
CS 170: Backpropagation — Lecture
Notes
Course: CS 170 — Efficient Algorithms and Intractable Problems, Spring 2026
Instructors: Lijie Chen, Umesh V. Vazirani
Lecture 10 (follows Dynamic Programming, precedes FFT)

The Goal
Suppose we have a function that depends on many input variables —
potentially millions or more. We want to compute all partial derivatives:

This is a fundamental computational task with many applications. Most notably, it is the core
subroutine of gradient descent in modern machine learning, where is a loss function depending
on billions of parameters, and the partial derivatives tell us how to update each parameter to reduce
the loss.

Why is this hard? A naive approach is to compute each partial derivative separately: perturb by a
tiny , re-evaluate , and approximate . This requires
evaluations of — one per input variable. When is in the billions, this is far too slow.

Can we do better? The key idea is to represent as a computational graph (a DAG) and use
dynamic programming to compute all gradients in a single backward pass over the graph — at
roughly the same cost as evaluating once. This algorithm is called backpropagation.

Part 1: Computational Graphs

1.1 Definition
A computational graph is a directed acyclic graph (DAG) where:

L = L(x ​,x ​, … ,x ​)1 2 d

​, , … , ​

∂x ​1

∂L
∂x2

∂L
∂x ​d

∂L

L

x ​i

ϵ L ​ ≈∂x ​i

∂L
​

ϵ

L(…,x ​+ϵ,…)−L(…,x ​,…)i i d + 1
L d

L

d

L

G = (V ,E)

Source nodes (in-degree 0) are inputs: variables and constants
Internal nodes represent elementary operations: , etc.
There is a single sink node (out-degree 0) representing the output
Each node computes a function of its children's values

Terminology: We think of the graph as rooted at . If there is a directed edge (meaning is
used to compute), we call a child of and a parent of . A node can have multiple children
(e.g., has two children and) and multiple parents (e.g., may be used in several
computations). Source nodes (inputs) are the leaves and the output is the root.

1.2 Example
Consider the function:

where is the sigmoid function.

We introduce intermediate variables:

x ​,x ​, … ,x ​1 2 d

+, ×, exp, log,σ, max
L

v

L u → v u

v u v v u

z = x + y x y x

L

L(x, y) = (x + y) ⋅ σ(x)

σ(t) = 1/(1 + e)−t

z = x + y

b = σ(x)

The resulting computational graph is:

Note that has two parents and — it is used by both. This will be important during the
backward pass: the gradient must accumulate contributions from both paths.

Nodes in topological order: .

1.3 The Forward Pass
The forward pass is simply computing the value of each node from the inputs to the output,
following topological order. Since the graph is a DAG, every node's children (inputs) are computed
before the node itself.

Cost: — each node is visited once, each edge is traversed once.

1.4 Key Question
Given the computational graph and the forward pass values, can we compute all partial derivatives

 efficiently?

L = z ⋅ b

x z b

​∂x
∂L

x, y, z, b,L

O(∣V ∣ + ∣E∣)

​∂x ​i

∂L

Part 2: The Backpropagation Algorithm

2.1 Intuition
How does changing an input affect the output ? Node influences only through its parents
— the nodes that directly use as an input. Each parent contributes to by an amount equal
to:

Summing over all parents gives the total effect. This gives us a recurrence: to compute , we need
 for all parents of — which are later in topological order. So we compute in reverse

topological order, just like DP!

u ​i L u ​i L

u ​i uj ​∂u ​i

∂L

​ ×

how much L changes per unit change in u ​j

​​

∂u ​j

∂L
​

how much u ​ changes per unit change in u ​j i

​​

∂u ​i

∂u ​j

​∂u ​i

∂L

​∂u ​j

∂L u ​j u ​i

2.2 Algorithm
Let be all the nodes of the computational graph, sorted in topological order. The first

 nodes are the inputs, and the last node is the output.

Phase 1 — Forward Pass. Compute the value of each node in topological order:

Phase 2 — Backward Pass. Compute the gradient for each node in reverse topological order:

Initialize: .

where denotes the set of nodes that use as an input, and is the local derivative
of the operation at node with respect to its input , evaluated using the forward pass values.

Result: After the backward pass, holds the correct partial derivative for every node — in
particular, are the gradients with respect to all inputs.

