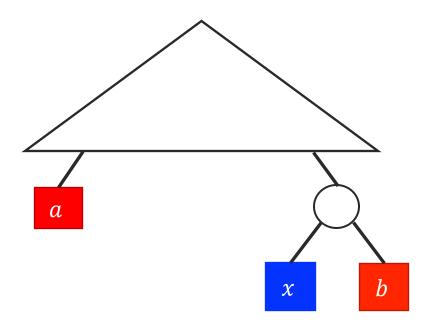
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves. **Proof:** By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

• Let symbols *a*, *b* be the deepest pair of siblings.

 \rightarrow A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of *a*, *b* is neither *x* or *y*. Let's say $x \neq a$.

What happens if we swap x and a? → The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.



Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves. **Proof:** By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

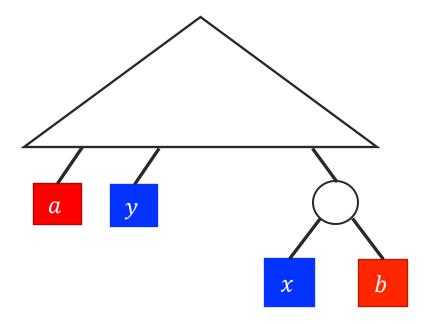
• Let symbols *a*, *b* be the deepest pair of siblings.

 \rightarrow A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of *a*, *b* is neither *x* or *y*. Let's say $x \neq a$.

What happens if we swap x and a? \rightarrow The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Repeat this swap and logic if $y \neq b$ either.



Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves. **Proof:** By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

• Let symbols *a*, *b* be the deepest pair of siblings.

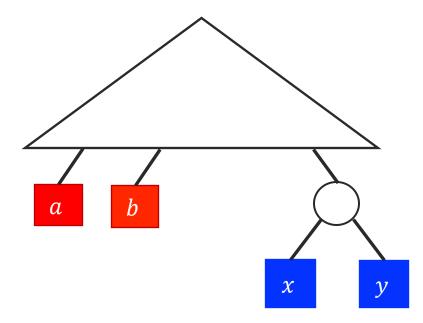
 \rightarrow A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of *a*, *b* is neither *x* or *y*. Let's say $x \neq a$.

What happens if we swap x and a? → The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Repeat this swap and logic if $y \neq b$ either.

We found a cheaper tree, where *x*, *y* are siblings!



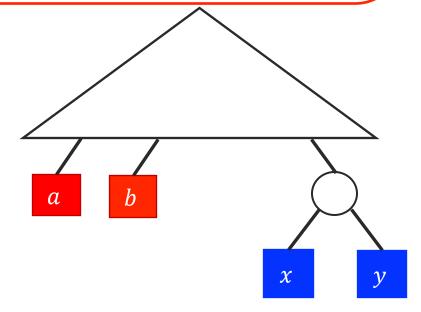
Formally: Swapping *x* which is at shorter depth d, with *a* which is at larger depth D, gives:

What happens if we swap *x* and *a*?

→ The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of *a*'s code and *x* 's code.

Repeat this swap and logic if $y \neq b$ either.

We found a cheaper tree, where *x*, *y* are siblings!



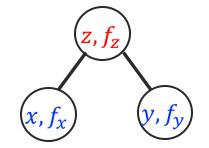
Greedy algorithm

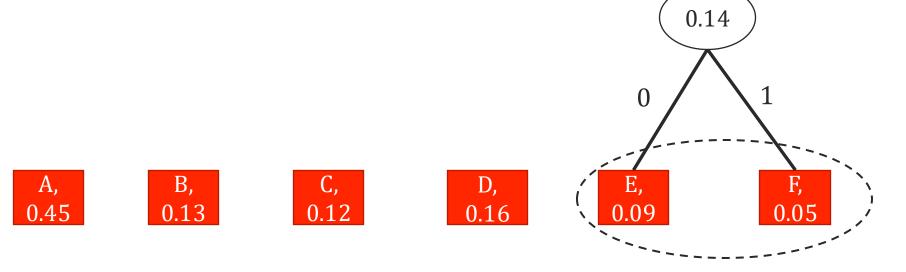
Idea: Since the lowest frequency letters are sibling leaves in some optimal tree, we will greedily build subtrees from the lowest frequency letters.

This is called Huffman Coding.

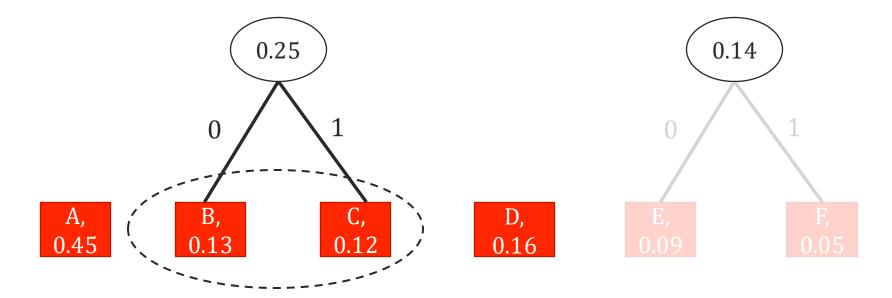
Node *a* object with a.freq = f_a a.left = left childa.right = right child

```
Huffman-code(f_1, \dots, f_n)
   For all a = 1, \dots, n,
       create node a with a. freq = f_a and no children
       Insert the node in a priority queue Q use key f_{a}
    While len(Q) > 1
       x and y \leftarrow the nodes in Q with lowest keys
       create a node z, with z. freq = x. freq + y. freq
       Let z. left = x and z. right = y.
       Insert z with key f_z into Q and remove x, y.
    Return the only node left in Q.
```

