CS 170 Efficient Algorithms and Intractable Problems

Lecture 9 Huffman Codes and Minimum Spanning Trees

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

Midterm 1 next week, Feb 25 (look out for the Midterm Logistics post)

- \rightarrow You can post about past exams on Ed (we have past exam mega threads)
- → Scope: Everything up and including Feb 20 lectures.
- \rightarrow Review sessions: Details will be announced
- → Feel free to ask exam questions in OH/HWP. But we recommend you do that earlier in the week. Fridays will be busy due to HW.

Homework:

- \rightarrow HW4 due on Saturday
- → HW5 is optional (not graded). It'll be posted with solutions, so review the solutions!

Last Lecture and Today: Greedy Algorithms

Algorithms that build up a solution

piece by piece, always choosing the next piece

that offers the most obvious and immediate benefit!

We saw: Scheduling Satisfiability

Today:

Optimal encoding Minimum Spanning Trees (1 alg next time)

Recap: A Pattern in Greedy Algorithm and Analyses

Greedy makes a series of choices. We show that no choice rules out the optimal solution. How?

Inductive Hypothesis:

 \rightarrow The first *m* choices of greedy match the first *m* steps of some optimal solution.

 \rightarrow Or, after greedy makes *m* choices, achieving optimal solution is still a possibility.

<u>Base case:</u> \rightarrow At the beginning, achieving optimal is still possible!

Inductive step: Use problem-specific structure

If the first m choices match, we can change OPT's $m + 1^{st}$ choice to that of greedy's, and still have a valid solution that no worst than OPT.

Conclusion: The greedy algorithm outputs an optimal solution.

Today

More on greedy algorithms:

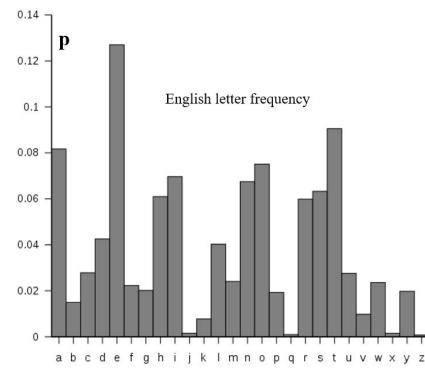
- Huffman Coding
- Minimum Spanning Trees

Data Compression and Encoding

Common encodings of English characters use a fixed length of code per character.

If the goal is to save space, can we encode the alphabet better?

- If we know which letters are more common
- Use shorter codes for very common characters (like e, a, s, t).



Example of encodings

Assume we just have 4 letters, A, B, C, D with associated frequencies.

Freq.	Letter	Encoding #1	Encoding #2	Encoding #3
0.4	A	00	0 -> N	0 N x0.4
0.2	В	01	00	110 3N x 0.2
0.3	С	10	1 -> N	10 Ln 2N x 0.3
0.1	D	11	0	11) 3Nx 0.1
Total cost		N:2N Churches	N(0.4+0.3) + 2N(0.2+0.1) = 1.3N	= 1.9 N

Encoding #2 is lossy: 000 might represent AB or BA, not clear which one.
Encoding #1 and #3: No code is a prefix of another.
There is only one way to interpret any code.

Any Prefix codes and Trees

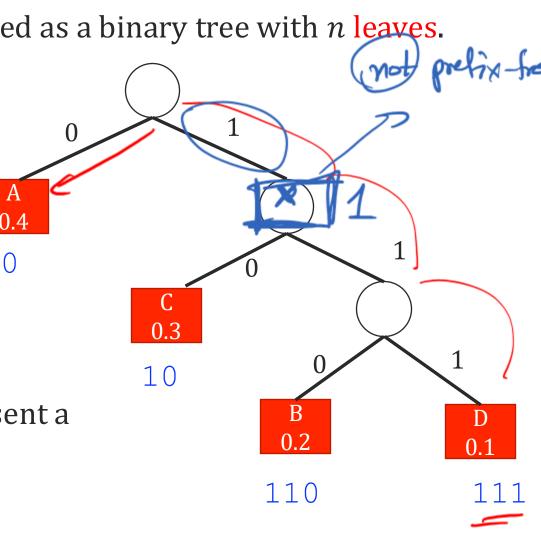
means "A" has freq. 0.4.

Prefix free code: No code x is a prefix of another code z.

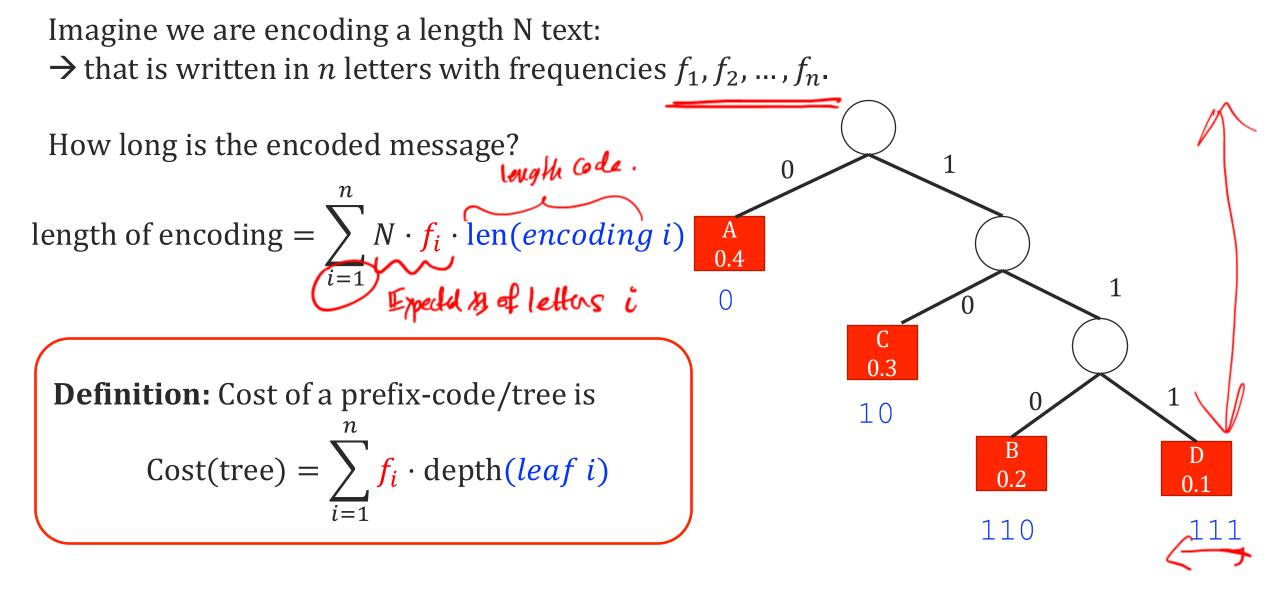
Any prefix-free code on *n* letters can be represented as a binary tree with *n* leaves.

- Leaves indicate the coded letter
- The code is the "address" of a letter in the tree

Any tree with the letters at the leaves, also represent a prefix-free code.



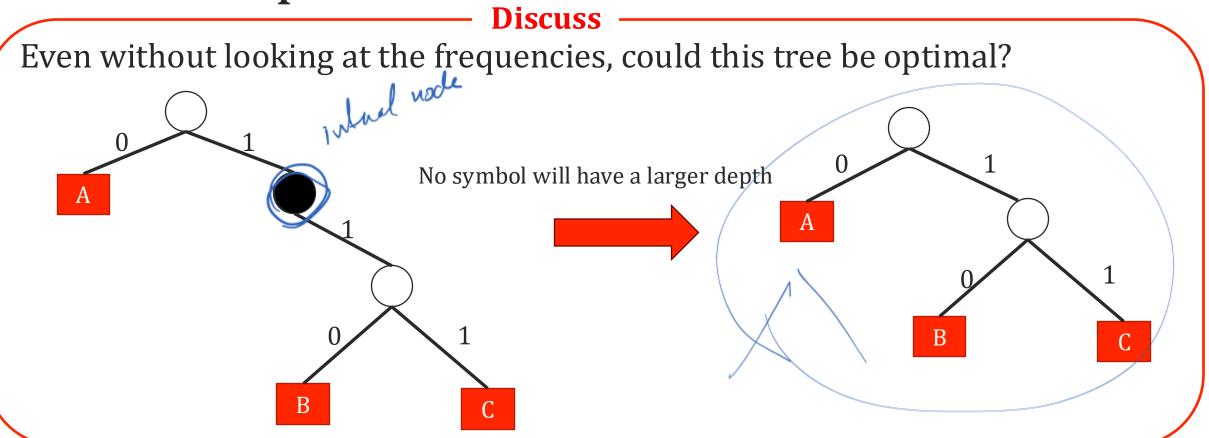
Tree and Code Size



Optimal Prefix-free Codes

Input: *n* symbols with frequencies $f_1, ..., f_n$ **Output:** A tree (prefix-free code) encoding. **Goal:** We want to output the tree/code with the smallest cost

