
CS 170
Efficient Algorithms and Intractable Problems

Nika Haghtalab and John Wright

EECS, UC Berkeley

Lecture 9
Huffman Codes and Minimum Spanning Trees

Announcements
Midterm 1 next week, Feb 25 (look out for the Midterm Logistics post)
→ You can post about past exams on Ed (we have past exam mega threads)
→ Scope: Everything up and including Feb 20 lectures.
→ Review sessions: Details will be announced
→ Feel free to ask exam questions in OH/HWP. But we recommend you do

that earlier in the week. Fridays will be busy due to HW.

Homework:
→ HW4 due on Saturday
→ HW5 is optional (not graded). It’ll be posted with solutions, so review the

solutions!

Last Lecture and Today: Greedy Algorithms

Algorithms that build up a solution

piece by piece, always choosing the next piece

that offers the most obvious and immediate benefit!

We saw:
Scheduling
Satisfiability

Today:
Optimal encoding
Minimum Spanning Trees (1 alg next time)

Recap: A Pattern in Greedy Algorithm and Analyses
Greedy makes a series of choices. We show that no choice rules out the optimal
solution. How?

Inductive Hypothesis:

→The first 𝑚 choices of greedy match the first 𝑚 steps of some optimal solution.

→Or, after greedy makes 𝑚 choices, achieving optimal solution is still a possibility.

Base case: → At the beginning, achieving optimal is still possible!

Inductive step: Use problem-specific structure

If the first 𝑚 choices match, we can change OPT’s 𝑚 + 1𝑠𝑡 choice to that of greedy’s, and
still have a valid solution that no worst than OPT.

Conclusion: The greedy algorithm outputs an optimal solution.

Today
More on greedy algorithms:

• Huffman Coding
• Minimum Spanning Trees

Data Compression and Encoding
Common encodings of English characters use a fixed length of code per character.

If the goal is to save space, can we encode the alphabet better?
• If we know which letters are more common
• Use shorter codes for very common characters (like e, a, s, t).

Example of encodings
Assume we just have 4 letters, A, B, C, D with associated frequencies.

Freq. Letter Encoding #1 Encoding #2 Encoding #3

0.4 𝐴

0.2 𝐵

0.3 𝐶

0.1 𝐷

Total cost

Encoding #2 is lossy: 000 might represent AB or BA, not clear which one.
Encoding #1 and #3: No code is a prefix of another.
→ There is only one way to interpret any code.

Example of encodings
Assume we just have 4 letters, A, B, C, D with associated frequencies.

Freq. Letter Encoding #1 Encoding #2 Encoding #3

0.4 𝐴 00 0 0

0.2 𝐵 01 00 110

0.3 𝐶 10 1 10

0.1 𝐷 11 01 111

Total cost 2𝑁 (0.4 + 0.3) × 𝑁 + (0.1 + 0.2) × 2𝑁
= 1.3𝑁

0.4 × 𝑁 + 0.3 × 2𝑁 + 0.2 + 0.1
× 3𝑁 = 1.9𝑁

Encoding #2 is lossy: 000 might represent AB or BA, not clear which one.
Encoding #1 and #3: No code is a prefix of another.
→ There is only one way to interpret any code.

Prefix free code: No code x is a prefix of another code z.
Any prefix-free code on 𝑛 letters can be represented as a binary tree with 𝑛 leaves.
• Leaves indicate the coded letter
• The code is the “address” of a letter in the tree

Any Prefix codes and Trees

A
0.4

C
0.3

B
0.2

D
0.1

0

0

0 1

1

1

0

10

110 111

means “A” has freq. 0.4.

Any tree with the letters at the leaves, also represent a
prefix-free code.

A
0.4

Imagine we are encoding a length N text:
→ that is written in 𝑛 letters with frequencies 𝑓1, 𝑓2, … , 𝑓𝑛 .

How long is the encoded message?