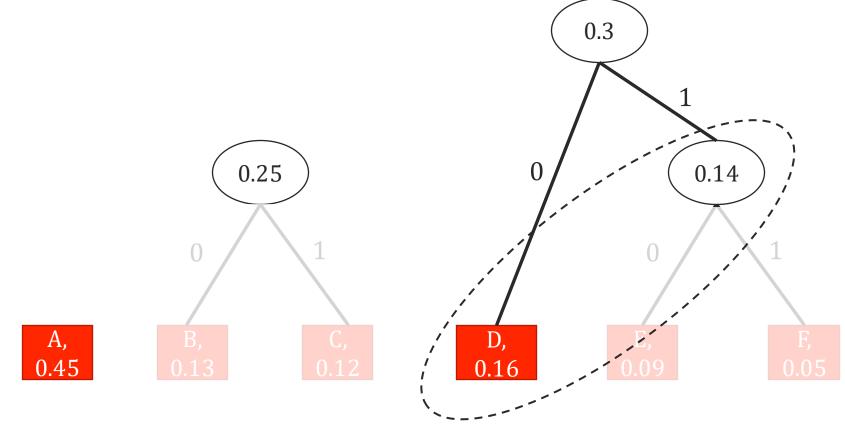





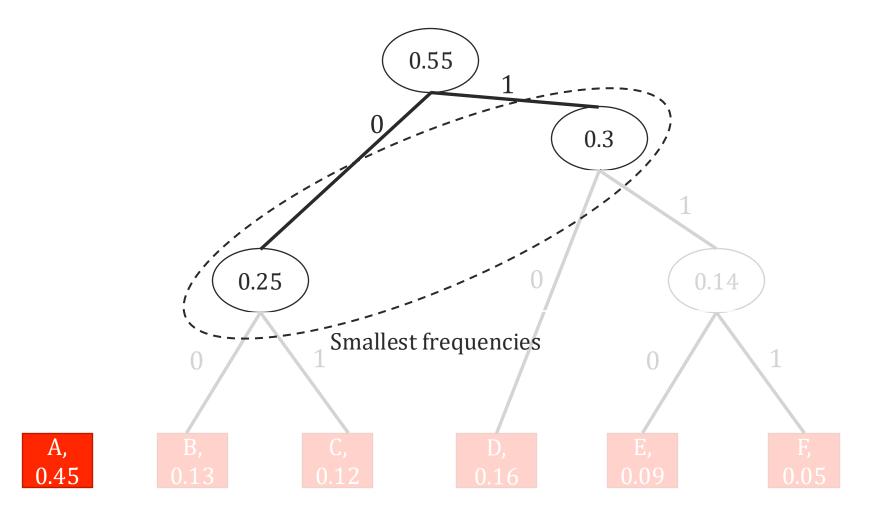
Smallest frequencies

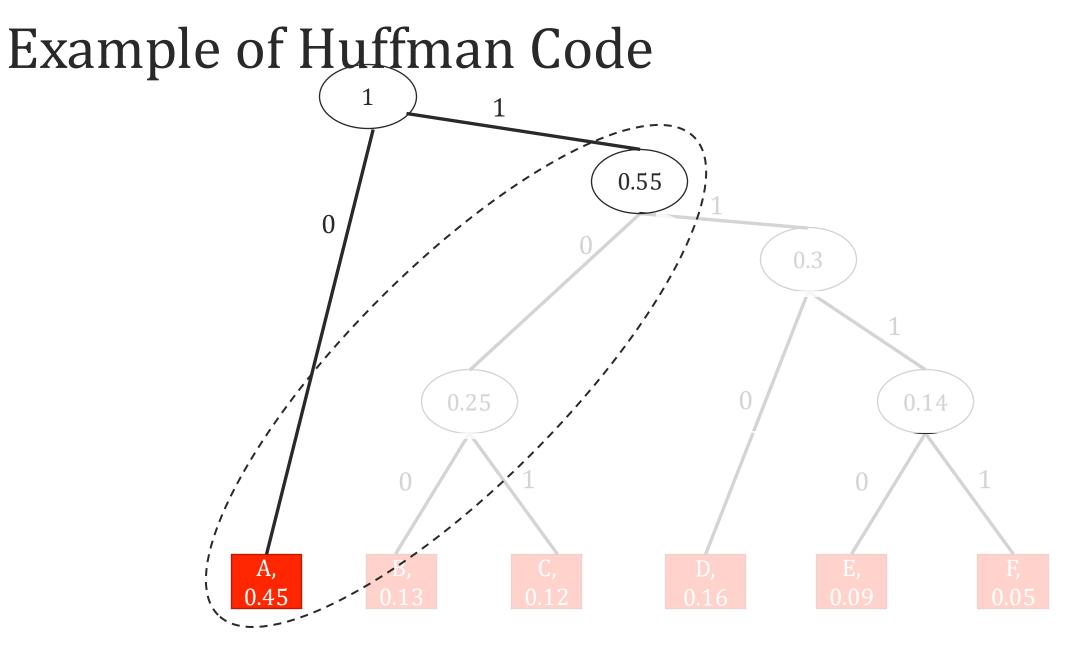


Smallest frequencies



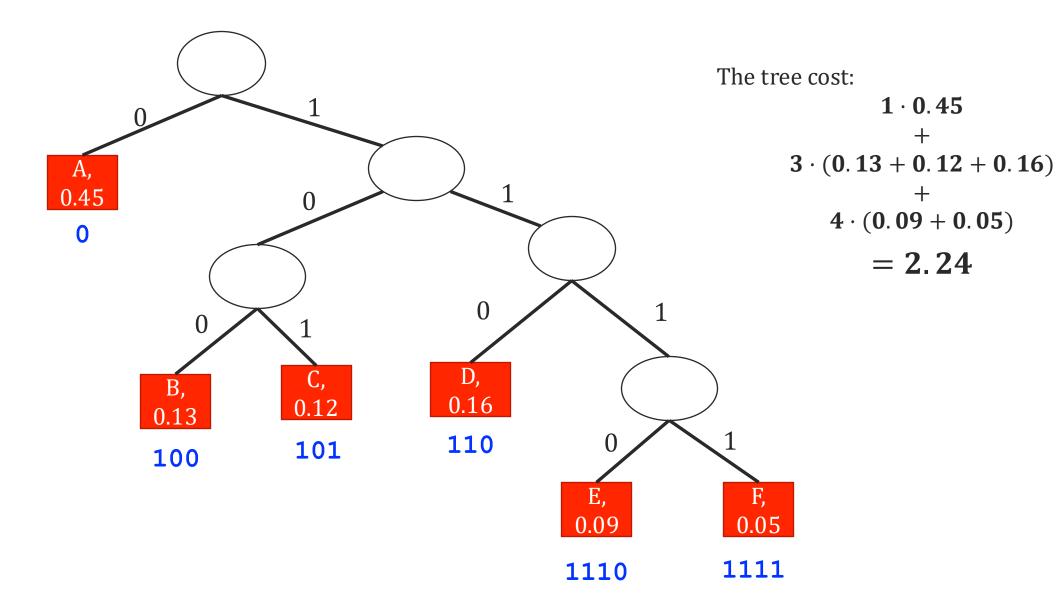
Smallest frequencies





Smallest frequencies

The corresponding code



Runtime of Huffman Coding

Priority queue operation (Lec. 7): Binary heap takes $O(\log(n))$ to Insert and DeleteMin.

Huffman-code(f_1, \ldots, f_n) *n* Inserts = $O(n \log(n)) \longrightarrow$ For all a = 1, ..., n, create node *a* with *a*. freq = f_a and no children Insert the node in a priority queue Q use key f_a While len(Q) > 1x and y \leftarrow the nodes in Q with lowest keys \leftarrow 2 DeleteMin *n* iterations, total of create a node *z*, with *z*. freq = x. freq + y. freq $O(n\log(n))$ Let z. left = x and z. right = y. 1 Insert Insert z with key f_z into Q and remove x, y. Return the only node left in Q.

Total runtime of Huffman coding: $O(n \log(n))$

Optimality of Huffman Coding

Claim: Huffman coding is an optimal prefix-free tree.

Recall we use induction to show that greedy choices don't rule out optimality.

We use induction on the number of letters *n*.

Base case: n = 2. The optimal code is to assign one letter to 0 and the other 1. Huffman does the same.

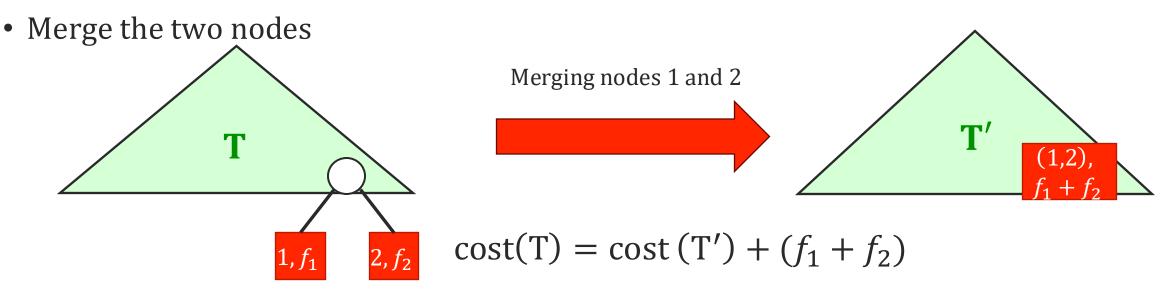
Induction Hypothesis: For n - 1 letters, Huffman coding is an optimal pre-fix tree.

