CS 170: Backpropagation — Lecture
Notes

Course: CS 170 — Efficient Algorithms and Intractable Problems, Spring 2026
Instructors: Lijie Chen, Umesh V. Vazirani
Lecture 10 (follows Dynamic Programming, precedes FFT)

The Goal

Suppose we have a function L = L(x1, x3,. . ., 24) that depends on many input variables —

potentially millions or more. We want to compute all partial derivatives:

oL oL oL
6m1’ 6:32’ Y Bmd

This is a fundamental computational task with many applications. Most notably, it is the core
subroutine of gradient descent in modern machine learning, where L is a loss function depending
on billions of parameters, and the partial derivatives tell us how to update each parameter to reduce
the loss.

Why is this hard? A naive approach is to compute each partial derivative separately: perturb x; by a

tiny €, re-evaluate L, and approximate % ~ Lloszite "2_L(' i) Thig requires d + 1

evaluations of L — one per input variable. When d is in the billions, this is far too slow.

Can we do better? The key idea is to represent L as a computational graph (a DAG) and use
dynamic programming to compute all d gradients in a single backward pass over the graph — at

roughly the same cost as evaluating L once. This algorithm is called backpropagation.

Part 1: Computational Graphs

1.1 Definition

A computational graph is a directed acyclic graph (DAG) G = (V, E') where:

Source nodes (in-degree 0) are inputs: variables 1, s, . .., T4 and constants

Internal nodes represent elementary operations: +, X, exp, log, o, max, etc.

There is a single sink node (out-degree 0) representing the output L

Each node v computes a function of its children's values

Terminology: We think of the graph as rooted at L. If there is a directed edge © — v (meaning u is
used to compute v), we call u a child of v and v a parent of u. A node can have multiple children
(e.g., 2 = x + y has two children x and y) and multiple parents (e.g., may be used in several
computations). Source nodes (inputs) are the leaves and the output L is the root.

1.2 Example

Consider the function:

L(z,y) = (z +y) - o(z)

where o (t) = 1/(1 + e ") is the sigmoid function.

Sigmoid: o(t) = —1

1+et

1.00 +

0.75 1
= |
5 0.50

0.25 1

0.00

—4 -2 0 2 4

We introduce intermediate variables:

) Z:w_“y
« b=o(x)

e L=2-0

The resulting computational graph is:

Inputs Intermediate
Output
X = b = o(x)
L=z-b
Yy > Z=X+tYy

Note that x has two parents z and b — it is used by both. This will be important during the

backward pass: the gradient g—];j must accumulate contributions from both paths.

Nodes in topological order: x, y, 2, b, L.

1.3 The Forward Pass

The forward pass is simply computing the value of each node from the inputs to the output,
following topological order. Since the graph is a DAG, every node's children (inputs) are computed
before the node itself.

Cost: O(|V| + |E|) — each node is visited once, each edge is traversed once.

1.4 Key Question

Given the computational graph and the forward pass values, can we compute all partial derivatives

oL

%, efficiently?

Can we compute all 2= in O(|V| + |E|) time?

@] e ® ® ®
® °]
@ PY ®
® []
[
® ° * o e
. O
®
L
® {
O ® o
® Py {
@ ® ® o o [
inputs x1, ..., Xg intermediate operations output L

Part 2: The Backpropagation Algorithm

2.1 Intuition

How does changing an input u; affect the output L? Node u; influences L only through its parents
— the nodes that directly use u; as an input. Each parent u; contributes to % by an amount equal

to:
OL ou j
—_— >< —_—
ou j 8’(1,,
~—~ ~~
how much L changes per unit change in u; how much u; changes per unit change in u;

Summing over all parents gives the total effect. This gives us a recurrence: to compute %, we need

% for all parents u; of u; — which are later in topological order. So we compute in reverse
J

topological order, just like DP!

2.2 Algorithm

Let uy, ua,...,uy, be all the nodes of the computational graph, sorted in topological order. The first
d nodes u; = x1,...,Uuq = x4 are the inputs, and the last node u,, = L is the output.