Tree and Code Size

A
0.4

C
0.3

B
0.2

D
0.1

0

0

0 1

1

1

0

10

110 111

means “A” has freq. 0.4.

length of encoding =
𝑖=1

𝑛

𝑁 ⋅ 𝑓𝑖 ⋅ len(𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑖)

A
0.4

Definition: Cost of a prefix-code/tree is

Cost(tree) =
𝑖=1

𝑛

𝑓𝑖 ⋅ depth(𝑙𝑒𝑎𝑓 𝑖)

Optimal Prefix-free Codes
Input: 𝑛 symbols with frequencies 𝑓1, … , 𝑓𝑛
Output: A tree (prefix-free code) encoding.
Goal: We want to output the tree/code with the smallest cost

Cost(tree) =
𝑖=1

𝑛

𝑓𝑖 ⋅ depth(𝑙𝑒𝑎𝑓 𝑖)

What do optimal subtrees look like?
Even without looking at the frequencies, could this tree be optimal?

A

B C

0

0 1

1

1

A

B C

0

0 1

1No symbol will have a larger depth

Claim: There is a “full binary tree” that is an optimal coding.
Proof: we just argued above! Means that every non-leaf node has two children.

Discuss

What do optimal subtrees look like?

Is the following an optimal coding?

D
0.1

A
0.4

B
0.2

0

0 1

1

1
No, swapping less frequent

symbols to be lower in the tree
will reduce the cost

0
C

0.2

A
0.4

D
0.1

B
0.2

0

0 1

1

1

0
C

0.2

Discuss

What do optimal subtrees look like?
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.
Proof: By contradiction. Let 𝑥, 𝑦 be symbols with lowest frequencies and assume they
aren’t siblings.
• Let symbols 𝑎, 𝑏 be the deepest pair of siblings.
→A lowest sibling pair exists because we have a full binary tree.
→At least one of 𝑎, 𝑏 is neither 𝑥 or 𝑦. Let’s say 𝑥 ≠ 𝑎.

𝑥

𝑎 𝑏

What happens if we swap 𝑥 and 𝑎?

What do optimal subtrees look like?
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.
Proof: By contradiction. Let 𝑥, 𝑦 be symbols with lowest frequencies and assume they
aren’t siblings.
• Let symbols 𝑎, 𝑏 be the deepest pair of siblings.
→A lowest sibling pair exists because we have a full binary tree.
→At least one of 𝑎, 𝑏 is neither 𝑥 or 𝑦. Let’s say 𝑥 ≠ 𝑎.

𝑎

𝑥 𝑏

What happens if we swap 𝑥 and 𝑎?
→ The	cost	of	tree	can’t	increase,	because 𝑓𝑎 ≥ 𝑓𝑥
and we just switch the length of 𝑎’s code and 𝑥 ’s code.

What do optimal subtrees look like?
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.
Proof: By contradiction. Let 𝑥, 𝑦 be symbols with lowest frequencies and assume they
aren’t siblings.
• Let symbols 𝑎, 𝑏 be the deepest pair of siblings.
→A lowest sibling pair exists because we have a full binary tree.
→At least one of 𝑎, 𝑏 is neither 𝑥 or 𝑦. Let’s say 𝑥 ≠ 𝑎.

𝑎

𝑥 𝑏

What happens if we swap 𝑥 and 𝑎?
→ The	cost	of	tree	can’t	increase,	because 𝑓𝑎 ≥ 𝑓𝑥
and we just switch the length of 𝑎’s code and 𝑥 ’s code.

Repeat this swap and logic if 𝑦 ≠ 𝑏 either. 𝑦

What do optimal subtrees look like?
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.
Proof: By contradiction. Let 𝑥, 𝑦 be symbols with lowest frequencies and assume they
aren’t siblings.
• Let symbols 𝑎, 𝑏 be the deepest pair of siblings.
→A lowest sibling pair exists because we have a full binary tree.
→At least one of 𝑎, 𝑏 is neither 𝑥 or 𝑦. Let’s say 𝑥 ≠ 𝑎.

𝑎

𝑥 𝑦

What happens if we swap 𝑥 and 𝑎?
→ The	cost	of	tree	can’t	increase,	because 𝑓𝑎 ≥ 𝑓𝑥
and we just switch the length of 𝑎’s code and 𝑥 ’s code.

Repeat this swap and logic if 𝑦 ≠ 𝑏 either. 𝑏

We found a cheaper tree, where 𝑥, 𝑦 are siblings!