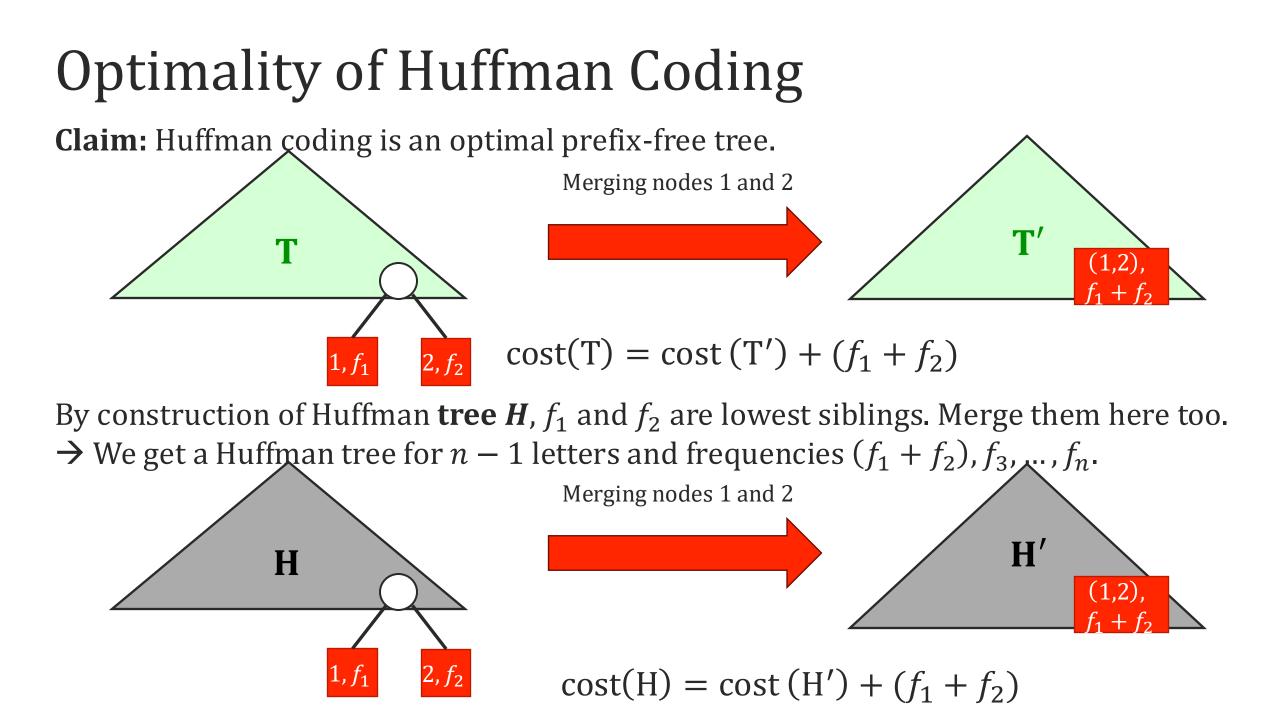
Optimality of Huffman Coding

Claim: Huffman coding is an optimal prefix-free tree.

Induction step: Let T below be the optimal prefix-free tree for frequencies $f_1, ..., f_n$ and WLOG $f_1 \le f_2 \le \cdots \le f_n$.

WLOG, assume that the two lowest frequency nodes are siblings.
 → Because, we proved earlier that that's what optimal trees look like!



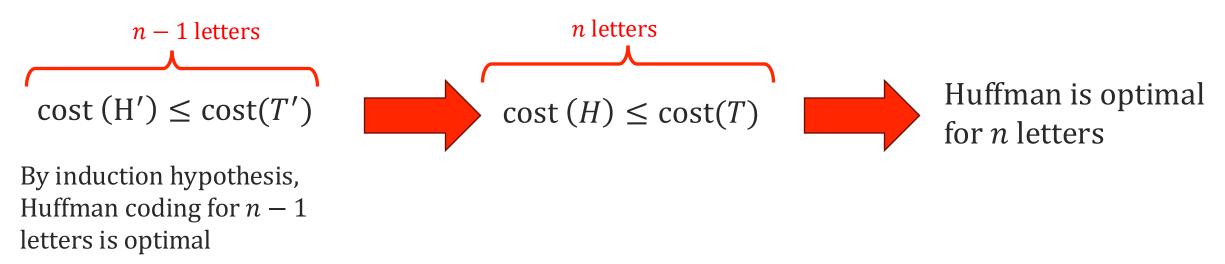


Optimality of Huffman Coding

Claim: Huffman coding is an optimal prefix-free tree.

We showed that for tree T that is optimal for *n* letters, $Cost(T) = cost(T') + (f_1 + f_2)$.

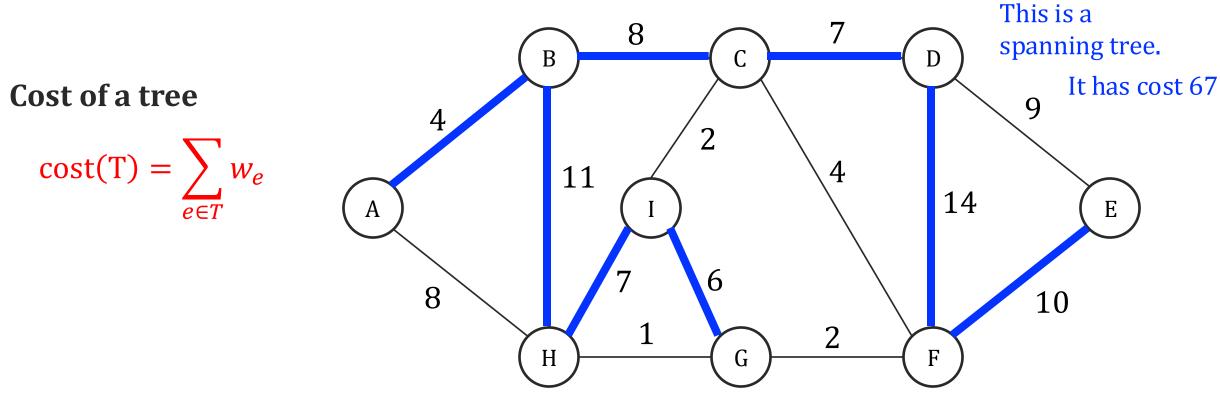
And for Huffman coding tree H for *n* letters, $Cost(H) = cost(H') + (f_1 + f_2)$.



Minimum Spanning Trees

Minimum Spanning Trees

Definition: A spanning tree, is a tree that **connects all vertices** of a graph G.

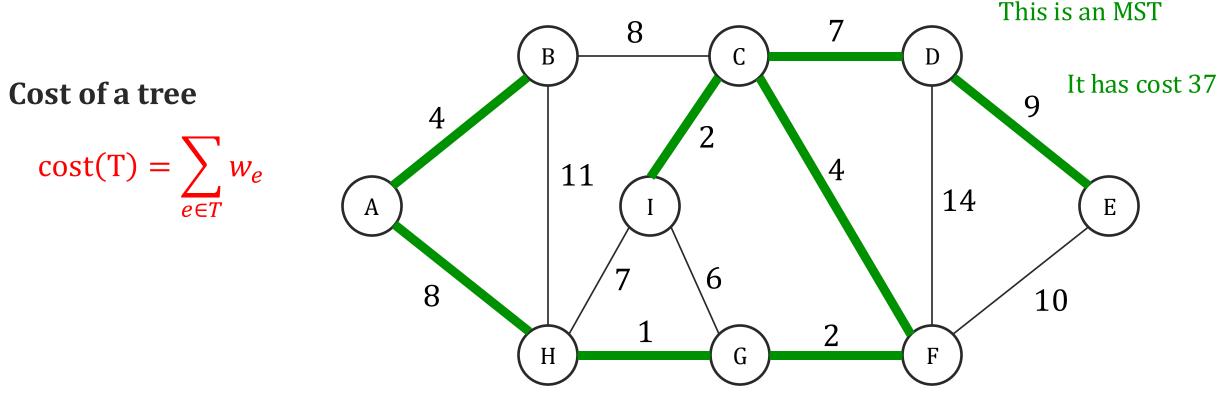


Minimum Spanning Tree (MST) Problem:

Input: a weighted graph G = (V, E) with non-negative weights. **Output:** A set of edges that connected graph and has the **smallest cost**.

Minimum Spanning Trees

Definition: A spanning tree, is a tree that **connects all vertices** of a graph G.



Minimum Spanning Tree (MST) Problem:

Input: a weighted graph G = (V, E) with non-negative weights. **Output:** A set of edges that connected graph and has the **smallest cost**.

MST applications and Algorithms

Biggest applications:

- Network design: Connecting cities with roads/electricity/telephone/...
- Pre-processing for other algorithms.

We will see two greedy algorithms for building Minimum Spanning Trees.

What do MSTs look like?

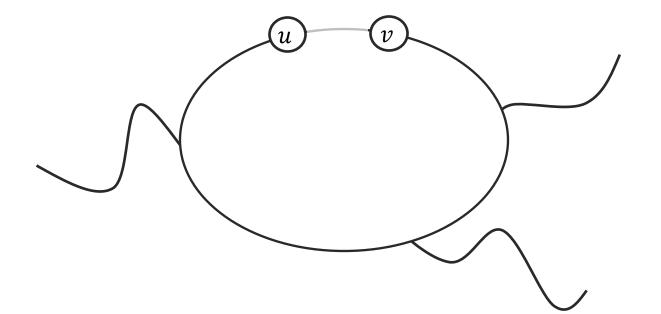
Facts about Trees

The following are two equivalent definition of a tree on *n* vertices.

- 1. A connected acyclic graph.
- 2. A connected graph with n 1 edges.

Any **minimum weight** set of edges that **connects all vertices** is a **tree**! Why?