Phase 1 — Forward Pass. Compute the value of each node in topological order:

T; if i < d (input node)

For:=1,2,...,n: u; =))
op,, (children’s values) otherwise

Phase 2 — Backward Pass. Compute the gradient % for each node in reverse topological order:

Initialize: 2L = 1.
oL B Z oL (9uj

ou; du; Ou
! uj€parents(u;) J !

Fort=n—-1,n—-2,...,1:

where parents(u;) denotes the set of nodes that use u; as an input, and %@ is the local derivative

of the operation at node wu; with respect to its input u;, evaluated using the forward pass values.

Result: After the backward pass, % holds the correct partial derivative for every node — in

particular, g—i, cee g_de are the gradients with respect to all inputs.

2.3 Connection to Dynamic Programming

Backpropagation is dynamic programming on a DAG. The table below summarizes the structural
parallel:

DP on DAGs Backpropagation
Recurrence on subproblems Recurrence on partial derivatives
Topological order (forward) Reverse topological order (backward)
Base case at sources Base case at root (g—f =1)
Memoize subproblem solutions Memoize (cache) gradient values

Avoids recomputing overlapping subproblems Avoids enumerating exponentially many paths

Counting Paths in a DAG

Recall the classic DP problem: given a DAG G with source s and sink ¢, count the number of directed
paths from s to t.

Recurrence: For each node v, let paths(v) = number of directed paths from v to t:

paths(v) = Z paths(u)

uEparents(v)

Base case: paths(t) = 1. Compute in reverse topological order. Cost: O(|V'| 4 | E|).

Now look at the backpropagation recurrence:

oL oL Ou
W= 2 Bu o

uEparents(v)

Base case: 2% = 1. Compute in reverse topological order. Cost: O(|V'| + | E|).

These are the same recurrence! Backpropagation is "weighted path counting" — instead of

counting paths, we sum the product of edge weights (local derivatives) along each path. In fact,
one can show:

Fact: g—i = Z H (%

path P:z;— L (u,v) EP

(Sum over all directed paths from x; to L, of the product of local derivatives along the path.)

This "sum-over-paths" formula is the derivative analog of path counting. The naive approach would
enumerate all paths and multiply out the local derivatives for each — but just like in DP, the number of
paths can be exponential, while the DP/backprop approach computes the same quantity in linear
time.

Part 3: Worked Example — A Two-Layer Linear
Network

3.1 Setup

Consider a two-layer linear network with MSE loss:
. N 2
h = Wlx7 Yy = W2h7 L= (y - ytrue)

with concrete values:

2 1 1
Wi = (1 1) ’ Wy = (]- _1> y X = <2> y Ytrue = 3

The inputs to this computational graph are W7 (4 variables), W5 (2 variables), x (2 variables), and
Yirue (1 variable) — 9 inputs in total. For simplicity, we draw each of these as a single "big node":

Computational Graph: 2-Layer Linear Network

Inputs Intermediate Output

Wy

h=W,;x — y=W,h

\
/

L= (}; - ytrue)2

T~
-

W5 Ytrue

3.2 Forward Pass

We compute the value of each node layer by layer, following topological order.

Step 1 — Inputs. Set the values of all input nodes:

Forward Pass — Step 1: Inputs

h=W1X —_—)7=W2h

[1, 1] \
/

x=(}) I
/ L= (Y~ Yerue)?
/

Wr=(1, -1) Yirue=3

Step 2 — Hidden layer. Compute h = W;x:

(- (1)

Forward Pass — Step 2: h=W;x

\
n=() || ewen
/

x=(}) >
/ L= (Y = Yere)?
/

Wr=(1, -1) Ytrue = 3

Step 3 — Output and loss. Compute §j = Woh and L = (§ — Yirue):

g=(1 -1) <§):4—3:1

L=(1-3?%=4

3.3 Backward Pass

Now we compute a

Step 1 — From L to §j. The base case is

Forward Pass — Step 3: y=W,h, L=

\
/7

()7 - ytrue)2

\
_——

h=(4) >| y=1
L=4
Wr=(1, -1) Ytrue = 3
L for each node in reverse topological order.
oL __
5L = L. Then:
(’)L
2(y ytrue) - 2(1 - 3) = —4
Backward Pass — Step 1: % =2(y = Yirve) = —4
h=() — 5= 4
/ i=1
W;=(1, -1) Ytrue = 3