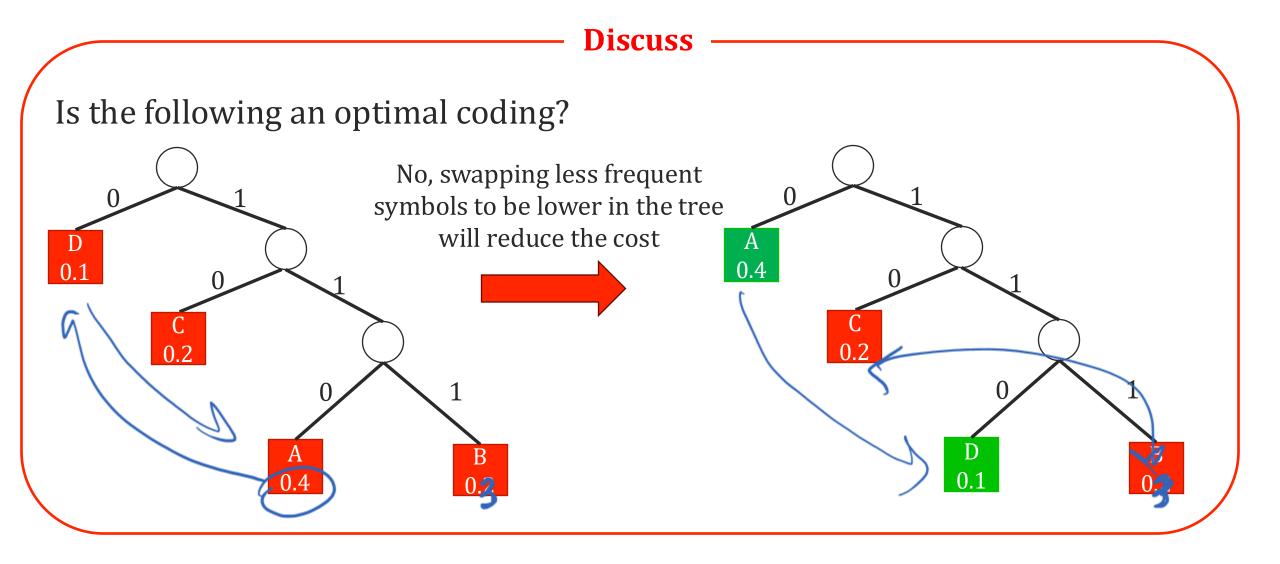
$$Cost(tree) = \sum_{i=1}^{n} f_{i} \cdot depth(leaf i)$$



Claim: There is a "full binary tree" that is an optimal coding.

Proof: we just argued above!

• Means that every non-leaf node has two children.



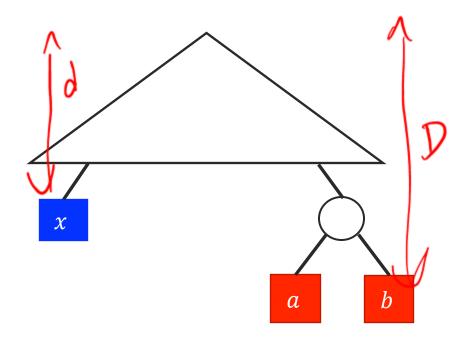
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.

Proof: By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

- Let symbols *a*, *b* be the deepest pair of siblings.
- \rightarrow A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of a, b is neither x or y. Let's say $x \neq a$.

What happens if we swap *x* and *a*?



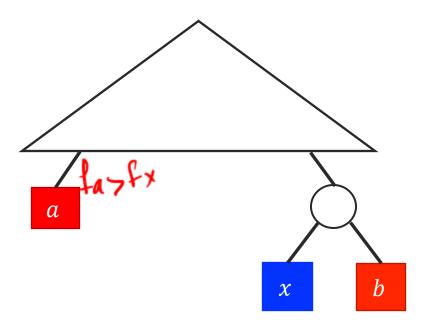
Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves. **Proof:** By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

• Let symbols *a*, *b* be the deepest pair of siblings.

 \rightarrow A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of *a*, *b* is neither *x* or *y*. Let's say $x \neq a$.

What happens if we swap x and a? → The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.



Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves. **Proof:** By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

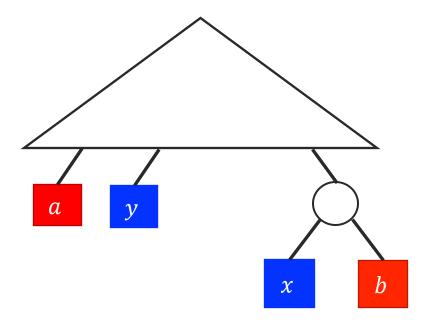
• Let symbols *a*, *b* be the deepest pair of siblings.

 \rightarrow A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of *a*, *b* is neither *x* or *y*. Let's say $x \neq a$.

What happens if we swap x and a? \rightarrow The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Repeat this swap and logic if $y \neq b$ either.



Claim: There is an optimal tree where the two lowest freq. symbols are sibling leaves.

Proof: By contradiction. Let *x*, *y* be symbols with lowest frequencies and assume they aren't siblings.

a

• Let symbols *a*, *b* be the deepest pair of siblings.

 \rightarrow A lowest sibling pair exists because we have a full binary tree.

 \rightarrow At least one of *a*, *b* is neither *x* or *y*. Let's say $x \neq a$.

What happens if we swap x and a? → The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Repeat this swap and logic if $y \neq b$ either.

We found a cheaper tree, where *x*, *y* are siblings!

Claim: There is an op*** Proof:** By contradicti aren't siblings.

• Let symbols a, b be \rightarrow A lowest sibling pa \rightarrow At least one of a, b **Formally**: Swapping *x* which is at shorter depth d, with *a* which is at larger depth D, gives

Cost(old tree) - Cost(New tree) = $(f_a - f_x)D + (f_x - f_a)d$ = $(f_a - f_x)(D - d)$ ≥ 0

a

What happens if we swap x and a? \rightarrow The cost of tree can't increase, because $f_a \ge f_x$ and we just switch the length of a's code and x 's code.

Repeat this swap and logic if $y \neq b$ either.

We found a cheaper tree, where *x*, *y* are siblings!

Greedy algorithm

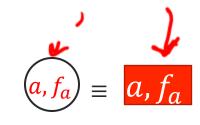
Cost (T) = Zi fi. leng (Cally i) i depth of leafi

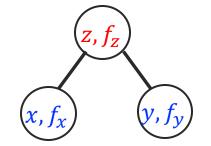
Idea: Since the lowest frequency letters are sibling leaves in some optimal tree, we will greedily build subtrees from the lowest frequency letters.

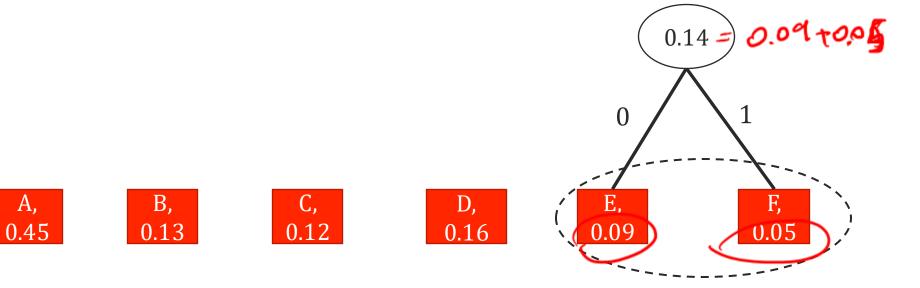
This is called Huffman Coding.

Node *a* object with a.freq = f_a a.left = left child a.right = right child

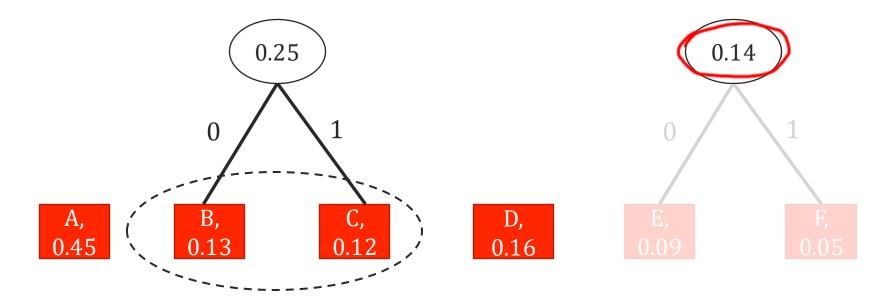
Huffman-code (f_1, \dots, f_n) For all $a = 1, \dots, n$, create node *a* with *a*. freq = f_a and no children Insert the node in a priority queue Q use key f_a While len(Q) > 1x and y \leftarrow the nodes in Q with lowest keys create a node *z*, with *z*. freq = x. freq + y. freq Let z. left = x and z. right = y. Insert z with key f_z into Q and remove x, y. Return the only node left in Q.