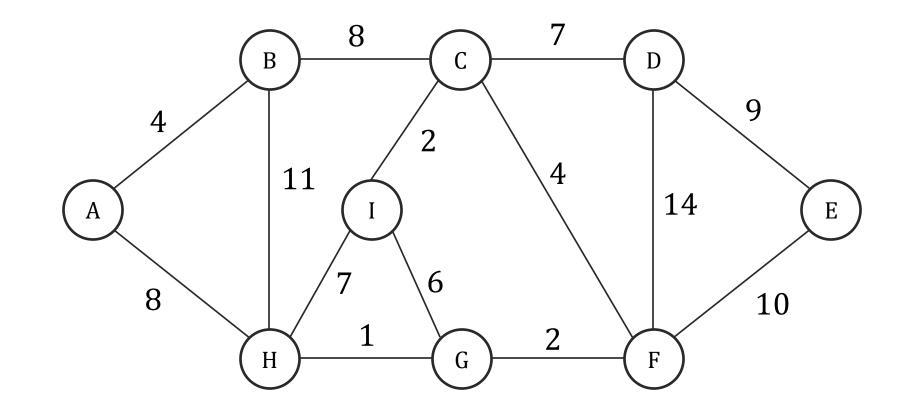
If a set of edges connecting all vertices has a cycle, we can remove one of its edges and still connect all vertices. → Removing any edge on the cycle, keeps the graph still connected.



Graph Structures and Facts

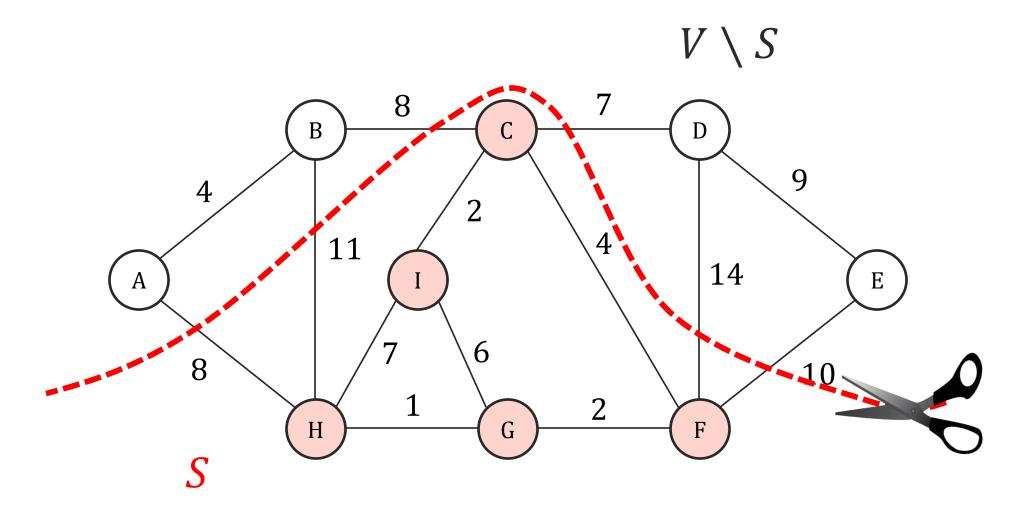
Cuts and Graphs

Definition: A **cut** in a graph is a **partition of vertices** to two disjoint sets *S* and $V \setminus S$. \rightarrow we'll color them differently to make the two sets clear.



Cuts and Graphs

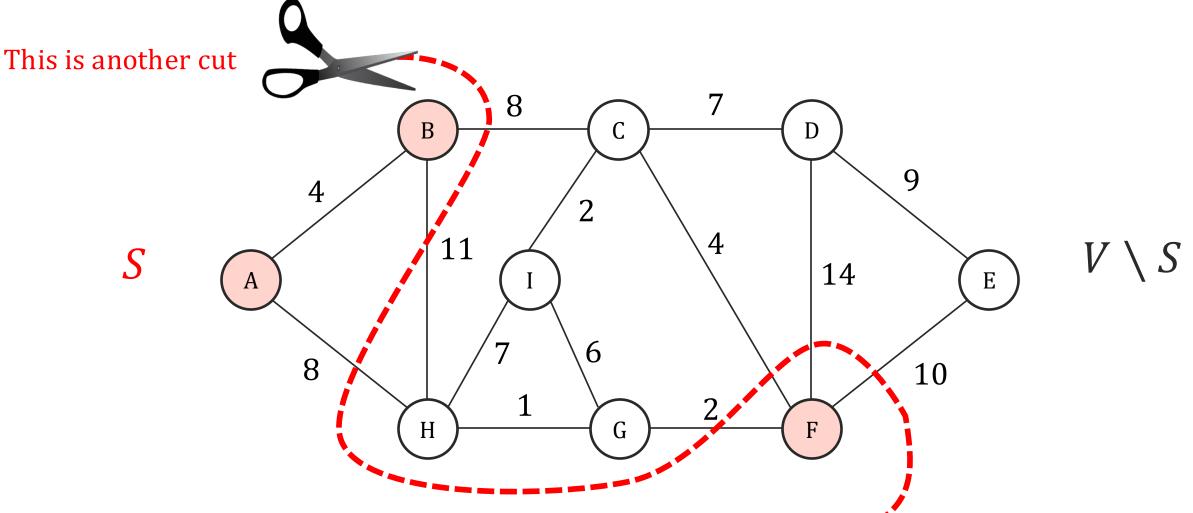
Definition: A **cut** in a graph is a **partition of vertices** to two disjoint sets *S* and $V \setminus S$. \rightarrow we'll color them differently to make the two sets clear.



Cuts and Graphs

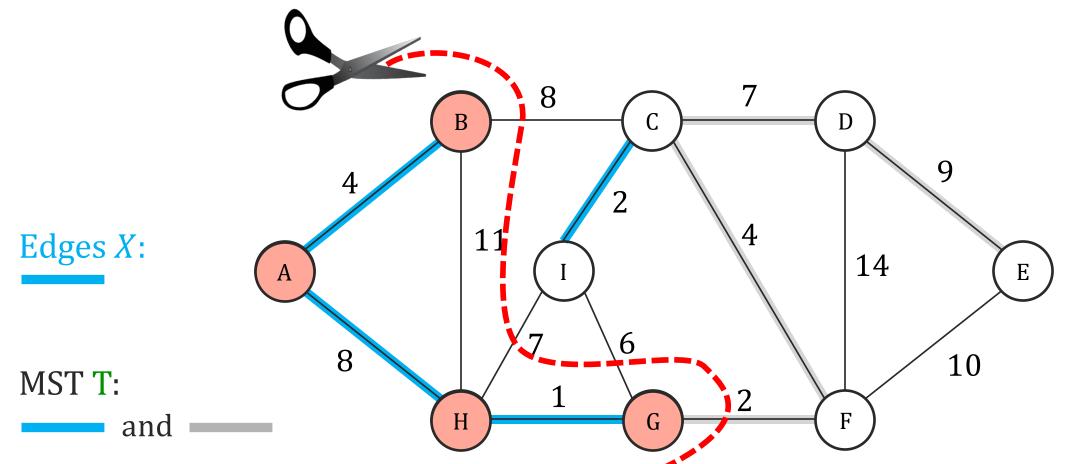
Definition: A **cut** in a graph is a **partition of vertices** to two disjoint sets *S* and $V \setminus S$.

 \rightarrow we'll color them differently to make the two sets clear.



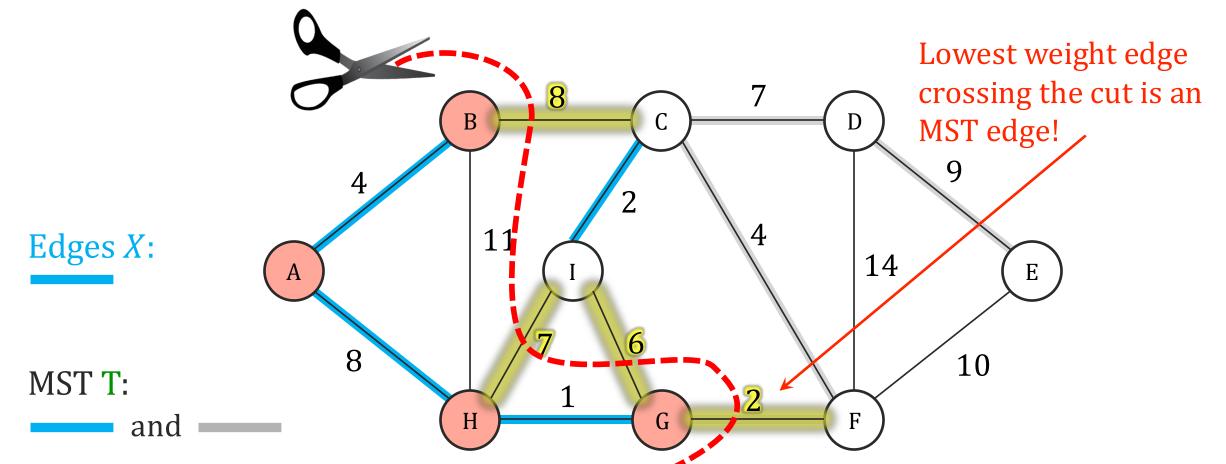
Greedy Algorithms and Cuts

Imagine, we already discovered some of the edges X of a minimum spanning tree T. Take any **cut** where edges X don't cross it. i.e., no edge $(u, v) \in X$ has $u \in S, v \in V \setminus S$. What's so special about the edge of MST that is crossing the cut?