2.3 Connection to Dynamic Programming
Backpropagation is dynamic programming on a DAG. The table below summarizes the structural
parallel:

DP on DAGs Backpropagation

Recurrence on subproblems Recurrence on partial derivatives

Topological order (forward) Reverse topological order (backward)

Base case at sources Base case at root ()

Memoize subproblem solutions Memoize (cache) gradient values

Avoids recomputing overlapping subproblems Avoids enumerating exponentially many paths

u ​,u ​, … ,u ​1 2 n

d u ​ =1 x ​, … ,u ​ =1 d x ​d u ​ =n L

For i = 1, 2, … ,n : u ​ =i ​ ​{x ​i

op ​(children’s values)u ​i

if i ≤ d (input node)
otherwise

​∂u ​i

∂L

​ =∂u ​n

∂L 1

For i = n − 1,n − 2, … , 1 : ​ =
∂u ​i

∂L
​ ​ ⋅

u ​∈parents(u ​)j i

∑
∂u ​j

∂L
∂u ​i

∂uj

parents(u ​)i u ​i ​∂u ​i

∂u ​j

u ​j u ​i

​∂u ​i

∂L

​, … , ​∂x ​1

∂L
∂x ​d

∂L

​ =∂L
∂L 1

Counting Paths in a DAG

Recall the classic DP problem: given a DAG with source and sink , count the number of directed
paths from to .

Recurrence: For each node , let = number of directed paths from to :

Base case: . Compute in reverse topological order. Cost: .

Now look at the backpropagation recurrence:

Base case: . Compute in reverse topological order. Cost: .

These are the same recurrence! Backpropagation is "weighted path counting" — instead of
counting paths, we sum the product of edge weights (local derivatives) along each path. In fact,
one can show:

Fact:

(Sum over all directed paths from to , of the product of local derivatives along the path.)

This "sum-over-paths" formula is the derivative analog of path counting. The naive approach would
enumerate all paths and multiply out the local derivatives for each — but just like in DP, the number of
paths can be exponential, while the DP/backprop approach computes the same quantity in linear
time.

G s t

s t

v paths(v) v t

paths(v) = ​ paths(u)
u∈parents(v)

∑

paths(t) = 1 O(∣V ∣ + ∣E∣)

​ =
∂v
∂L

​ ​ ⋅
u∈parents(v)

∑
∂u
∂L

​

∂v
∂u

​ =∂L
∂L 1 O(∣V ∣ + ∣E∣)

​ =
∂x ​i

∂L
​ ​ ​

path P :x ​→Li

∑
(u,v)∈P

∏
∂u
∂v

x ​i L

Part 3: Worked Example — A Two-Layer Linear
Network

3.1 Setup
Consider a two-layer linear network with MSE loss:

with concrete values:

The inputs to this computational graph are (4 variables), (2 variables), (2 variables), and
 (1 variable) — 9 inputs in total. For simplicity, we draw each of these as a single "big node":

3.2 Forward Pass
We compute the value of each node layer by layer, following topological order.

Step 1 — Inputs. Set the values of all input nodes:

h = W ​x, ​ =1 ŷ W ​h, L =2 (​ −ŷ y ​)true
2

W ​ =1 ​ ​ , W ​ =(2
1

1
1) 2 ​ ​ , x =(1 −1) ​ , y ​ =(1

2) true 3

W ​1 W ​2 x
y ​true

Step 2 — Hidden layer. Compute :

Step 3 — Output and loss. Compute and :

h = W ​x1

h = ​ ​ ​ =(2
1

1
1) (1

2) ​ =(2 ⋅ 1 + 1 ⋅ 2
1 ⋅ 1 + 1 ⋅ 2) ​(4

3)

​ =ŷ W ​h2 L = (​ −ŷ y ​)true
2

​ =ŷ ​ ​ ​ =(1 −1) (4
3) 4 − 3 = 1

L = (1 − 3) =2 4

3.3 Backward Pass
Now we compute for each node in reverse topological order.

Step 1 — From to . The base case is . Then:

Step 2 — From to and . Since :

​∂u ​i

∂L

L ​ŷ ​ =∂L
∂L 1

​ =
∂ ​ŷ

∂L
2(​ −ŷ y ​) =true 2(1 − 3) = −4

​ŷ h W ​2 ​ =ŷ W h =2 w ​h ​ +21 1 w ​h ​22 2

​ =
∂h ​1

∂L
​ ⋅

∂ ​ŷ

∂L
w ​ =21 (−4) ⋅ 1 = −4

​ =
∂h ​2

∂L
​ ⋅

∂ ​ŷ

∂L
w ​ =22 (−4) ⋅ (−1) = 4

In vector form: .