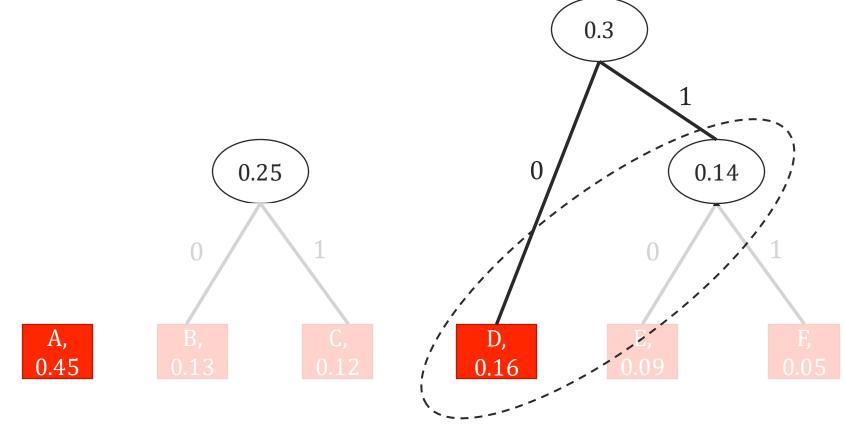




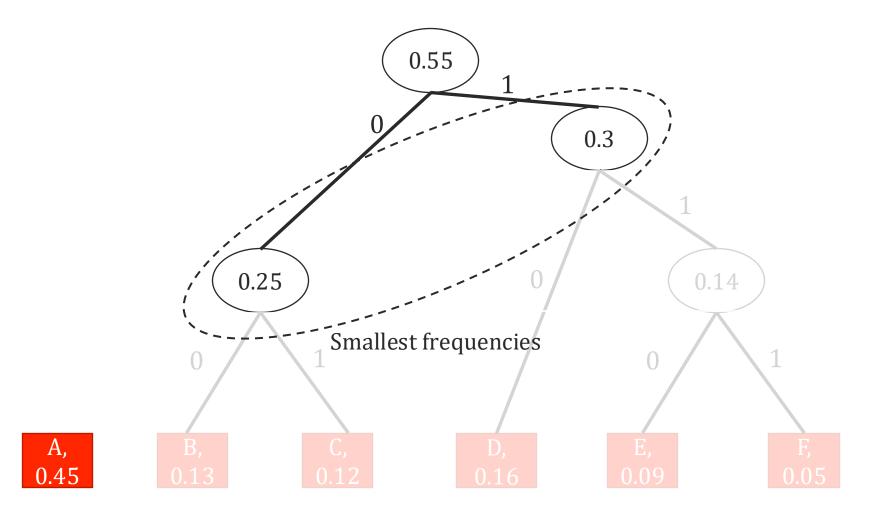
Smallest frequencies

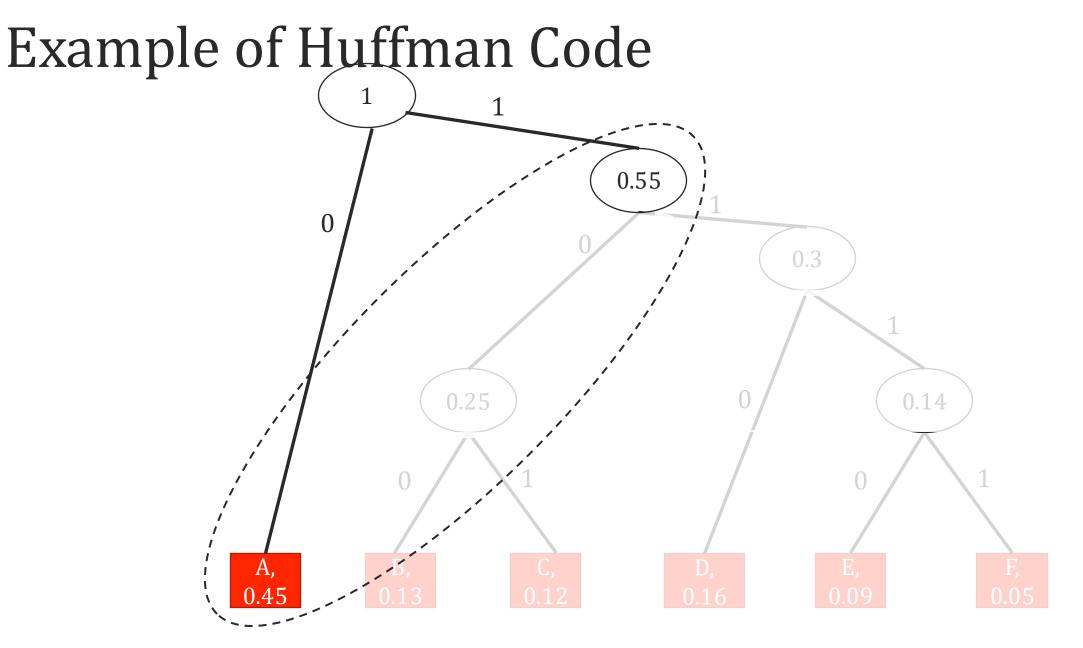


Smallest frequencies



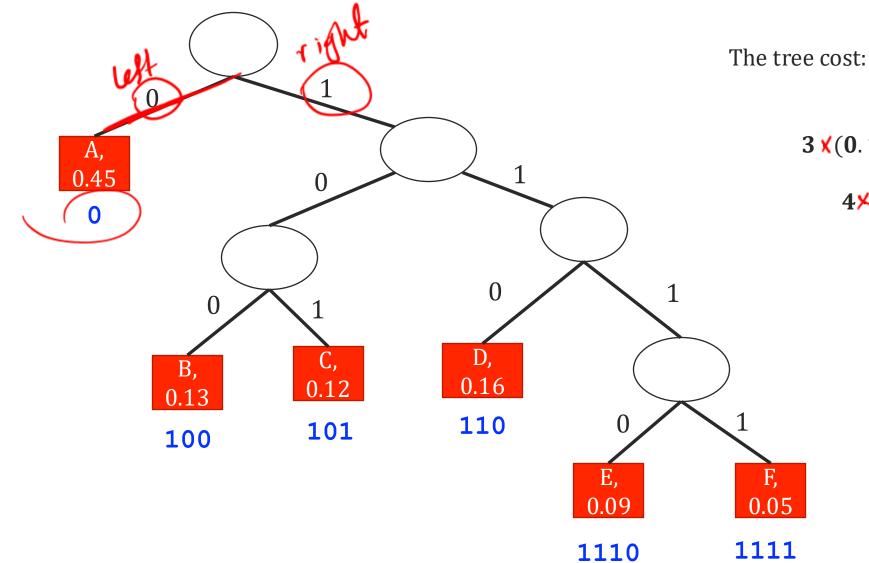
Smallest frequencies





Smallest frequencies

The corresponding code



tree cost: $1 \neq 0.45$ + $3 \neq (0.13 + 0.12 + 0.16)$ + $4 \neq (0.09 + 0.05)$ = 2.24

Runtime of Huffman Coding

Priority queue operation (Lec. 7): Binary heap takes $O(\log(n))$ to Insert and DeleteMin.

Huffman-code (f_1, \dots, f_n)

n Inserts = $O(n \log(n))$ \longrightarrow For all a = 1, ..., n,

create node *a* with *a*. freq = f_a and no children Insert the node in a priority queue *Q* use key f_a

n iterations, total of $O(n \log(n))$

While len(Q) > 1 x and $y \leftarrow$ the nodes in Q with lowest keys \leftarrow 2 DeleteMin create a node z, with z. freq = x. freq + y. freq Let z. left = x and z. right = y. Insert z with key f_z into Q and remove x, y. \leftarrow 1 Insert Return the only node left in Q.

Total runtime of Huffman coding: $O(n \log(n))$

Claim: Huffman coding is an optimal prefix-free tree. Recall we use induction to show that greedy choices don't rule out optimality.

We use induction on the number of letters *n*.

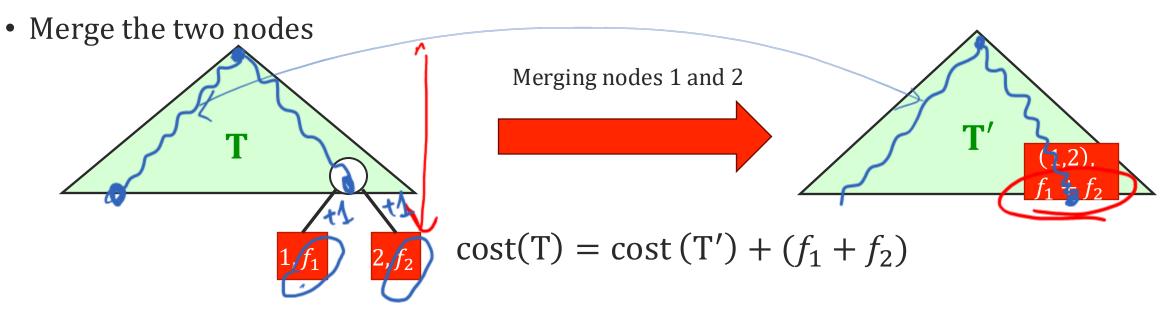
Base case: n = 2. The optimal code is to assign one letter to 0 and the other 1. Huffman does the same.

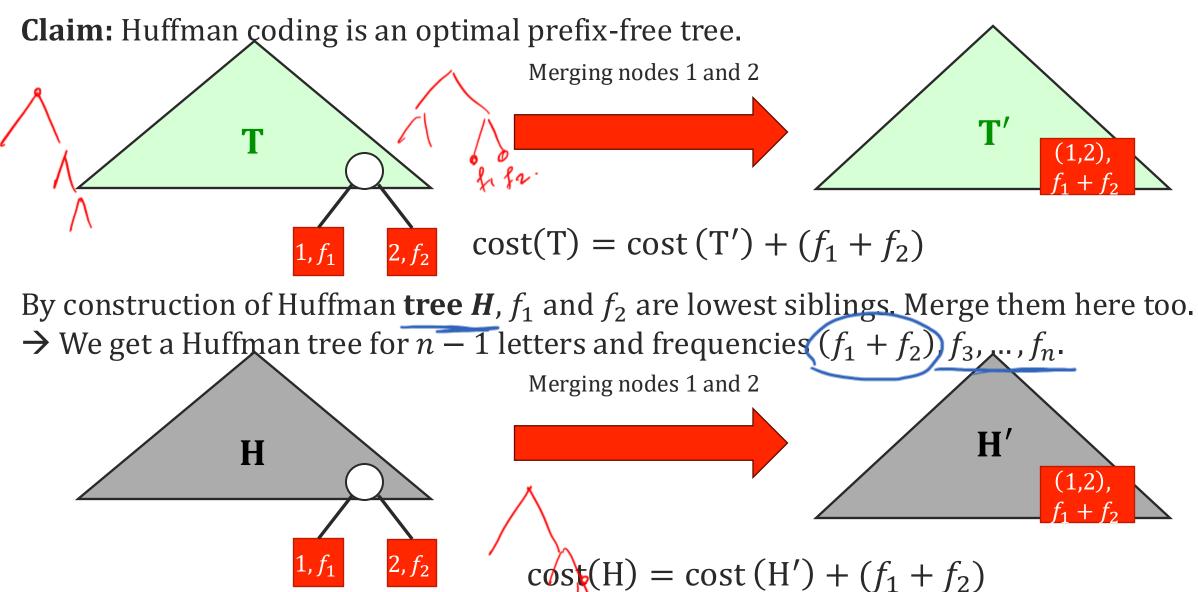
Induction Hypothesis: For n - 1 letters, Huffman coding is an optimal pre-fix tree.