Greedy Algorithms and Cuts

Imagine, we already discovered some of the edges X of a minimum spanning tree T. Take any **cut** where edges X don't cross it. i.e., no edge $(u, v) \in X$ has $u \in S, v \in V \setminus S$. What's so special about the edge of MST that is crossing the cut?



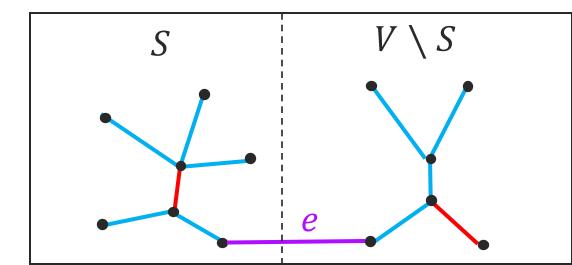
Formally: The Cut Property

Claim: Suppose $X \subseteq E$ is part of an MST for graph *G*. Consider a cut *S*, $V \setminus S$, such that

- *X* has no edges from *S* to $V \setminus S$.
- Let $e \in E$ be the smallest weight edge from S to $V \setminus S$.

Then $X \cup \{e\}$ is also a subset of an MST for graph G.

Proof: Take the MST T that satisfies the conditions of the above claim X: blue edges**Case 1)** $e \in T$. Then by definition $X \cup \{e\} \in T$.



Formally: The Cut Property

Claim: Suppose $X \subseteq E$ is part of an MST for graph *G*. Consider a cut *S*, $V \setminus S$, such that

- *X* has no edges from *S* to $V \setminus S$.
- Let $e \in E$ be the smallest weight edge from S to $V \setminus S$.

Then $X \cup \{e\}$ is also a subset of an MST for graph G.

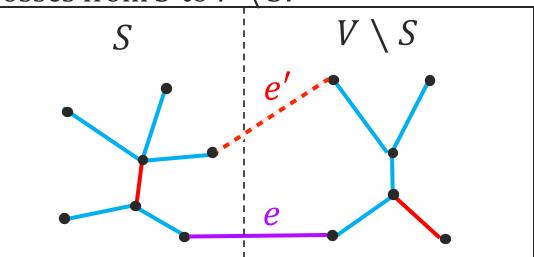
Proof: Take the MST **T** that satisfies the conditions of the above claim. **Case 2)** $e \notin T$. Then, $T \cup \{e\}$ must form a cycle

→ This cycle must have another edge $e' \in T$ that crosses from *S* to $V \setminus S$.

Consider $T' = T \cup \{e\} \setminus e'$:

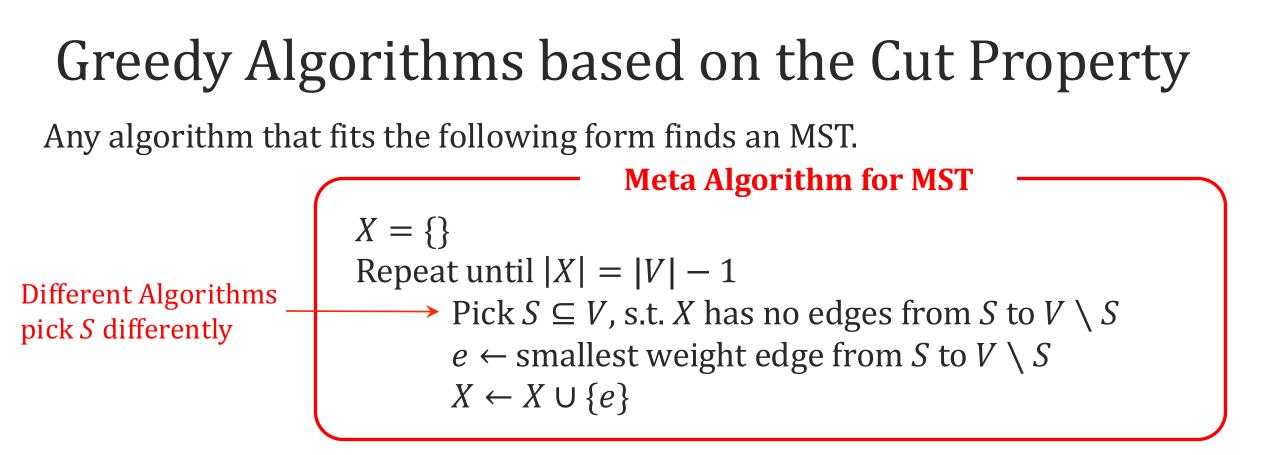
→*T'* also connects all vertices of the graph → $cost(T') = cost(T) + w_e - w_{e'} \le cost(T)$.

→So, *T'* is also a minimum spanning tree! $X \cup \{e\}$ is **also a subset of an MST for graph** *G*



X: blue edges

T: blue and red edges.



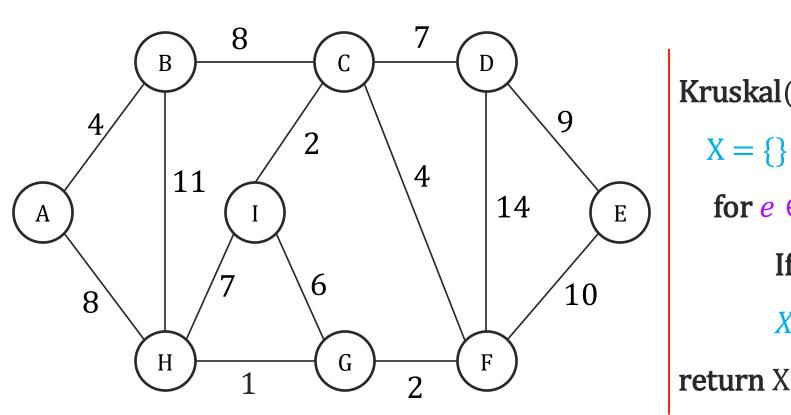
Claim: The meta Algorithm above returns a minimum spanning tree. **Proof:** By induction ...

Induction step:

The cut property ensures that $X \cup \{e\}$ is always a subset of an MST.

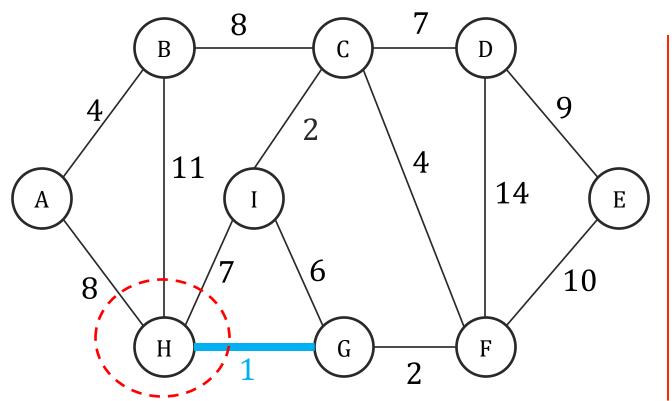
this induction.

