Streaming Algorithms

part 2
Last time

Distinct elements

Input: A stream $s_1, ..., s_n \in \{\emptyset, ..., N\}$

Goal: Estimate number of distinct elements in stream
Algorithm

- Pick a random hash function $h : \{1, \ldots, N\} \rightarrow [0, 1]$
- Compute minimum of $h(s_1), \ldots, h(s_n)$

 \[\text{minimum of } r_1, \ldots, r_n = a \]

- Output $1/a$

Intuition: $\frac{1}{a} \approx k + 1$

Todo: How to construct h?
Problems with random $h : \mathbb{E}_1 \ldots, N^3 \to [0,1]$

1. Computers can't store arbitrary real numbers
 \[\text{Soln: Pick } h : \mathbb{E}_1 \ldots, N^3 \to \mathbb{E}_1, \ldots, R^3, \text{ } R \text{ is large} \]
 \[\text{So } h(i)/R \sim \text{ random number in } [0,1] \]

2. If $h : \mathbb{E}_1 \ldots, N^3 \to \mathbb{E}_1, \ldots, R^3$ is uniformly random
 \[\text{needs } N \log R \text{ bits to store} \]
 \[\text{Soln: Make } h \text{ "pseudorandom"} \]
 A hash family is a set $H = \{ h_1, \ldots, h_m \}$
 \[\text{Write } h \sim H \text{ to mean random } h \]

1. $h \sim H$ looks "somewhat random"
2. m is small $\Rightarrow \log(m) \text{ bits to store}$
A hash family \(H = \{ h_1, \ldots, h_m : \{1, \ldots, N\} \rightarrow \{1, \ldots, R3\} \} \) is pairwise independent if

- for all \(x \neq y \in \{1, \ldots, N\} \):
 \[
 \Pr \left[h(x) = i \text{ and } h(y) = j \right] = \frac{1}{R^2}
 \]
 \(i, j \in \{1, \ldots, R3\} \) \(h \sim H \)

Look like two independent draws from \(\mathbb{E} \{1, \ldots, R3\} \)

Implies:

\[
\Pr \left[h(x) = i \right] = \frac{1}{R}
\]

\(h \sim H \)
Example
Let p be a prime
For each $a, b, c \in \mathbb{Z}_p = \{0, 1, \ldots, p-1\}$
let $h_{a, b}: \mathbb{Z}_p \to \mathbb{Z}_p$

$$h_{a, b}(x) = ax + b \pmod{p}$$

Then $H = \{ h_{a, b} \mid a, b \in \mathbb{Z}_p \}$ is pairwise independent
Let \(x \neq y \) and \(i, j \) (all in \(\mathbb{Z}_p \))

Goal: \(\Pr[ax+b=i \text{ and } ay+b=j] = \frac{1}{p^2} \)

Suppose \(x = 0 \) and \(y = 1 \) (for simplicity)

Goal: \(\Pr[b=i \text{ and } a+b=j] = \frac{1}{p^2} \)

But \((b, at+b)\) is random pair in \(\mathbb{Z}_p \)

(General case left as exercise)

\(x=0 \ y=1 \ z=2 \ f(z)=2a+b = 2(a+b)-b \)

= \(2f(1)-f(0) \)
Algorithm (modified)

1. Pick a pairwise independent hash function
 \[h: \mathbb{Z}_N \rightarrow [0,1] \]

2. Compute \(\alpha = \text{smallest of } h(s_1), \ldots, h(s_n) \)
 \[= t\text{-th smallest of } r_1, \ldots, r_k \]

3. Outputs \(\frac{1}{d} \cdot \frac{1}{t} \)
 (assuming \(k \) distinct ekms)
 (should be \(\approx \frac{1}{k \cdot t} \))

Algorithm susceptible to outliers
one abnormally small \(r_i \) can ruin output

Idea: use \(t\text{-th smallest } r_i \)

Alg should store \(t \) smallest \(r_i \)'s
and corresponding \(S_j \)'s
Analysis: Suppose $k = \# \text{ of distinct elements}$

$\Pr[\text{any outputs } \geq 2k] = \Pr[\alpha \leq \frac{t}{2k}]$

Define $C_i = \begin{cases} 1 & \text{if } r_i \leq \frac{t}{2k} \\ 0 & \text{otherwise} \end{cases}$