Claim: Huffman coding is an optimal prefix-free tree.

Induction step: Let T below be the optimal prefix-free tree for frequencies f_1, \dots, f_n and WLOG $f_1 \leq f_2 \leq \cdots \leq f_n$.

WLOG, assume that the two lowest frequency nodes are siblings.
 → Because, we proved earlier that that's what optimal trees look like!

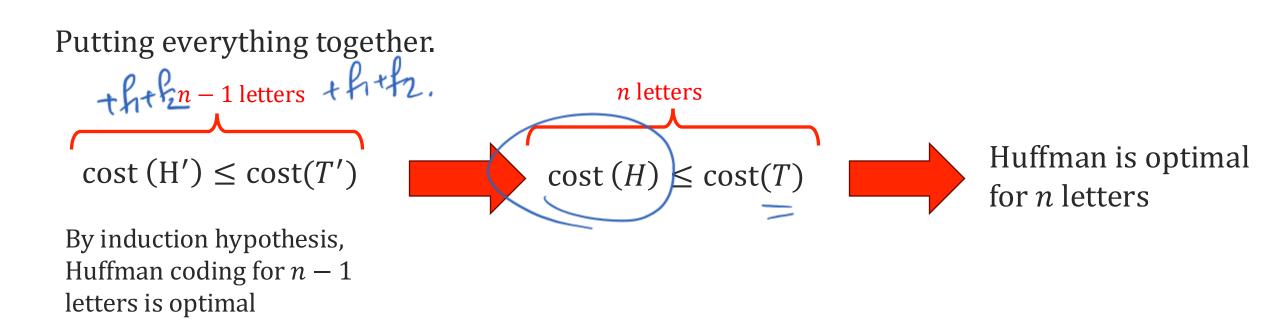




Claim: Huffman coding is an optimal prefix-free tree.

We showed that for tree T that is optimal for n letters, $Cost(T) = cost(T') + (f_1 + f_2)$,

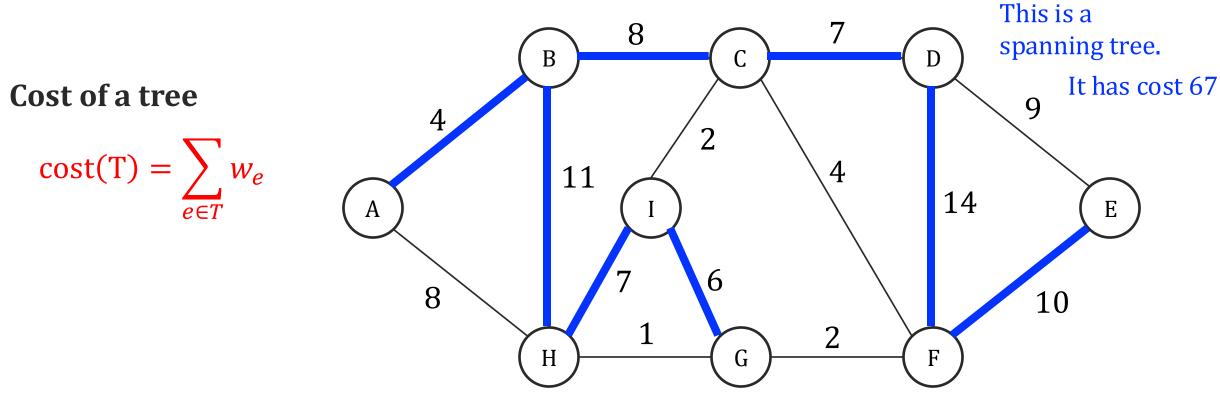
And for Huffman coding tree H for *n* letters, $Cost(H) = cost(H') + (f_1 + f_2)$.



Minimum Spanning Trees

Minimum Spanning Trees

Definition: A spanning tree, is a tree that **connects all vertices** of a graph G.

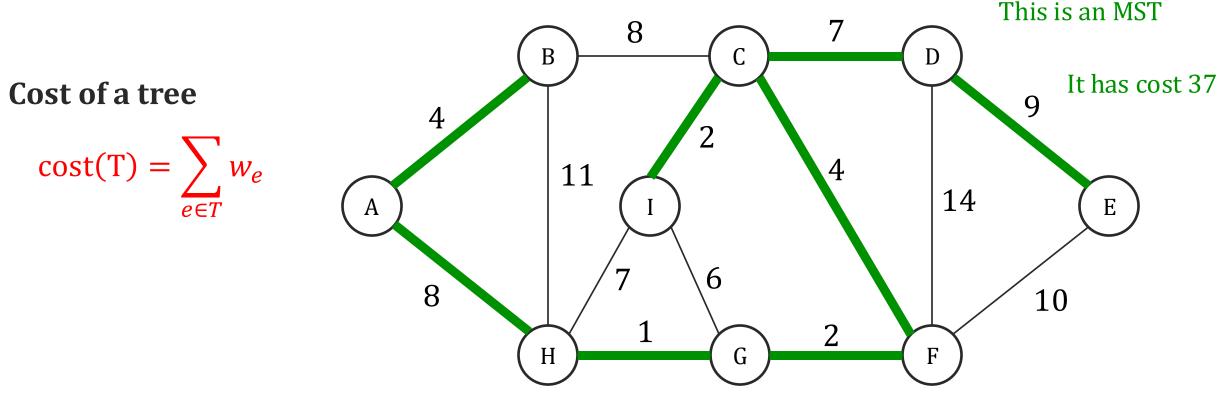


Minimum Spanning Tree (MST) Problem:

Input: a weighted graph G = (V, E) with non-negative weights. **Output:** A set of edges that connected graph and has the **smallest cost**.

Minimum Spanning Trees

Definition: A spanning tree, is a tree that **connects all vertices** of a graph G.



Minimum Spanning Tree (MST) Problem:

Input: a weighted graph G = (V, E) with non-negative weights. **Output:** A set of edges that connected graph and has the **smallest cost**.

MST applications and Algorithms

Biggest applications:

- Network design: Connecting cities with roads/electricity/telephone/...
- Pre-processing for other algorithms.

We will see two greedy algorithms for building Minimum Spanning Trees.

What do MSTs look like?

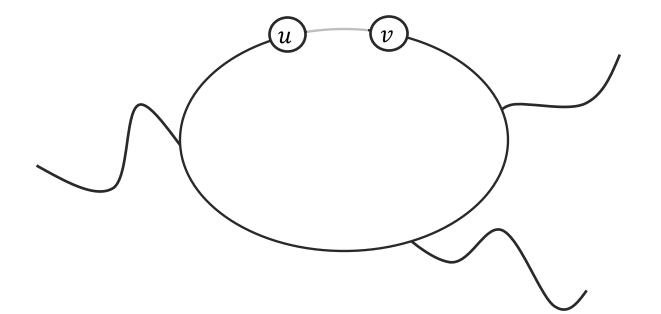
Facts about Trees

The following are two equivalent definition of a tree on *n* vertices.

- 1. A connected acyclic graph.
- 2. A connected graph with n 1 edges.

Any **minimum weight** set of edges that **connects all vertices** is a **tree**! Why?

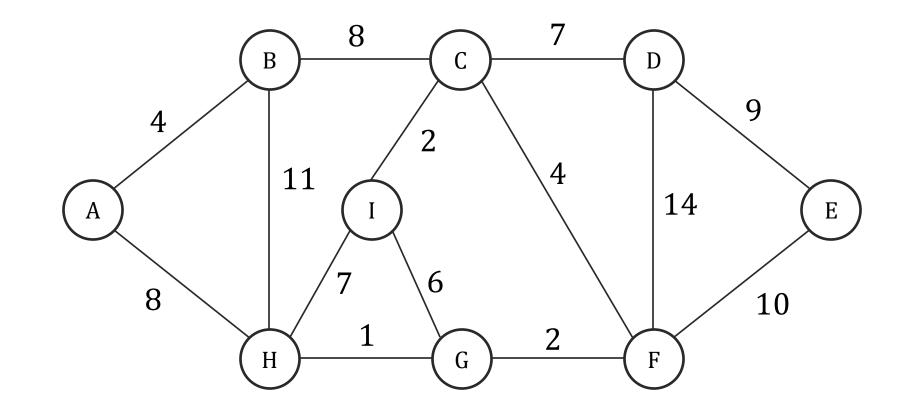
If a set of edges connecting all vertices has a cycle, we can remove one of its edges and still connect all vertices. → Removing any edge on the cycle, keeps the graph still connected.