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



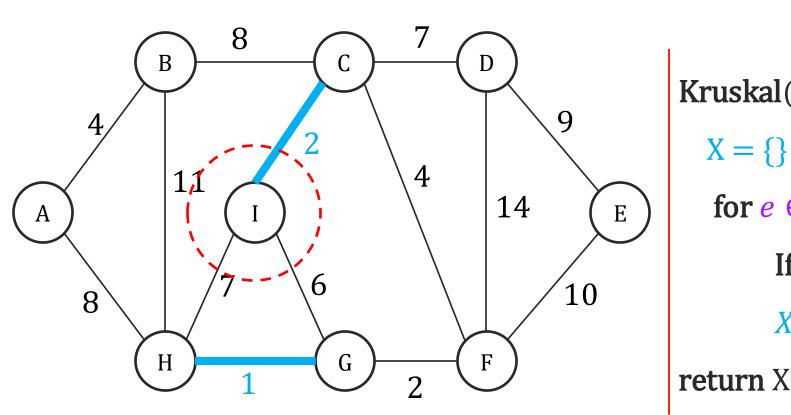
Kruskal(G = (V,E)): $X = \{\}$ for $e \in E$ in increasing order of weight If adding e to X doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



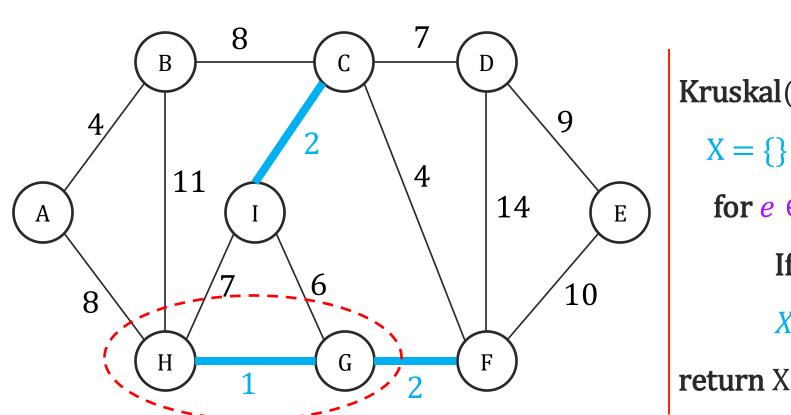
Kruskal(G = (V,E)): $X = \{\}$ for $e \in E$ in increasing order of weight If adding e to X doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



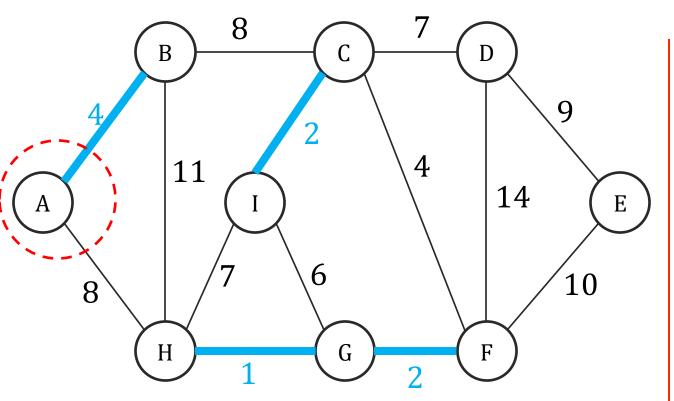
Kruskal(G = (V,E)): $X = \{\}$ for $e \in E$ in increasing order of weight If adding e to X doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



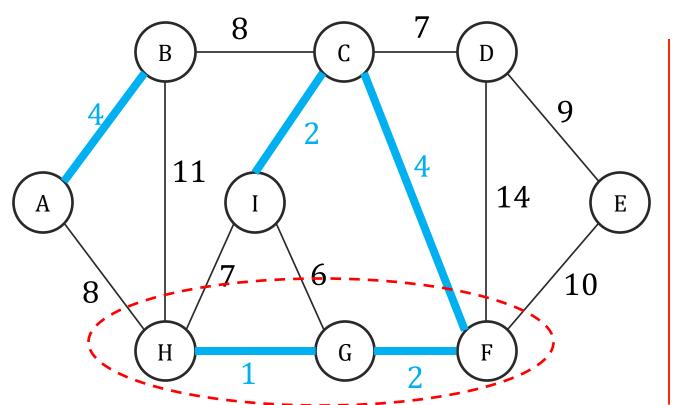
Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



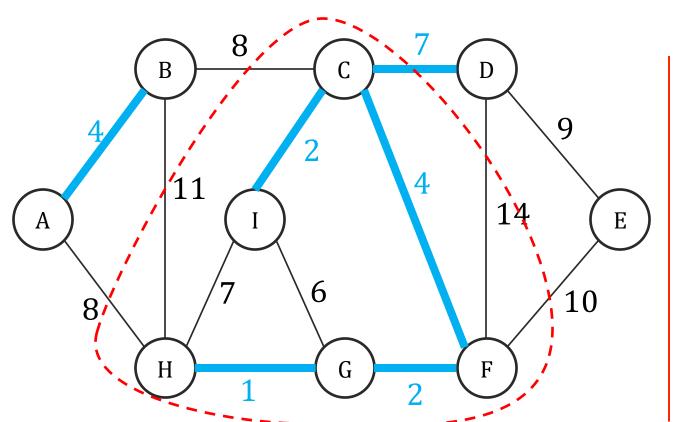
Kruskal(G = (V,E)): $X = \{\}$ for $e \in E$ in increasing order of weight If adding e to X doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

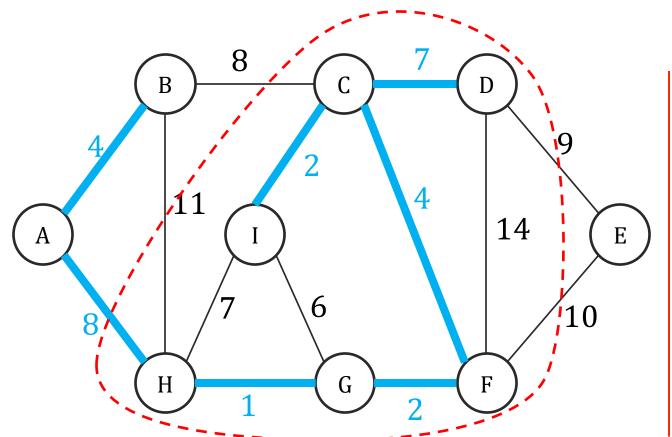
Instead of explicitly defining *S*, $V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? *S*, $V \setminus S$ correspond to connected components for *u* and *v*.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

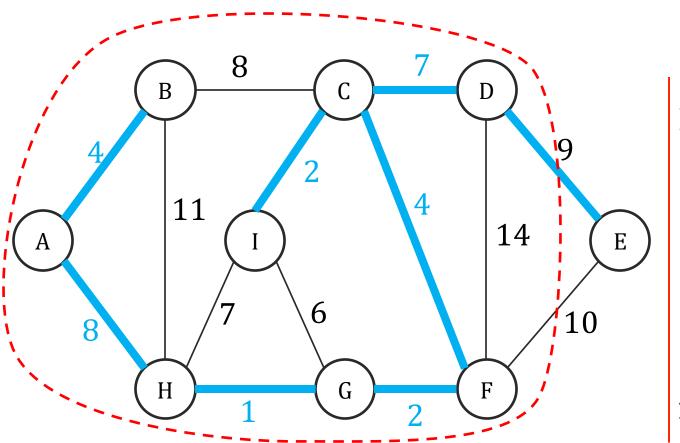
Which cut? *S*, *V* \setminus *S* correspond to connected components for *u* and *v*.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? *S*, *V* \setminus *S* correspond to connected components for *u* and *v*.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Kruskal's Correctness

Does Kruskal return a minimum spanning tree?

- Since *X* ∪ {(*u*, *v*)} doesn't have a cycle, *u* and *v* belong to two different connected components of *X*.
- Let $S \leftarrow$ Connected component including u
- So (u, v) is the lightest edge from S to $V \setminus S$.
- \rightarrow Kruskal fits the meta algorithm description, so it find an MST.

Kruskal's Runtime and Union-Find

How do we quickly check if $X \cup \{(u, v)\}$ has a cycle?

 \rightarrow We need to check if *u*'s connected component in *X* = *v*'s connected component in *X*

Union-FIND: A data-structure for disjoint sets

- makeSet(u): create a set from element u. Takes O(1)
- find(u): return the set that includes element u. Takes $O(\log(n))$
- union(u, v): Merge two sets containing u and v. Takes $O(\log(n))$

```
Fast-Kruskal(G = (V,E)):

for v \in V, makeSet(v)

for edges (u, v) \in E in increasing order of weight

If find(v) \neq find(u)

X \leftarrow X \cup \{(u, v)\}

union(u, v)

return X
```

Runtime of Kruskal's Algorithm

Sorting *m* edges: $O(m \log(m)) = O(m \log(n))$. Since $m \le n^2$. Everything else:

- *n* calls to makeSet
- 2*m* calls to find: 2 calls per edge to find its endpoints.
- n 1 calls to union: A tree has n 1 edges.