Step 3 — From to and . Since :

Part 4: Why It Works — The Chain Rule
We have presented the backpropagation algorithm and seen it in action. But why does the recurrence

 actually compute the correct partial derivatives? The answer is the

​ =∂h
∂L W ​ ​ =2

T
∂ ​ŷ
∂L

​ ⋅(−1
1) (−4) = ​(4

−4)

h x W ​1 h = W ​x1

​ =
∂x ​1

∂L
​ ⋅

∂h ​1

∂L
​ +

∂x ​1

∂h ​1
​ ⋅

∂h ​2

∂L
​ =

∂x ​1

∂h ​2 (−4) ⋅ 2 + 4 ⋅ 1 = −4

​ =
∂x ​2

∂L
​ ⋅

∂h ​1

∂L
​ +

∂x ​2

∂h ​1
​ ⋅

∂h ​2

∂L
​ =

∂x ​2

∂h ​2 (−4) ⋅ 1 + 4 ⋅ 1 = 0

​ =∂u ​i

∂L
​ ​ ⋅∑u ​∈parents(u ​)j i ∂u ​j

∂L
​∂u ​i

∂u ​j

chain rule from calculus.

4.1 Single-Variable Chain Rule
If and , then:

The key idea: we compute by going through the intermediate variable — first computing ,
then multiplying by .

4.2 Multivariable Chain Rule
If is a function of , and each is a function of , then:

In words: when influences through multiple intermediate variables , the total
derivative is the sum of the contributions along each path.

4.3 The Chain Rule on a Computational Graph
For any node in the computational graph, let be the parents of (nodes that take

 as input). Applying the multivariable chain rule:

This is exactly the recurrence used in the backward pass of backpropagation. The chain rule
guarantees that this recurrence computes the correct partial derivatives, and the reverse topological
order ensures that is available when we need it to compute .

Part 5: Application — Deep Learning
The backpropagation algorithm is the engine behind modern deep learning. Here is a simple example
to illustrate how it fits into the bigger picture.

L = f(y) y = g(x)

​ =
dx

dL
​ ⋅

dy

dL
​ =

dx

dy
f (y) ⋅′ g (x)′

​

dx
dL y ​

dx
dy

​

dy
dL

L x ​,x ​, … ,x ​1 2 k x ​i t

​ =
dt

dL
​ ​ ⋅

i=1

∑
k

∂x ​i

∂L
​

dt

dx ​i

t L x ​, … ,x ​1 k

v u ​,u ​, … ,u ​1 2 m v

v

​​ = ​ ​ ⋅ ​

∂v
∂L

j=1

∑
m

∂u ​j

∂L
∂v
∂u ​j

​∂u ​j

∂L
​∂v

∂L

5.1 Example: Cat vs. Dog Classifier
Suppose we want to build a binary image classifier that takes an image as input and predicts
whether it contains a cat () or a dog ().

The computational graph:

1. Input: A grayscale image of size , flattened into a vector .
2. Hidden layers: Apply a sequence of linear transformations and nonlinear activations:

where is a nonlinear function like sigmoid.
3. Output: A final linear layer followed by sigmoid gives a probability:

where means "cat" and means "dog."
4. Loss: We use the MSE loss , where is the correct label.

This entire pipeline — from pixels to loss — is one large computational graph. The inputs include all
the weight matrices and bias vectors , which can total millions of
parameters.

5.2 Training with Backpropagation
To train the classifier, we repeat:

1. Forward pass: Feed a training image through the network, compute and .

0 1

28 × 28 x ∈ R784

h ​ =1 σ(W ​x +1 b ​), h ​ =1 2 σ(W ​h ​ +2 1 b ​), …2

σ

​ =ŷ σ(W ​h ​ +k k−1 b ​) ∈k [0, 1]

​ ≈ŷ 0 ​ ≈ŷ 1
L = (​ −ŷ y ​)true

2 y ​ ∈true {0, 1}

W ​,W ​, …1 2 b ​,b ​, …1 2

​ŷ L

2. Backward pass: Run backpropagation to compute and for every weight and bias.
3. Gradient step: Update every parameter in the direction that decreases the loss:

where is a small step size (the learning rate).

Repeat over many images until the network learns to classify cats and dogs accurately.

The key point: Step 2 is where backpropagation shines. Without it, computing the gradient with
respect to millions of parameters would require millions of separate forward passes (one per
parameter). Backpropagation computes all gradients in a single backward pass — at roughly the
same cost as the forward pass itself.

​∂W ​i

∂L
​∂b ​i

∂L

W ​ ←i W ​ −i η ​, b ​ ←
∂W ​i

∂L
i b ​ −i η ​

∂b ​i

∂L

η > 0