Graph Structures and Facts

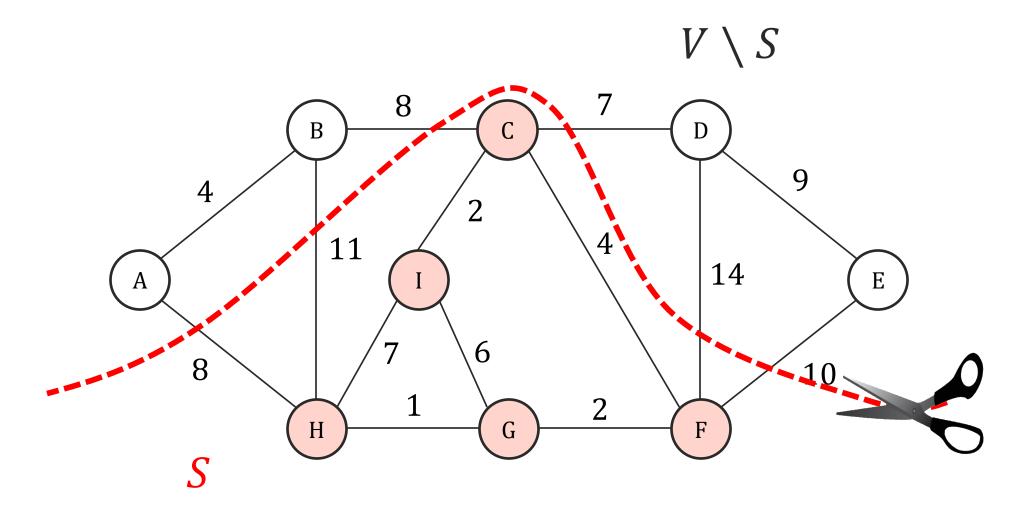
Cuts and Graphs

Definition: A **cut** in a graph is a **partition of vertices** to two disjoint sets *S* and $V \setminus S$. \rightarrow we'll color them differently to make the two sets clear.



Cuts and Graphs

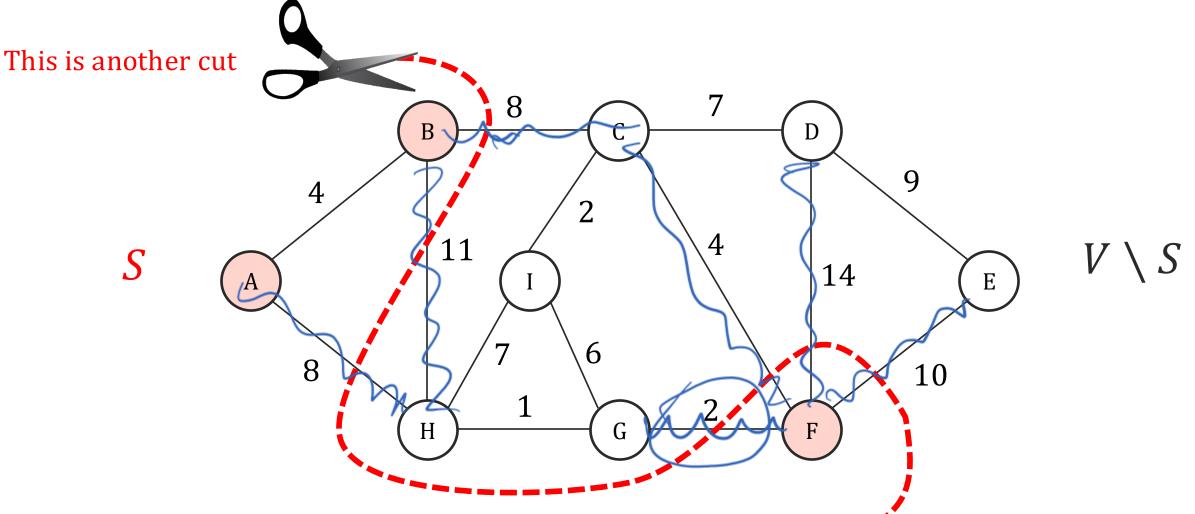
Definition: A **cut** in a graph is a **partition of vertices** to two disjoint sets *S* and $V \setminus S$. \rightarrow we'll color them differently to make the two sets clear.



Cuts and Graphs

Definition: A **cut** in a graph is a **partition of vertices** to two disjoint sets *S* and $V \setminus S$.

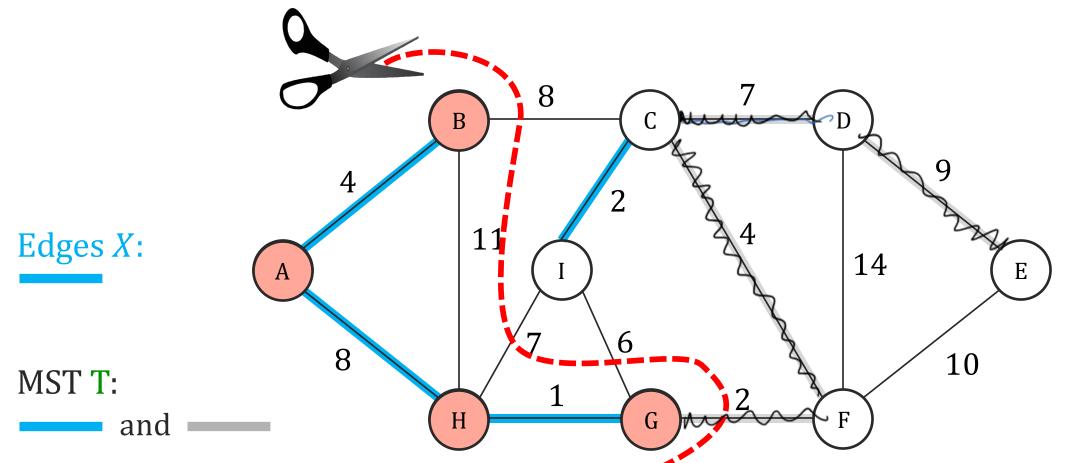
 \rightarrow we'll color them differently to make the two sets clear.



Greedy Algorithms and Cuts

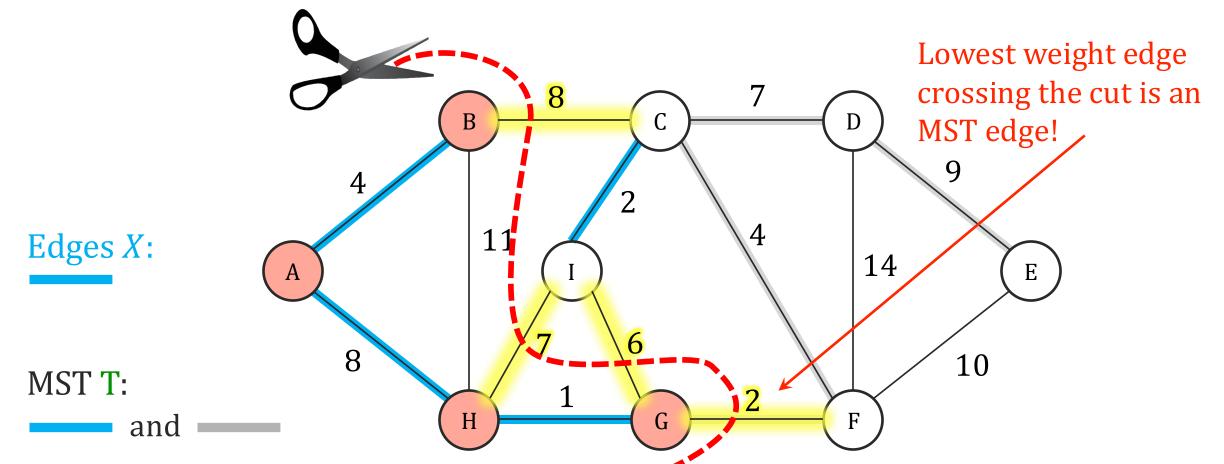
Imagine, we already discovered some of the edges X of a minimum spanning tree T. Take any **cut** where edges X don't cross it. i.e., no edge $(u, v) \in X$ has $u \in S, v \in V \setminus S$. What's so special about the edge of MST that is crossing the cut?

X+Black = MST



Greedy Algorithms and Cuts

Imagine, we already discovered some of the edges X of a minimum spanning tree T. Take any **cut** where edges X don't cross it. i.e., no edge $(u, v) \in X$ has $u \in S, v \in V \setminus S$. What's so special about the edge of MST that is crossing the cut?



Formally: The Cut Property

Claim: Suppose $X \subseteq E$ is part of an MST for graph *G*. Consider a cut *S*, $V \setminus S$, such that

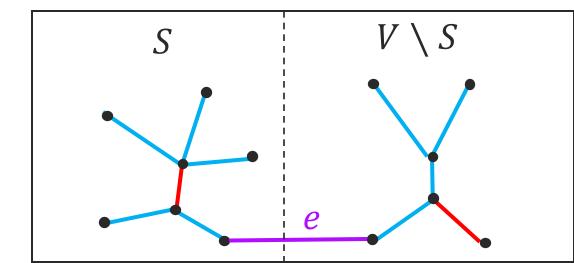
• X has no edges from S to $V \setminus S$.

Let $e \in E$ be any smallest weight edge from S to $V \setminus S$.

Then $X \cup \{e\}$ is also a subset of an MST for graph G.

Proof: Take an MST **T** that satisfies the conditions of the above claim **Case 1)** $e \in T$. Then by definition $X \cup \{e\} \in T$.

X: blue edges **T**: blue and red edges.