Total: $O((m + n) \log(n))$. For connected graphs = $O(m \log(n))$.

```
Fast-Kruskal(G = (V,E)):

for v \in V, makeSet(v)

for edges (u, v) \in E in increasing order of weight

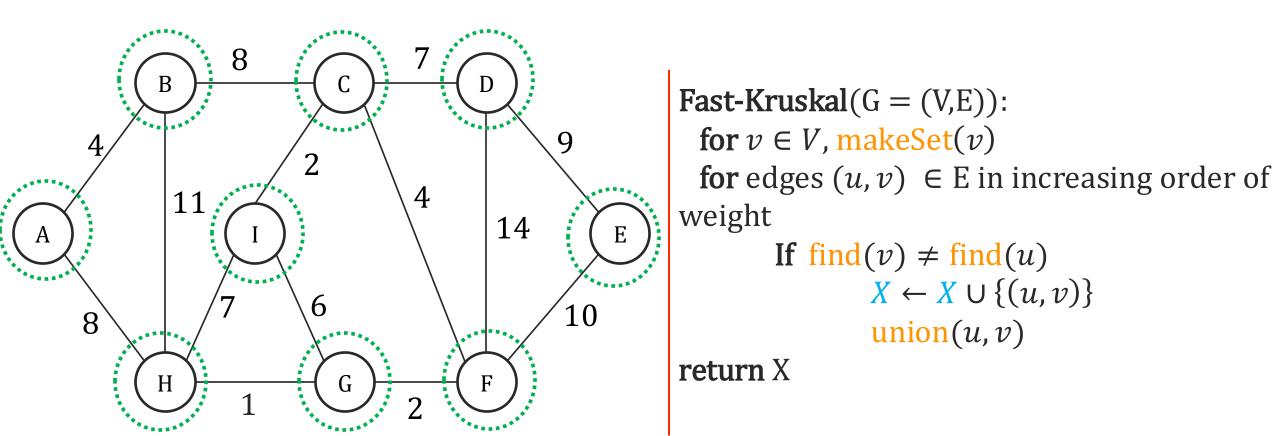
If find(v) \neq find(u)

X \leftarrow X \cup \{(u, v)\}

union(u, v)

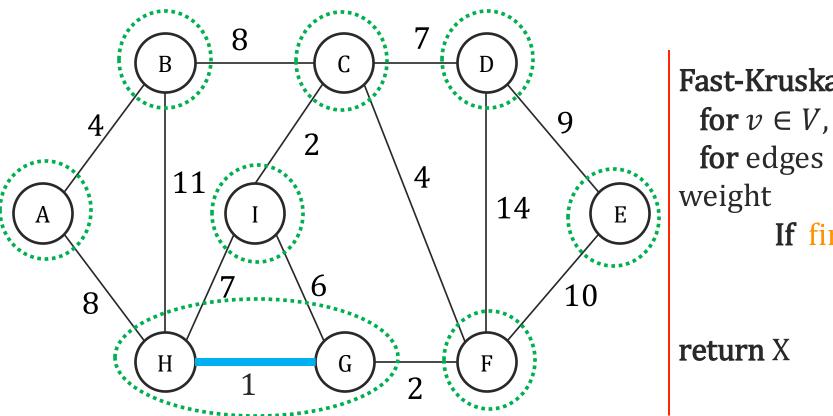
return X
```

This slide is skipped in class.



This slide is skipped in class.

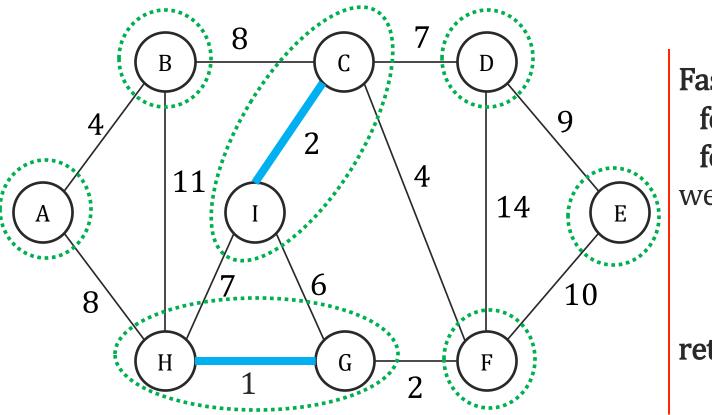
Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.



Fast-Kruskal(G = (V,E)): for $v \in V$, makeSet(v) for edges $(u, v) \in E$ in increasing order of weight If find(v) \neq find(u) $X \leftarrow X \cup \{(u, v)\}$ union(u, v)

This slide is skipped in class.

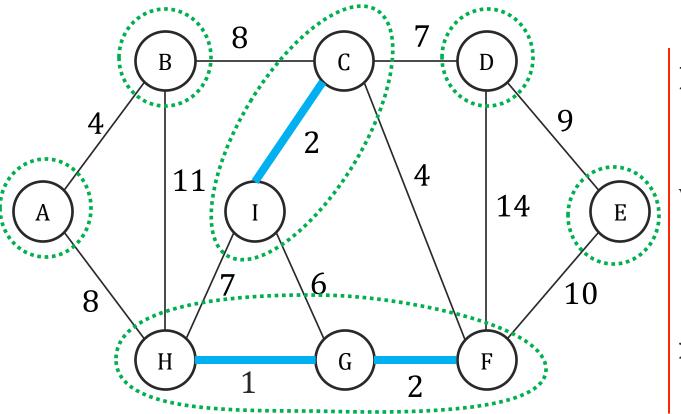
Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.



Fast-Kruskal(G = (V,E)): for $v \in V$, makeSet(v) for edges $(u, v) \in E$ in increasing order of weight If find(v) \neq find(u) $X \leftarrow X \cup \{(u, v)\}$ union(u, v) return X

This slide is skipped in class.

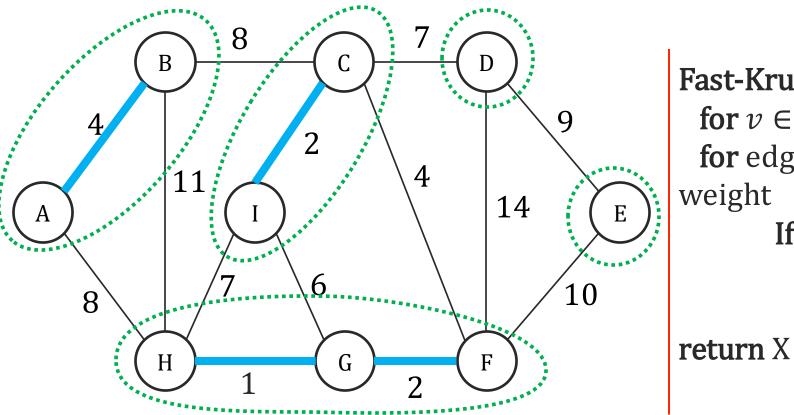
Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.



Fast-Kruskal(G = (V,E)): for $v \in V$, makeSet(v) for edges $(u, v) \in E$ in increasing order of weight If find(v) \neq find(u) $X \leftarrow X \cup \{(u, v)\}$ union(u, v) return X

This slide is skipped in class.

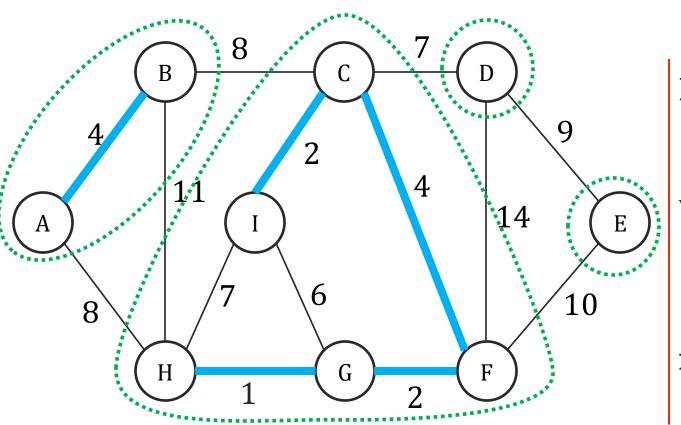
Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.