What do optimal subtrees look like?
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.
Proof: By contradiction. Let 𝑥, 𝑦 be symbols with lowest frequencies and assume they
aren’t siblings.
• Let symbols 𝑎, 𝑏 be the deepest pair of siblings.
→A lowest sibling pair exists because we have a full binary tree.
→At least one of 𝑎, 𝑏 is neither 𝑥 or 𝑦. Let’s say 𝑥 ≠ 𝑎.

𝑎

𝑥 𝑦

What happens if we swap 𝑥 and 𝑎?
→ The	cost	of	tree	can’t	increase,	because 𝑓𝑎 ≥ 𝑓𝑥
and we just switch the length of 𝑎’s code and 𝑥 ’s code.

Repeat this swap and logic if 𝑦 ≠ 𝑏 either. 𝑏

We found a cheaper tree, where 𝑥, 𝑦 are siblings!

Formally: Swapping 𝑥 which is at shorter depth d, with 𝑎 which is at larger depth
D, gives:

Greedy algorithm
Idea: Since the lowest frequency letters are sibling leaves in some optimal tree, we
will greedily build subtrees from the lowest frequency letters.
This is called Huffman Coding.

Huffman-code(𝑓1, … , 𝑓𝑛)
 For all 𝑎 = 1, … , 𝑛,
 create node 𝑎 with 𝑎. freq = 𝑓𝑎 and no children
 Insert the node in a priority queue 𝑄 use key 𝑓𝑎
 While len 𝑄 > 1
 𝑥 and 𝑦 ← the nodes in 𝑄 with lowest keys
 create a node 𝑧, with 𝑧. freq = 𝑥. freq + 𝑦. freq
 Let 𝑧. 𝑙𝑒𝑓𝑡 = 𝑥 and 𝑧. 𝑟𝑖𝑔ℎ𝑡 = 𝑦.
 Insert 𝑧 with key 𝑓𝑧 into 𝑄 and remove 𝑥, 𝑦.
 Return the only node left in 𝑄.

𝑎, 𝑓𝑎≡

𝑓

𝑎, 𝑓𝑎

𝑧, 𝑓𝑧

𝑦, 𝑓𝑦𝑥, 𝑓𝑥

Node 𝑎 object with

a.freq = 𝑓𝑎

a.left = left child

a.right = right child

D,
0.16

A,
0.45

B,
0.13

F,
0.05

C,
0.12

E,
0.09

0.14

0 1

Example of Huffman Code

Smallest frequencies

D,
0.16

A,
0.45

B,
0.13

F,
0.05

C,
0.12

E,
0.09

0.14

0 1

Example of Huffman Code

Smallest frequencies

0.25

0 1

D,
0.16

A,
0.45

B,
0.13

F,
0.05

C,
0.12

E,
0.09

0.14

0 1

Example of Huffman Code

Smallest frequencies

0.25

0 1

0.3

0

1

D,
0.16

A,
0.45

B,
0.13

F,
0.05

C,
0.12

E,
0.09

0.14

0 1

Example of Huffman Code

0.25

0 1

0.3

0

1

Smallest frequencies

0
1

0.55

D,
0.16

A,
0.45

B,
0.13

F,
0.05

C,
0.12

E,
0.09

0.14

0 1

Example of Huffman Code

0.25

0 1

0.3

0

1

0
1

0.55

Smallest frequencies

0

11

The corresponding code

D,
0.16

A,
0.45

B,
0.13

F,
0.05

C,
0.12

E,
0.09

0.14

0 1

0.25

0 1

0.3

10

0.55
10

1

10

0

100 101 110

1110 1111

The tree cost:
𝟏 ⋅ 𝟎. 𝟒𝟓

+
𝟑 ⋅ (𝟎. 𝟏𝟑 + 𝟎. 𝟏𝟐 + 𝟎. 𝟏𝟔)

+
𝟒 ⋅ (𝟎. 𝟎𝟗 + 𝟎. 𝟎𝟓)