Step 2 — From ¢ to h and W5. Since y = Wyh = wy1hy + washo:

oL _ oL
ohy 09
0L 0L
8h2 8y

In vector form: %& = W9k — (_11) - (—4) = (_4).

oh 2 B3 4
Backward Pass — Step 2: & = WZT-%
Wy =
[2, 1
e \
b= |—| %--e
x=(3) /
b=
%:(_16' —-12) Ytrue =3

Step 3 — From h to x and W. Since h = W x:
OL 0L 0k n OL Ohy
0r1 Ohi Oxr1 Ohy Oz

OL _ OL 0h , 0L 0Ohy
(95132 N 8h1 85132 8h2 8332

—(—4)-14+4-1=0

Backward Pass — Step 3: all gradients computed

[-4, -8]
L4, 8 \
— oL — _
w=03) E— 5= 4
=3
=1
%:(—16, -12) Yirue =3

Part 4: Why It Works — The Chain Rule

We have presented the backpropagation algorithm and seen it in action. But why does the recurrence

Ou; . . .
oL _ D, cparents(u;) DL . 24 actually compute the correct partial derivatives? The answer is the
i J) j i

chain rule from calculus.

4.1 Single-Variable Chain Rule

If L = f(y) andy = g(z), then:

dL _ dL dy

& 4y de = f'(y) - 4'(z)

The key idea: we compute d— by going through the intermediate variable y — first computing dm,
then multiplying by a

4.2 Multivariable Chain Rule

If L is a function of x1, 29, . .., Xk, and each x; is a function of ¢, then:
dL <~ 0L dz;
dt — (9% dt
In words: when t influences L through multiple intermediate variables x1, . . ., x1, the total

derivative is the sum of the contributions along each path.

4.3 The Chain Rule on a Computational Graph

For any node v in the computational graph, let uy, uo, . . ., u,, be the parents of v (nodes that take
v as input). Applying the multivariable chain rule:

This is exactly the recurrence used in the backward pass of backpropagation. The chain rule
guarantees that this recurrence computes the correct partial derivatives, and the reverse topological

order ensures that 2L v is available when we need it to compute 5= aL

J

Part 5: Application — Deep Learning

The backpropagation algorithm is the engine behind modern deep learning. Here is a simple example
to illustrate how it fits into the bigger picture.

5.1 Example: Cat vs. Dog Classifier

Suppose we want to build a binary image classifier that takes an image as input and predicts
whether it contains a cat (0) or a dog (1).

The computational graph:

1. Input: A grayscale image of size 28 x 28, flattened into a vector x € R84,
2. Hidden layers: Apply a sequence of linear transformations and nonlinear activations:

h1 = O'(Wlx -+ bl), h2 = O'(W2h1 -+ b2),

where o is a nonlinear function like sigmoid.
3. Output: A final linear layer followed by sigmoid gives a probability:

§=oc(Wihy_1 +b) €[0,1]

where §j ~ 0 means "cat" and ¢y =~ 1 means "dog."
4. Loss: We use the MSE loss L = (§ — Yirue)%, Where Yirue € {0, 1} is the correct label.

This entire pipeline — from pixels to loss — is one large computational graph. The inputs include all

the weight matrices W7, Ws, ... and bias vectors b1, bs, . . ., which can total millions of
parameters.
Input Hidden layers Loss
ws Wi
inede |— hy = 0(W1x +by) —_ o — y=0(Wihe_1+ by —_— L=~ Yine)?
b1 bk Ytrue

5.2 Training with Backpropagation
To train the classifier, we repeat:

1. Forward pass: Feed a training image through the network, compute ¢ and L.

2. Backward pass: Run backpropagation to compute 681,][3, and 8L - for every weight and bias.

3. Gradient step: Update every parameter in the direction that decreases the loss:

8L oL

where n > 0 is a small step size (the learning rate).

Repeat over many images until the network learns to classify cats and dogs accurately.

The key point: Step 2 is where backpropagation shines. Without it, computing the gradient with
respect to millions of parameters would require millions of separate forward passes (one per

parameter). Backpropagation computes all gradients in a single backward pass — at roughly the

same cost as the forward pass itself.