Fast-Kruskal(G = (V,E)): for $v \in V$, makeSet(v) for edges $(u, v) \in E$ in increasing order of weight If find(v) \neq find(u) $X \leftarrow X \cup \{(u, v)\}$ union(u, v)

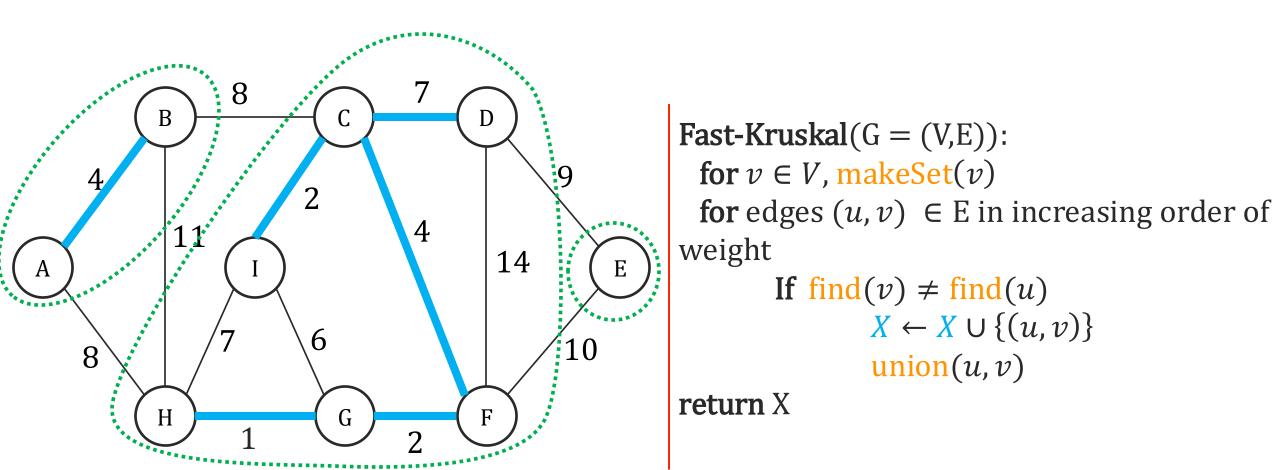
This slide is skipped in class.

Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.

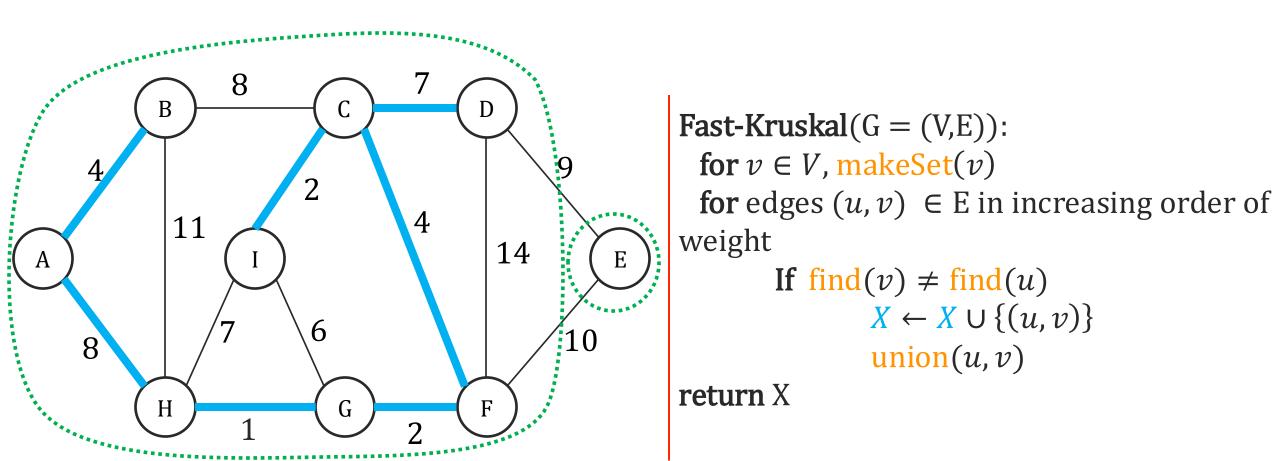


Fast-Kruskal(G = (V,E)): for $v \in V$, makeSet(v) for edges $(u, v) \in E$ in increasing order of weight If find(v) \neq find(u) $X \leftarrow X \cup \{(u, v)\}$ union(u, v) return X

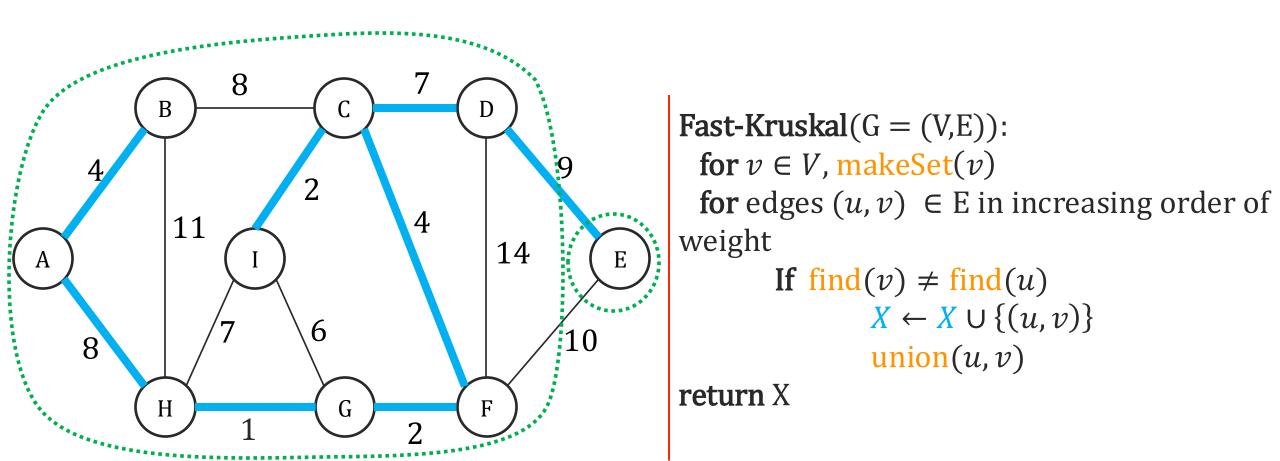
This slide is skipped in class.



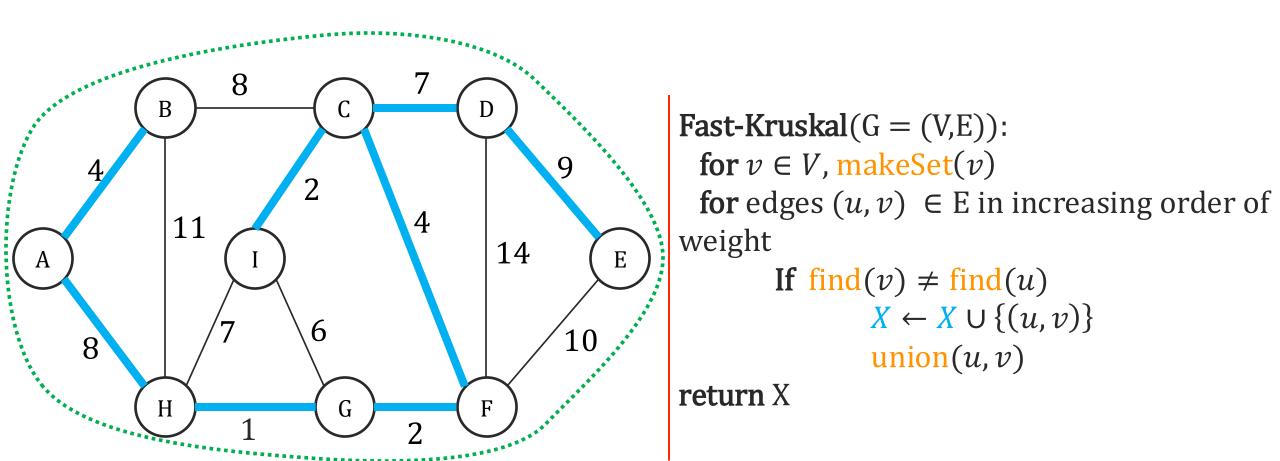
This slide is skipped in class.



This slide is skipped in class.



This slide is skipped in class.



Wrap up

We saw a meta algorithm for MSTs

- \rightarrow One variant: Kruskal's Algorithm
 - → Greedily add the lightest edge that doesn't create a cycle
- \rightarrow Union-Find: Useful data structure for keeping track of sets and trees.

Next time

• Another algorithm for MSTs