= 𝟐. 𝟐𝟒

Runtime of Huffman Coding

Huffman-code(𝑓1, … , 𝑓𝑛)
 For all 𝑎 = 1, … , 𝑛,
 create node 𝑎 with 𝑎. freq = 𝑓𝑎 and no children
 Insert the node in a priority queue 𝑄 use key 𝑓𝑎
 While len 𝑄 > 1
 𝑥 and 𝑦 ← the nodes in 𝑄 with lowest keys
 create a node 𝑧, with 𝑧. freq = 𝑥. freq + 𝑦. freq
 Let 𝑧. 𝑙𝑒𝑓𝑡 = 𝑥 and 𝑧. 𝑟𝑖𝑔ℎ𝑡 = 𝑦.
 Insert 𝑧 with key 𝑓𝑧 into 𝑄 and remove 𝑥, 𝑦.
 Return the only node left in 𝑄.

𝑓

Priority queue operation (Lec. 7): Binary heap takes 𝑂 log(𝑛) to Insert and DeleteMin.

𝑛 Inserts = 𝑂 𝑛 log 𝑛

2 DeleteMin

1 Insert

𝑛 iterations, total of
𝑂 𝑛 log 𝑛

Total runtime of Huffman coding: 𝑂 𝑛 log 𝑛

Optimality of Huffman Coding
Claim: Huffman coding is an optimal prefix-free tree.
Recall we use induction to show that greedy choices don’t rule out optimality.

We use induction on the number of letters 𝑛.

Base case: 𝑛 = 2. The optimal code is to assign one letter to 0 and the other 1.
Huffman does the same.

Induction Hypothesis: For 𝑛 − 1 letters, Huffman coding is an optimal pre-fix tree.

Optimality of Huffman Coding

1, 𝑓1 2, 𝑓2

1,2 ,
𝑓1 + 𝑓2

Merging nodes 1 and 2

Claim: Huffman coding is an optimal prefix-free tree.

Induction step: Let T below be the optimal prefix-free tree for frequencies 𝑓1, … , 𝑓𝑛
and WLOG 𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑛 .
• WLOG, assume that the two lowest frequency nodes are siblings.
→ Because, we proved earlier that that’s what optimal trees look like!

• Merge the two nodes

cost T = cost T′ + (𝑓1 + 𝑓2)

𝐓 𝐓′

Optimality of Huffman Coding
Claim: Huffman coding is an optimal prefix-free tree.

1, 𝑓1 2, 𝑓2

1,2 ,
𝑓1 + 𝑓2

Merging nodes 1 and 2

cost H = cost H′ + (𝑓1 + 𝑓2)

𝐇 𝐇′

By construction of Huffman tree 𝑯, 𝑓1 and 𝑓2 are lowest siblings. Merge them here too.
→ We get a Huffman tree for 𝑛 − 1 letters and frequencies 𝑓1 + 𝑓2 , 𝑓3, … , 𝑓𝑛.

1, 𝑓1 2, 𝑓2

1,2 ,
𝑓1 + 𝑓2

Merging nodes 1 and 2

cost T = cost T′ + (𝑓1 + 𝑓2)

𝐓 𝐓′

Optimality of Huffman Coding
Claim: Huffman coding is an optimal prefix-free tree.

We showed that for tree T that is optimal for 𝑛 letters, Cost T = cost T′ + (𝑓1 + 𝑓2).

And for Huffman coding tree H for 𝑛 letters, Cost H = cost H′ + (𝑓1 + 𝑓2).

Putting everything together.

cost H′ ≤ cost(𝑇′) cost 𝐻 ≤ cost(𝑇)

By induction hypothesis,
Huffman coding for 𝑛 − 1
letters is optimal

𝑛 − 1 letters 𝑛 letters

Huffman is optimal
for 𝑛 letters

Minimum Spanning Trees

Minimum Spanning Trees

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

Minimum Spanning Tree (MST) Problem:
Input: a weighted graph 𝐺 = (𝑉, 𝐸) with non-negative weights.
Output: A set of edges that connected graph and has the smallest cost.

This is a
spanning tree.

Definition: A spanning tree, is a tree that connects all vertices of a graph G.

