Recap: Minimum Spanning Tree (MST)

Graph \(G = (V,E) \) with edge weights \(w_e \)

Goal: Find a tree \(T \subseteq E \) connecting all the vertices with minimum total edge cost

Meta-algorithm

\[
X = \emptyset \\
\text{repeat until } |X| = |V| - 1 \\
pick a set \(S \subseteq V \) s.t. \(X \) has no edge from \(S \) to \(V \setminus S \) \\
let \(e \in E \) be the minimum-weight edge from \(S \) to \(V \setminus S \) \\
\(X = X \cup \{e\} \)
\]

Example: Kruskal's algorithm, Prim's algorithm
Prim's algorithm

X always forms a (connected) tree on a set of vertices S \& V
At each step, pick the lightest edge from S to V \& S

Similar to Dijkstra's. Implement w/ priority queue
$\text{prim}(G, w)$

$X = \emptyset$

$Q = \text{priority queue}(\cdot)$

for each $v \in V$, $Q.\text{insert}(v, \infty)$

from $[v] = \text{null}$

pick start vertex $s \in V$, $Q.\text{decrease\text{_}\text{Key}}(s, 0)$

while $|X| \leq |V| - 1$

$u = \text{delete__Min}(Q)$

if $u \neq s$, $X = X \cup \{v' \mid (u, v') \in E\}$

for all $v \in V$ s.t. $(u, v) \in E$

if $v \in Q$ still and $w(u, v) < v.\text{key}()$

$Q.\text{dec_Key}(v, w(u, v))$

from $[v] = u$

Runtime

$n = |V|$, $m = |E|$

n inserts

n delete Mins

$O(m)$ decrease Keys

$O((m+n) \log n)$

w/ binary heap

$O(m+n \log n)$

w/ Fibonacci heap
MST runtimes

Kruskal: \(O((m+n) \log n) \) time

Prim: \(O(m + n \log n) \)

Karger, Klein, Tarjan 1995: \(O(m+n) \) expected time (randomized)

Chazelle 2000: Deterministic \(O(m \cdot A(m,n)) \)

\(\uparrow \) inverse Ackermann function \(A(m,n) \leq 5 \) for \(m,n \) reasonable

Pettie, Ramachandran 2002: Deterministic \(O(\text{optimal}) \)

optimal = ?
Rest of lecture: disjoint set/union find data structure

implementation: disjoint-set forest

- **make set (x)**
 (creates a singleton set containing x) \(\Omega(1) \) time

- **find (x)**
 (which set is \(x \) in?) \(\Omega(\log n) \)

- **union (x, j)**
 (merges the sets containing \(x, j \)) \(\Omega(\log n) \)

Kruskal's algorithm

- \(n \) make sets
- \(2m \) finds
- \(n-1 \) unions
- \(\Omega(n \log n) \)

\(0(n) \)
\(0(m \log n) \)
\(0(n \log n) \)
\[+ 0(m \log n) = \Omega(m \log n) \]
\[\Omega((m+n) \log n) \]

(We will also see how to improve union find)
Union find using directed trees

\[\{ B, E_3 \} \rightarrow \{ A, C, D, F, G, H_3 \} \]

representative/name of set

\[\pi(x) = x \quad (\pi(x) = x's \ parent) \]

\[\text{rank}(x) = 0 \]

\[\text{makeSet}(x) \]

\[\text{find}(x) \]

\[\text{while } x \neq \pi(x) \]

\[x = \pi(x) \]

\[\text{return } x \]
union \((x, y)\) "union by rank"

\[
\begin{align*}
 r_x &= \text{find}(x) \\
 r_y &= \text{find}(y)
\end{align*}
\]

if \(r_x = r_y\), return

if \(\text{rank}(r_x) > \text{rank}(r_y)\)

\[
\pi(r_y) = r_x
\]

else if \(\text{rank}(r_x) < \text{rank}(r_y)\)

\[
\pi(r_x) = r_y
\]

else

\[
\pi(r_x) = r_y \\
\text{rank}(r_y) = \text{rank}(r_y) + 1
\]

\[
\text{runtime} = O(\text{runtime of find})
\]
Claim 1: For all \(x \), \(\text{rank}(x) \leq \text{rank}(\Pi(x)) \) (unless \(x = \Pi(x) \)).

Claim 2: Any root node of rank \(k \) has \(\geq 2^k \) nodes in its tree.

Pf: By induction on \(k \). Base case \(k = 0 \) ✓

Inductive step. Assume true for rank \(K \).

Suppose union \((x, y)\)
Claim 1: For all x, $\text{rank}(x) < \text{rank}(\pi(x))$ (unless $x = \pi(x)$)

Claim 2: Any root node of rank k has $\geq 2^k$ nodes in its tree
(Also holds for non-root nodes)

Claim 3: If n elements overall, at most $\frac{n}{2^k}$ elements of rank k.

Pf: Rank k nodes have disjoint subtrees.

- $(\# \text{ of rank } k \text{ nodes}) \cdot 2^k \leq n$

Corollary: All nodes have rank $\leq \log(n)$

Hence, find and union take time $O(\log(n))$
Improving union find via path compression

\[
\text{find}(x) \quad \begin{cases}
\text{while } x \neq \pi(x) \\
\quad x = \pi(x) \\
\quad \text{return } x
\end{cases}
\]

\[
\text{find}(x) \quad \begin{cases}
\text{if } x = \pi(x), \text{return } \pi(x) \\
\quad \text{else, } \text{return find}(\pi(x)) \\
\quad \text{return } \pi(x)
\end{cases}
\]

\[
\text{don't update rank} \\
\text{rank no longer height}
\]
Runtime of union find with path compression

A sequence of n makesets and m union/finds take

$O(n + m \cdot \alpha(m, n))$ time

We will show: $O((ntm) \cdot \log^* n)$ time

- average operation takes time $\log^* n$

$\log^*(n) = \# \text{log}_2(n)$'s needed to bring n to ≤ 1

$\log^*(2) = 1$ \hspace{1cm} $\log^*(2^2) = 2$ \hspace{1cm} $\log^*(2^{2^2}) = 5$

Note: does not say each operation takes $\log^*(n)$ time
Consider intervals $[0], [1], (1,2], (2,4], (4,16], (16,65536], \ldots$

For $i \geq 1$, interval i is $(2^{i+1}, 2^{i+2}]$, $2^i = 2^i$.

Element x is in interval i at some time if:
- x is not a root
- x's rank (x) is in interval i

Largest possible rank is $\log(n)$. It is in interval i where $2^i < \log(n) \leq 2^{i+1}$.

So $i = \log^*(\log(n)) = \log^*(n) - 1$.

Let $k = 2^{i-1}$. Number of elements in $(k, 2^k]$ (interval i)

$$\leq \frac{n}{2^{ki}} + \frac{n}{2^{k+1}} + \ldots \leq \frac{n}{2^k}$$