LECTURE 20

* Reductions recap
* NP-completeness
* Independent Set \(\leq_p \) Integer Programming
* 3SAT \(\leq_p \) Independent Set
Problem A \leq_p Problem B

1) Reduction Algorithm (converts inputs to A \rightarrow inputs to B)

2) \exists A solution to original input to A \Rightarrow \exists a solution to input to B

\exists a solution to _B \Rightarrow \exists a solution to A

Problem A is no harder than Problem B.
Remarks:

1) Reduction algorithm needs to run in polytime

\[A \leq^* B \]

2) \[A \leq_p B \land B \leq_p C \implies A \leq_p C \]

3) \[A \& B \leq_p C \] - both are problems with no knowledge
NP-Complete Problems

A problem A is NP-complete if

1) $A \in \text{NP}$

2) Every problem $B \in \text{NP}$ reduces to A

$B \leq_p A$

Corollary: If A & B are NP-complete

$A \leq_p B \ & \ B \leq_p A$

Corollary: If exists a polytime alg for some NP-complete problem

\Rightarrow $\text{NP} = \text{P}$
To show: Problem A is NP-complete

1) $A \in \text{NP}$ [Exhibit a verification algorithm]

2) Pick some well known NP complete problem

say $3\text{SAT} \leq_p A$

Show that $3\text{SAT} \leq_p A$
NP complete problems: "every NP problem in" ALL OF NP

[Cook70]

CIRCUIT SAT

3SAT

INDEPENDENT SET

INTEGRAL PROGRAM

CLIQUE

VERTEX COVER

RUORATA CYCLE (directed)
Definition: (Independent Set)

Given a graph $G = (V, E)$, a subset of vertices $S \subseteq V$ is an independent set if there are no edges inside S, i.e., $\forall u, v \in S$, $(u, v) \notin E$.
INTRODUCTION:

Input: Graph $G=(V,E)$, K

Solution: An independent set of size K

PROBLEM:

$G=(V,E)$, K

CONVERSION TO INTEGER PROGRAMMING

Input: A linear program

Solution: An integer solution to linear program

$x_i = \begin{cases}
1 & \text{if } i \in \text{Independent Set} \\
0 & \text{otherwise}
\end{cases}$

\mathbf{IP}

$0 \leq x_i \leq 1$

$\sum_{i=1}^{K} x_i = K$

$\forall (i,j) \in E \quad x_i + x_j \leq 1$

1) Run in polytime

2) To PROVE:

a) G has ind set of size K

\implies exists a solution to IP

b) Exists a solution to IP \implies G has an indset of size K
3SAT: fundamental NP-complete

INPUT: 1) Boolean variables $x_1, \ldots, x_n \in \{0, 1\}$

2) Clauses: $\rightarrow (x_1 \lor \overline{x}_2 \lor x_7) \land \rightarrow (x_5 \lor \overline{x}_6 \lor \overline{x}_8) \land \rightarrow (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \land \}

SOLUTION: An assignment
\{x_1, \ldots, x_n\} \rightarrow \{0, 1\}
that satisfies all the clauses
3SAT

INPUT: 3SAT formula on x_1, x_n

$$(x_1 V x_2 V x_3) \land (\overline{x_1} V x_2 V x_3) \land \ldots$$

SOL: A satisfying assignment

$$x = 1, y = 1, z = 0, w = 0$$

IND SET

INPUT: Graph $G = (V, E)$

SOL: An independent set of size K

$K = \# of clauses
1) A clause $\bar{x} \lor \bar{y} \lor \bar{z}$

\[\Downarrow \]

create a $\Delta 1 e$

In the satisfying assignment if $\bar{x} \lor \bar{y} \lor \bar{z}$

has true literals $\bar{x}, \bar{y} \Rightarrow$ add one of those to independent

2) If variable x,

add an edge between every vertex labeled x

to every vertex labeled \bar{x}
Proof:

1) \exists a satisfying assignment

\[\Rightarrow \exists a \text{ independent set of size } K \]

Proof: If \(\{x_1 \ldots x_n \} \Rightarrow \{0,1\} \) satisfies the formula then \(\forall \) each clause \(x_i \lor \overline{x_j} \lor \overline{x_k} \), pick some true literal, include the vertex in independent set

\[\Rightarrow |\text{Independent Set}| = \# \text{ of classes} \]

\[\Rightarrow \text{No edges inside.} \]
\(\exists \) an independent set in \(G^- \) with size \(K = \# \) triangles

\[\forall \text{ variable } x_i = \begin{cases} 1 & \text{if some vertex } x \in \text{ Ind Set} \\ 0 & \text{if some vertex } x \in \text{ Ind Set} \end{cases} \]

arbitrary otherwise

Ind Set has \(\overline{x_i} \) then \(\overline{x_i} \notin \text{ Ind Set} \)

\(\forall \) Ind set picks exactly one vertex in each \(\triangle \)

\(\Rightarrow \) every clause has 1 satisfying literal