Formally: The Cut Property

Claim: Suppose $X \subseteq E$ is part of an MST for graph *G*. Consider a cut *S*, $V \setminus S$, such that

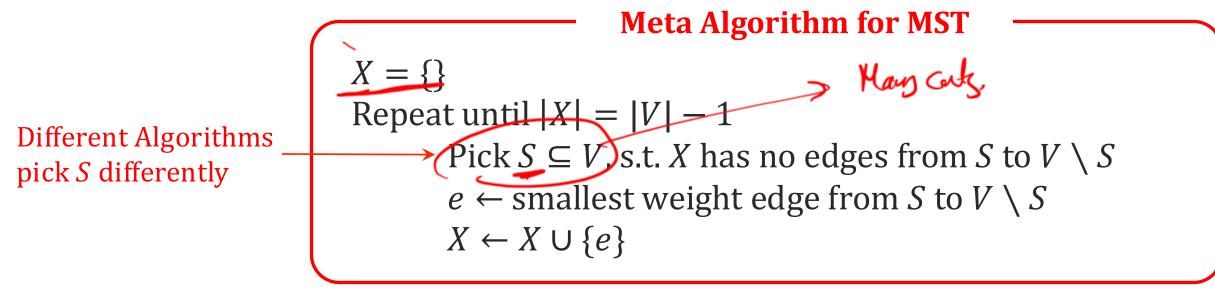
- *X* has no edges from *S* to $V \setminus S$.
- Let $e \in E$ be any smallest weight edge from *S* to $V \setminus S$.

Then $X \cup \{e\}$ is also a subset of an MST for graph *G*.

Proof: Take an MST T that satisfies the conditions of the above claim. *X*: blue edges T: blue and red edges. **Case 2)** $e \notin T$. Then, $T \cup \{e\}$ must have a cycle \rightarrow This cycle must have another edge $e' \in T$ that crosses from S to $V \setminus S$. Consider $T' = T \cup \{e\} \setminus e'$: $\rightarrow T'$ also connects all vertices of the graph $\rightarrow cost(T') = cost(T) + w_e - w_{e'} \le cost(T).$ \rightarrow So, *T'* is also a minimum spanning tree! $X \cup \{e\}$ is also a subset of an MST for graph G

Greedy Algorithms based on the Cut Property

Any algorithm that fits the following form finds an MST.



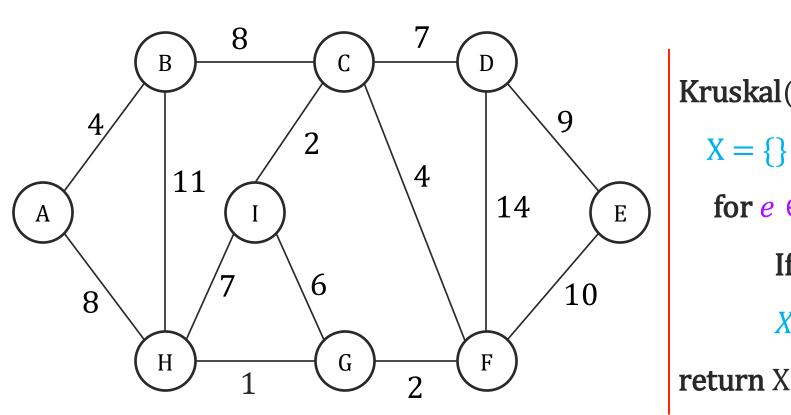
Claim: The meta Algorithm above returns a minimum spanning tree. **Proof:** By induction ...

Induction step:

The cut property ensures that $X \cup \{e\}$ is always a subset of an MST.

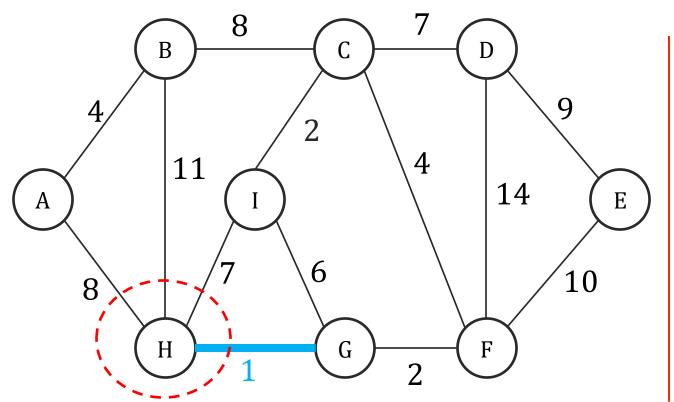
Easy: Practice formalizing this induction.

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



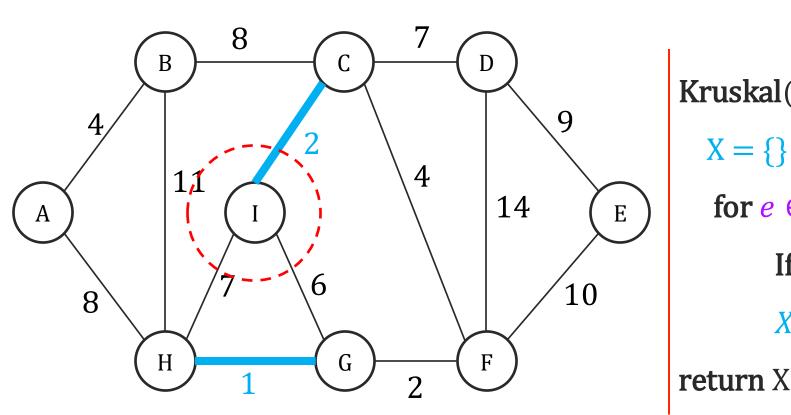
Kruskal(G = (V,E)): $X = \{\}$ for $e \in E$ in increasing order of weight If adding e to X doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



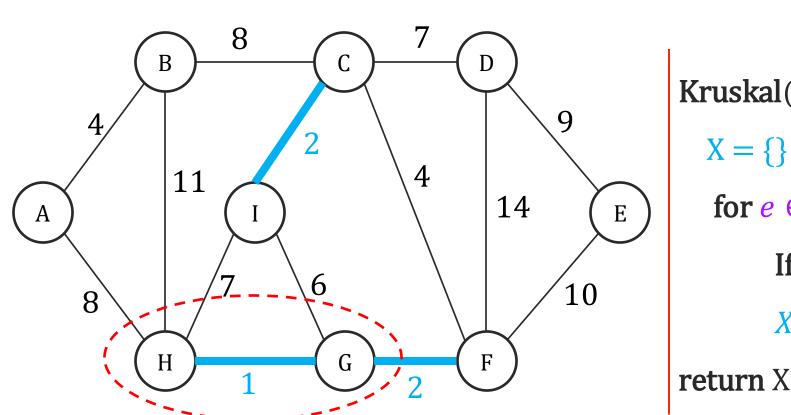
Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



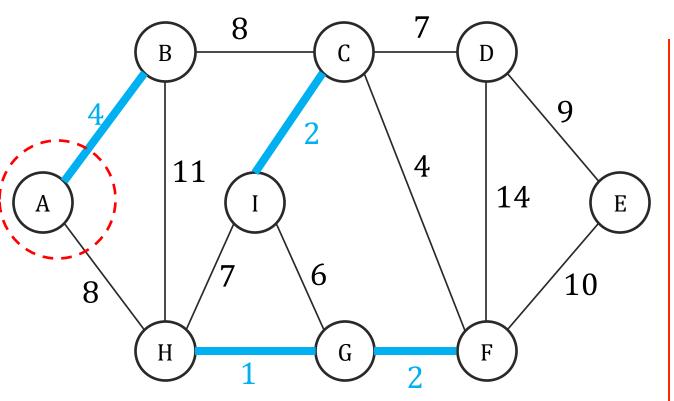
Kruskal(G = (V,E)): X = {} for $e \in E$ in increasing order of weight If adding e to X doesn't create a cycle X ← X ∪ {e}.

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



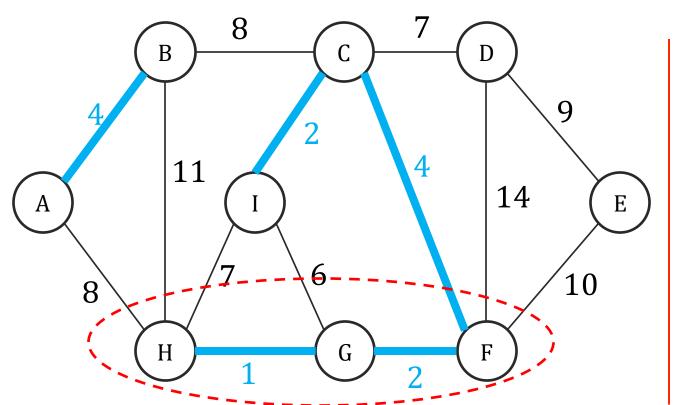
Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



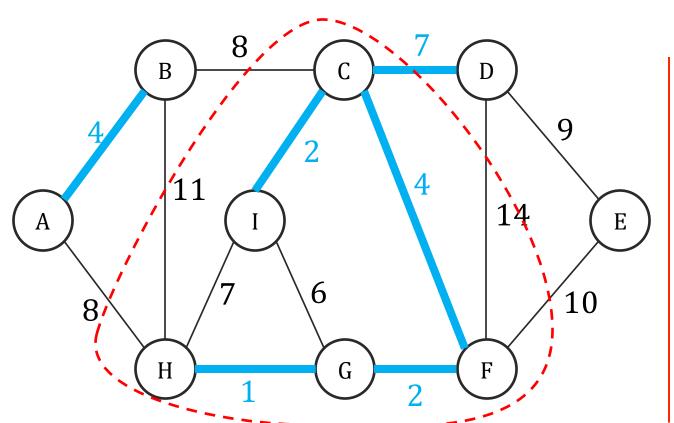
Kruskal(G = (V,E)): $X = \{\}$ for $e \in E$ in increasing order of weight If adding e to X doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? $S, V \setminus S$ correspond to connected components for u and v.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