Then $C = C_1 + \ldots + C_k$

$E[C] = E\left[\sum_{i=1}^{k} C_i \right] = \sum_{i=1}^{k} E[C_i]$ (linearity of expectation)

$= \sum_{i=1}^{k} \Pr[r_i \leq \frac{t}{2k}]$

$= \sum_{i=1}^{k} \frac{t}{2k} = k \cdot \frac{t}{2k} = \frac{t}{2}$
Recall: \(\text{Var}[X] = E[X^2] - E[X]^2 \) (\(\leq E[X^2] \))

Fact: If \(X_1, \ldots, X_n \) are independent, then
\[
\text{Var}(X_1 + \ldots + X_n) = \text{Var}(X_1) + \ldots + \text{Var}(X_n)
\]
Also holds if \(X_1, \ldots, X_n \) are pairwise independent

\[
\text{Var}[C] = \text{Var}\left[\frac{X_i}{\sum_{i=1}^n C_i} \right] = \sum_{i=1}^n \text{Var}[C_i]
\]

\[
\text{Var}[C_i] \leq E[C_i^2] = E[C_i] = \frac{t}{2k}
\]

\[
\text{Var}[C] \leq k \cdot \frac{t}{2k} = \frac{t}{2} \text{ Standard Dev} \leq \sqrt{\frac{t}{2}}
\]

\[
\frac{t}{2} - O(\sqrt{tE}) \quad \frac{t}{2} + O(\sqrt{tE})
\]

\[
T \quad \exists C \text{ is large}
\]
Heavy hitters

Input: a stream $S_1, \ldots, S_n \in \{1, \ldots, N\}$

Output: each $a \in \{1, \ldots, N\}$ whose frequency

$$f_a = \# i \text{ s.t. } S_i = a$$

is large

i.e. a subset $L \subseteq \{1, \ldots, N\}$ s.t.

1. every a s.t. $f_a \geq \frac{n}{10}$ is in L

2. no a s.t. $f_a \leq \frac{n}{20}$ is in L
Count-Min-Sketch \((l, B)\)

- Initialize \(l \times B\) array \(M\) to all zeros
- Pick \(l\) pairwise independent hash functions \(h_i, \ldots, h_{l-1}: \{1, \ldots, N\} \rightarrow \{1, \ldots, B\}\)
- While stream is not empty
 - Read \(s\), next stream element
 - For \(i = 1 \ldots l\)
 - \(M[i, h_i(s)]++\)
 - If min of these vals is \(\geq \frac{n}{10}\), add \(s\) to \(L\)
- Return \(L\)
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>...</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>$h_1(s)$</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>h_2</td>
<td>$h_2(s)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_k</td>
<td>$h_k(s)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fact: For each symbol a, $M[i, h_i(a)] > f_a$
Fix an element a

$$M[i, h_i(a)] = f_a + \sum_{b \neq a} f_b$$

$$\because h_i(b) = h_i(a)$$

$$E[M[j, h_j(a)]] = f_a + \sum_{b \neq a} \Pr[h_i(b) = h_i(a)] \cdot f_b$$

$$= f_a + \sum_{b \neq a} f_b \cdot \frac{1}{B} \leq f_a + \frac{n}{B}$$

So if $X = M[i, h_i(a)]$, then:

- $X \geq 0$
- f_a
- $E[X] \leq \frac{n}{B}$
Markov's inequality: \(\text{Pr}[X \geq t \cdot \mathbb{E}(X)] \leq \frac{1}{t} \) (if \(X \geq 0 \))

So \(\text{Pr}[X \geq 2 \cdot \frac{n}{3}] \leq \frac{1}{2} \)

\(\text{Pr}[M(c, h;i(a)) \geq f_a + 2 \cdot \frac{n}{3}] \leq \frac{1}{2} \)

Then \(\text{Pr} \left(\bigvee_{i} M(i, h;i(a)) \geq f_a + 2 \cdot \frac{n}{3} \right) \leq \frac{1}{2}e \)

\[\geq f_a + \frac{n}{20} \right) \leq \frac{1}{n^2} \]

for \(B=40, \ e = 2 \log(n) \)

If \(f_a \leq \frac{n}{20} \), it is included in \(L \) w/prob \(\leq \frac{1}{n^2} \)

Only \(n \) possible "bad" \(a \)'s, so \(\text{Pr}(\text{one gets into } L) \leq \frac{1}{n} \) (union bound)