It has cost 67

cost T =
𝑒∈𝑇

𝑤𝑒

Cost of a tree

Minimum Spanning Trees

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

Minimum Spanning Tree (MST) Problem:
Input: a weighted graph 𝐺 = (𝑉, 𝐸) with non-negative weights.
Output: A set of edges that connected graph and has the smallest cost.

This is an MST

Definition: A spanning tree, is a tree that connects all vertices of a graph G.

It has cost 37

cost T =
𝑒∈𝑇

𝑤𝑒

Cost of a tree

MST applications and Algorithms
Biggest applications:
• Network design: Connecting cities with roads/electricity/telephone/…
• Pre-processing for other algorithms.

We will see two greedy algorithms for building Minimum Spanning Trees.

What do MSTs look like?

Any minimum weight set of edges that connects all vertices is a tree! Why?

If a set of edges connecting all vertices
has a cycle, we can remove one of its
edges and still connect all vertices.
→ Removing any edge on the cycle,
keeps the graph still connected.

𝑣𝑢

The following are two equivalent definition of a tree on 𝑛 vertices.
1. A connected acyclic graph.
2. A connected graph with 𝑛 − 1 edges.

Facts about Trees

Graph Structures and Facts

Cuts and Graphs
Definition: A cut in a graph is a partition of vertices to two disjoint sets 𝑆 and 𝑉 ∖ 𝑆.
→ we’ll color them differently to make the two sets clear.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

Cuts and Graphs
Definition: A cut in a graph is a partition of vertices to two disjoint sets 𝑆 and 𝑉 ∖ 𝑆.
→ we’ll color them differently to make the two sets clear.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

𝑆

𝑉 ∖ 𝑆

Cuts and Graphs
Definition: A cut in a graph is a partition of vertices to two disjoint sets 𝑆 and 𝑉 ∖ 𝑆.
→ we’ll color them differently to make the two sets clear.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

This is another cut

𝑆 𝑉 ∖ 𝑆

Greedy Algorithms and Cuts
Imagine, we already discovered some of the edges 𝑋 of a minimum spanning tree T.
Take any cut where edges 𝑋 don’t cross it. i.e., no edge 𝑢, 𝑣 ∈ 𝑋 has 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ∖ 𝑆.
What’s so special about the edge of MST that is crossing the cut?

Edges 𝑋:

MST T:
and

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

B

A

H G

Greedy Algorithms and Cuts
Imagine, we already discovered some of the edges 𝑋 of a minimum spanning tree T.
Take any cut where edges 𝑋 don’t cross it. i.e., no edge 𝑢, 𝑣 ∈ 𝑋 has 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑉 ∖ 𝑆.
What’s so special about the edge of MST that is crossing the cut?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1
7 68

11

8

4

Edges 𝑋:

MST T:
and

Lowest weight edge
crossing the cut is an
MST edge!

Formally: The Cut Property
Claim: Suppose 𝑋 ⊆ 𝐸 is part of an MST for graph 𝐺. Consider a cut 𝑆, V ∖ 𝑆, such that
• 𝑋 has no edges from 𝑆 to 𝑉 ∖ 𝑆.
Let 𝑒 ∈ 𝐸 be the smallest weight edge from 𝑆 to 𝑉 ∖ 𝑆.
Then 𝑋 ∪ {𝑒} is also a subset of an MST for graph 𝐺.

Proof: Take the MST T that satisfies the conditions of the above claim
Case 1) 𝑒 ∈ 𝑇. Then by definition 𝑋 ∪ 𝑒 ∈ 𝑇.

𝑆 𝑉 ∖ 𝑆

𝑒

𝑋: blue edges
T: blue and red edges.

Proof: Take the MST T that satisfies the conditions of the above claim.
Case 2) 𝑒 ∉ 𝑇. Then, 𝑇 ∪ 𝑒 must form a cycle
→ This cycle must have another edge 𝑒′ ∈ 𝑇 that crosses from 𝑆 to 𝑉 ∖ 𝑆.
Consider 𝑇′ = 𝑇 ∪ 𝑒 ∖ 𝑒′:
→𝑇′ also connects all vertices of the graph
→𝑐𝑜𝑠𝑡 𝑇′ = 𝑐𝑜𝑠𝑡 𝑇 + 𝑤𝑒 − 𝑤𝑒′ ≤ 𝑐𝑜𝑠𝑡 𝑇 .
→So, 𝑇′ is also a minimum spanning tree!
𝑋 ∪ {𝑒} is also a subset of an MST for graph 𝐺