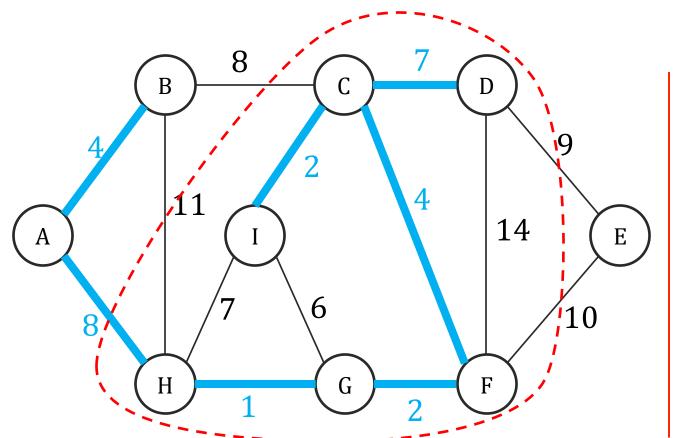
Instead of explicitly defining *S*, $V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut. Which cut? *S*, $V \setminus S$ correspond to connected components for *u* and *v*.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

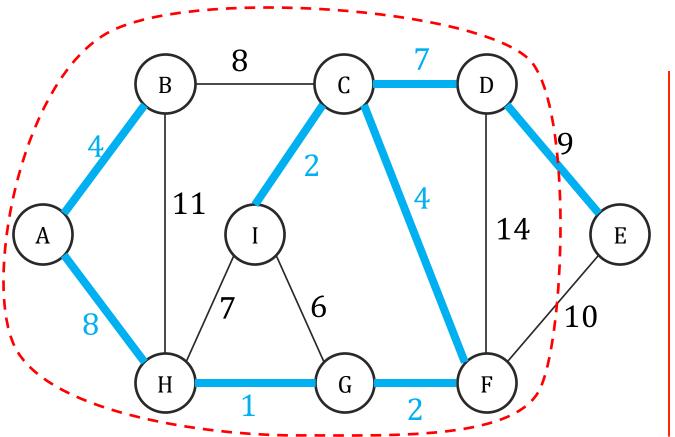
Which cut? *S*, *V* \setminus *S* correspond to connected components for *u* and *v*.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Instead of explicitly defining $S, V \setminus S$, Kruskal's algorithm picks e = (u, v) directly and ensures that (u, v) is the lightest edge crossing some cut.

Which cut? *S*, $V \setminus S$ correspond to connected components for u and v.



Kruskal(G = (V,E)): $X = \{\}$ for *e* ∈ *E* in increasing order of weight If adding *e* to *X* doesn't create a cycle $X \leftarrow X \cup \{e\}.$

Kruskal's Correctness

Does Kruskal return a minimum spanning tree?

- Since *X* ∪ {(*u*, *v*)} doesn't have a cycle, *u* and *v* belong to two different connected components of *X*.
- Let $S \leftarrow$ Connected component including u
- So (u, v) is the lightest edge from S to $V \setminus S$.
- \rightarrow Kruskal fits the meta algorithm description, so it find an MST.

Kruskal's Runtime and Union-Find

How do we quickly check if $X \cup \{(u, v)\}$ has a cycle?

 \rightarrow We need to check if *u*'s connected component in *X* = *v*'s connected component in *X*

Union-FIND: A data-structure for disjoint sets

- makeSet(u): create a set from element u. Takes O(1)
- find(u): return the set that includes element u. Takes $O(\log(n))$
- union(u, v): Merge two sets containing u and v. Takes $O(\log(n))$

```
Fast-Kruskal(G = (V,E)):

for v \in V, makeSet(v)

for edges (u, v) \in E in increasing order of weight

If find(v) \neq find(u)

X \leftarrow X \cup \{(u, v)\}

union(u, v)

return X
```

Runtime of Kruskal's Algorithm

Sorting *m* edges: $O(m \log(m)) = O(m \log(n))$. Since $m \le n^2$. Everything else:

- *n* calls to makeSet
- 2*m* calls to find: 2 calls per edge to find its endpoints.
- n 1 calls to union: A tree has n 1 edges.

Total: $O((m + n) \log(n))$. For connected graphs = $O(m \log(n))$.

```
Fast-Kruskal(G = (V,E)):

for v \in V, makeSet(v)

for edges (u, v) \in E in increasing order of weight

If find(v) \neq find(u)

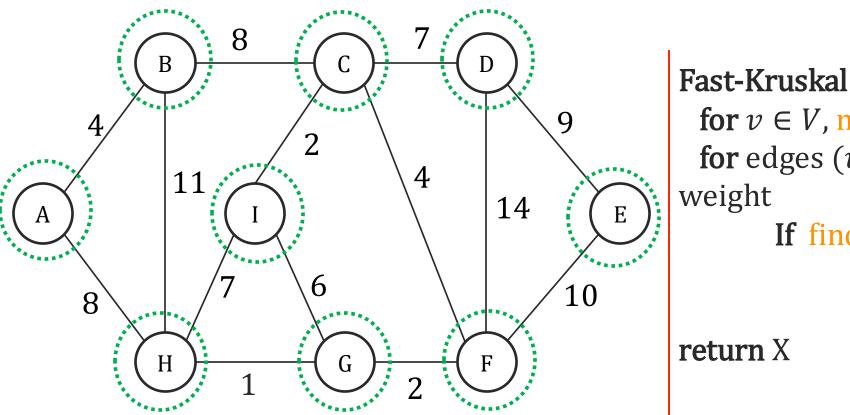
X \leftarrow X \cup \{(u, v)\}

union(u, v)

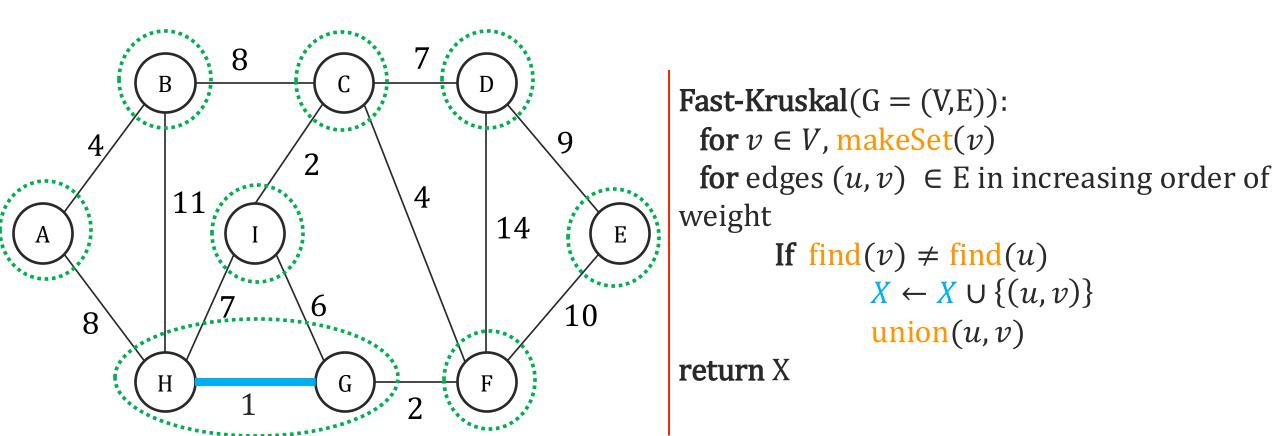
return X
```

This slide is skipped in class.

Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.

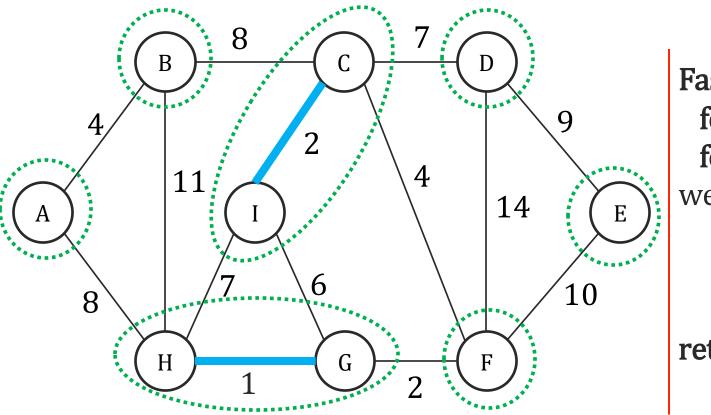


This slide is skipped in class.



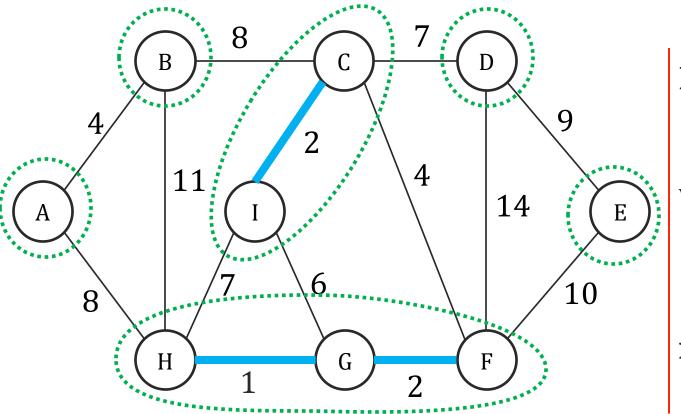
This slide is skipped in class.

Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.



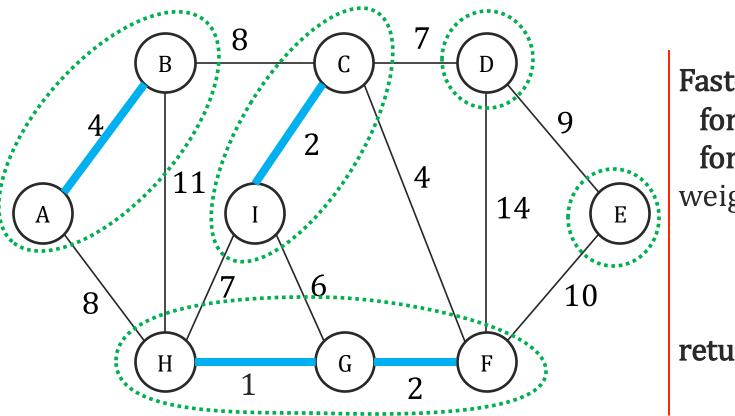
This slide is skipped in class.

Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.



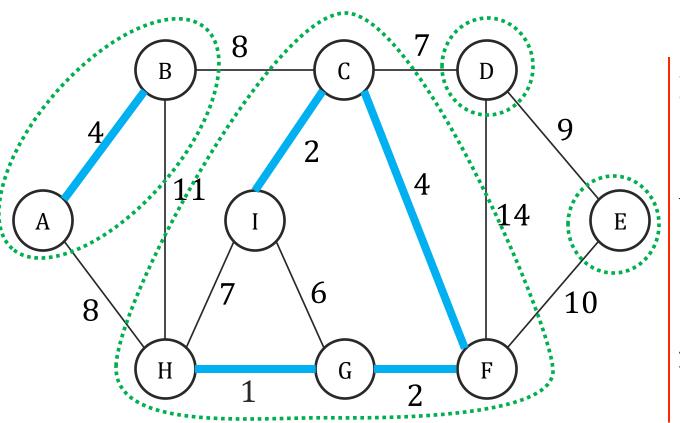
This slide is skipped in class.

Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.

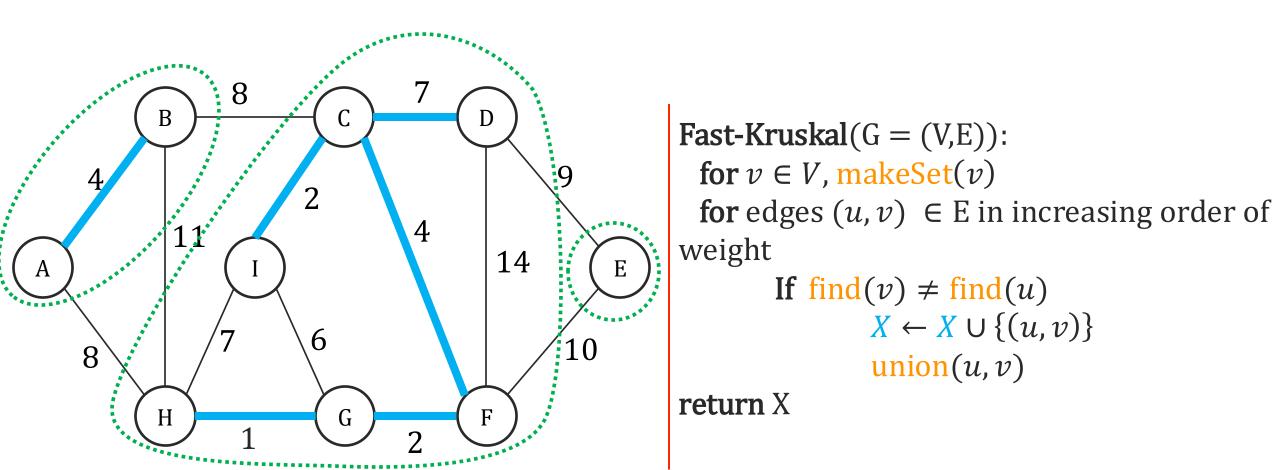


This slide is skipped in class.

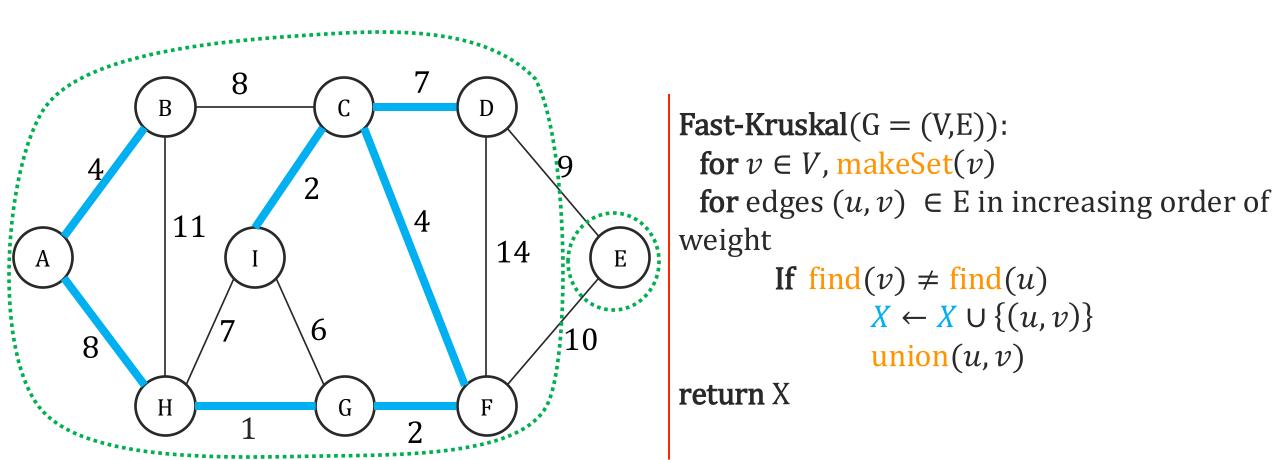
Below, we highlight the connected components. Each refer to one set in Union-Find Data structure.



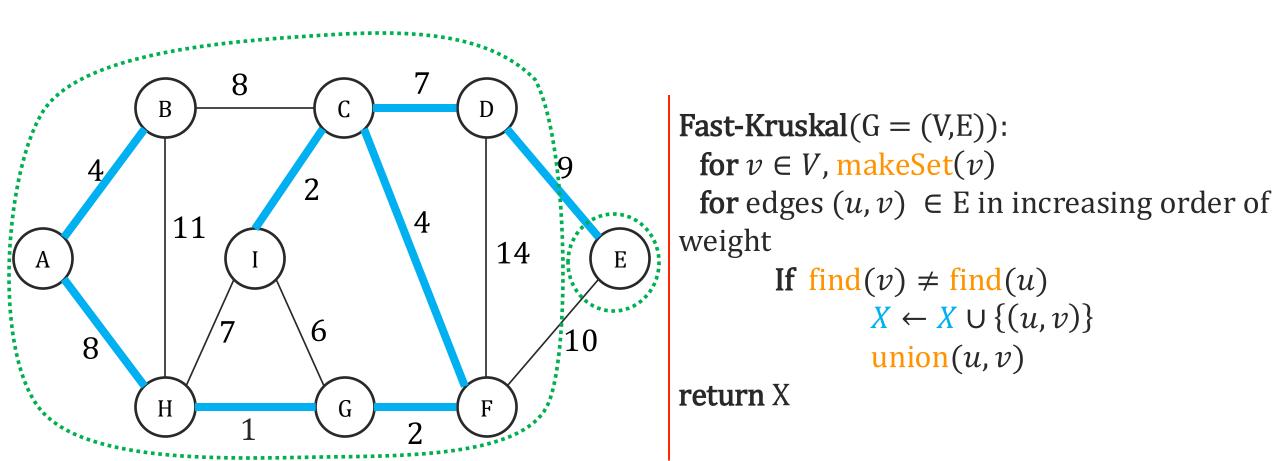
This slide is skipped in class.



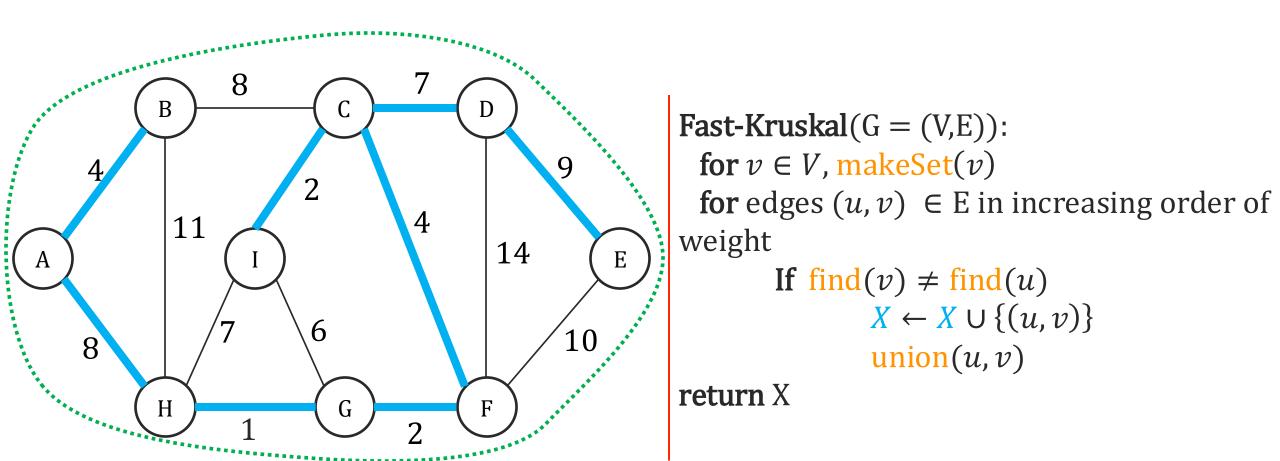
This slide is skipped in class.



This slide is skipped in class.



This slide is skipped in class.



Wrap up

We saw a meta algorithm for MSTs

- \rightarrow One variant: Kruskal's Algorithm
 - → Greedily add the lightest edge that doesn't create a cycle
- \rightarrow Union-Find: Useful data structure for keeping track of sets and trees.

Next time

• Another algorithm for MSTs