Formally: The Cut Property
Claim: Suppose 𝑋 ⊆ 𝐸 is part of an MST for graph 𝐺. Consider a cut 𝑆, V ∖ 𝑆, such that
• 𝑋 has no edges from 𝑆 to 𝑉 ∖ 𝑆.
Let 𝑒 ∈ 𝐸 be the smallest weight edge from 𝑆 to 𝑉 ∖ 𝑆.
Then 𝑋 ∪ {𝑒} is also a subset of an MST for graph 𝐺.

𝑆 𝑉 ∖ 𝑆
𝑒′

𝑒

𝑋: blue edges
T: blue and red edges.

Greedy Algorithms based on the Cut Property
Any algorithm that fits the following form finds an MST.

𝑋 = {}
Repeat until 𝑋 = |𝑉| − 1
 Pick 𝑆 ⊆ 𝑉, s.t. 𝑋 has no edges from 𝑆 to 𝑉 ∖ 𝑆
 𝑒 ← smallest weight edge from 𝑆 to 𝑉 ∖ 𝑆
 𝑋 ← 𝑋 ∪ {𝑒}

Meta Algorithm for MST

Claim: The meta Algorithm above returns a minimum spanning tree.
Proof: By induction …
Induction step:
 The cut property ensures that 𝑋 ∪ {𝑒} is always a subset of an MST.

Different Algorithms
pick 𝑆 differently

Easy: Practice
formalizing
this induction.

Kruskal’s Algorithm

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Algorithm
Instead of explicitly defining 𝑆, 𝑉 ∖ 𝑆, Kruskal’s algorithm picks 𝑒 = (𝑢, 𝑣)
directly and ensures that (𝑢, 𝑣) is the lightest edge crossing some cut.
Which cut? 𝑆, 𝑉 ∖ 𝑆 correspond to connected components for 𝑢 and 𝑣.

Kruskal(G = (V,E)):

 X = {}

 for 𝑒 ∈ 𝐸 in increasing order of weight

 If adding 𝑒 to 𝑋 doesn’t create a cycle

 𝑋 ← 𝑋 ∪ {𝑒}.

return X

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

Kruskal’s Correctness
Does Kruskal return a minimum spanning tree?
• Since 𝑋 ∪ {(𝑢, 𝑣)} doesn’t have a cycle, 𝑢 and 𝑣 belong to two different

connected components of 𝑋.
• Let 𝑆 ← Connected component including 𝑢
• So (𝑢, 𝑣) is the lightest edge from 𝑆 to 𝑉 ∖ 𝑆.
→Kruskal fits the meta algorithm description, so it find an MST.

Kruskal’s Runtime and Union-Find
How do we quickly check if 𝑋 ∪ { 𝑢, 𝑣 } has a cycle?
→ We need to check if 𝑢’s connected component in 𝑋 = 𝑣’s connected component in 𝑋

Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Union-FIND: A data-structure for disjoint sets
• makeSet(𝑢): create a set from element 𝑢. Takes 𝑂 1
• find(𝑢): return the set that includes element 𝑢. Takes 𝑂(log(𝑛))
• union(𝑢, 𝑣): Merge two sets containing 𝑢 and 𝑣. Takes 𝑂(log(𝑛))

Runtime of Kruskal’s Algorithm
Sorting 𝒎 edges: 𝑂 𝑚 log(𝑚) = 𝑂 𝑚 log 𝑛 . Since 𝑚 ≤ 𝑛2.
Everything else:
• 𝑛 calls to makeSet
• 2𝑚 calls to find: 2 calls per edge to find its endpoints.
• 𝑛 − 1 calls to union: A tree has 𝑛 − 1 edges.
Total: 𝑂 (𝑚 + 𝑛) log 𝑛 . For connected graphs = 𝑂(𝑚 log(𝑛)).

Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Kruskal’s Algorithm with Connected Components
This slide is skipped in class.
Below, we highlight the connected components. Each refer to one set in Union-Find
Data structure.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4
Fast-Kruskal(G = (V,E)):
 for 𝑣 ∈ 𝑉, makeSet 𝑣
 for edges (𝑢, 𝑣) ∈ E in increasing order of
weight
 If find(𝑣) ≠ find(𝑢)
 𝑋 ← 𝑋 ∪ 𝑢, 𝑣
 union(𝑢, 𝑣)
return X

Next time
• Another algorithm for MSTs

Wrap up
We saw a meta algorithm for MSTs
→ One variant: Kruskal’s Algorithm
→ Greedily add the lightest edge that doesn’t create a cycle

→ Union-Find: Useful data structure for keeping track of sets and trees.

	Slide 1: CS 170 Efficient Algorithms and Intractable Problems
	Slide 2: Announcements
	Slide 3: Last Lecture and Today: Greedy Algorithms
	Slide 4: Recap: A Pattern in Greedy Algorithm and Analyses
	Slide 5: Today
	Slide 6: Data Compression and Encoding
	Slide 7: Example of encodings
	Slide 8: Example of encodings
	Slide 10: Any Prefix codes and Trees
	Slide 11: Tree and Code Size
	Slide 12: Optimal Prefix-free Codes
	Slide 13: What do optimal subtrees look like?
	Slide 14: What do optimal subtrees look like?
	Slide 15: What do optimal subtrees look like?
	Slide 16: What do optimal subtrees look like?
	Slide 17: What do optimal subtrees look like?
	Slide 18: What do optimal subtrees look like?
	Slide 20: What do optimal subtrees look like?
	Slide 21: Greedy algorithm
	Slide 22: Example of Huffman Code
	Slide 23: Example of Huffman Code
	Slide 24: Example of Huffman Code
	Slide 25: Example of Huffman Code
	Slide 26: Example of Huffman Code
	Slide 27: The corresponding code
	Slide 28: Runtime of Huffman Coding
	Slide 29: Optimality of Huffman Coding
	Slide 30: Optimality of Huffman Coding
	Slide 31: Optimality of Huffman Coding
	Slide 33: Optimality of Huffman Coding
	Slide 34: 3 Min Break and Attendance
	Slide 35: Minimum Spanning Trees
	Slide 36: Minimum Spanning Trees
	Slide 37: Minimum Spanning Trees
	Slide 38: MST applications and Algorithms
	Slide 39: What do MSTs look like?
	Slide 40
	Slide 41: Cuts and Graphs
	Slide 42: Cuts and Graphs
	Slide 43: Cuts and Graphs
	Slide 44: Greedy Algorithms and Cuts
	Slide 45: Greedy Algorithms and Cuts
	Slide 46: Formally: The Cut Property
	Slide 47: Formally: The Cut Property
	Slide 48: Greedy Algorithms based on the Cut Property
	Slide 49
	Slide 50: Kruskal’s Algorithm
	Slide 51: Kruskal’s Algorithm
	Slide 52: Kruskal’s Algorithm
	Slide 53: Kruskal’s Algorithm
	Slide 54: Kruskal’s Algorithm
	Slide 55: Kruskal’s Algorithm
	Slide 56: Kruskal’s Algorithm
	Slide 57: Kruskal’s Algorithm
	Slide 58: Kruskal’s Algorithm
	Slide 59: Kruskal’s Correctness
	Slide 60: Kruskal’s Runtime and Union-Find
	Slide 61: Runtime of Kruskal’s Algorithm
	Slide 62: Kruskal’s Algorithm with Connected Components
	Slide 63: Kruskal’s Algorithm with Connected Components
	Slide 64: Kruskal’s Algorithm with Connected Components
	Slide 65: Kruskal’s Algorithm with Connected Components
	Slide 66: Kruskal’s Algorithm with Connected Components
	Slide 67: Kruskal’s Algorithm with Connected Components
	Slide 68: Kruskal’s Algorithm with Connected Components
	Slide 69: Kruskal’s Algorithm with Connected Components
	Slide 70: Kruskal’s Algorithm with Connected Components
	Slide 71: Kruskal’s Algorithm with Connected Components
	Slide 72: Wrap up

