Today: Randomized Algorithms

Next class: Quantum Algorithms

Cool! Neat! Wow!
Randomized Algorithms

Algorithms which uses random bits to solve a problem

Allowed to fail with some probability \(\leq 5\% \)

Sometimes can be much faster than deterministic
Integer factorization

Given a 500 digit number \(N \)
find its prime factorization \(N = p_1 p_2 \ldots p_k \)

Algorithm: Check every integer \(1 \leq x \leq \sqrt{N} \)
to see if \(x \) divides \(N \)

Runtime:
Suppose \(N \approx 10^{500} \)
Then \(\sqrt{N} \approx \sqrt{10^{500}} = 10^{250} \)

\# of atoms in universe \(\leq 10^{100} \)
\(N \) has \(n \) digits ⇒ needs \(10^{n/2} \) time

Inefficient!
General number field sieve: Factor an n bit number in time $\approx C n^{1/3} \log(n)^{2/3}$

Factoring is believed to be hard!

But very important:

RSA - 250: 250 digits (factored in 2020)
RSA - 896: 270 digits $\$75,000$
RSA - 2048: 618 digits $\$200,000$

(easy with a quantum computer)
Primality testing

Given an n digit number N determine if it's prime or composite

Idea 1: Factor it! Runs in time $C^{n^{1/3}} \log(n)^{2/3}$

Idea 2: Use something else about prime numbers...

Fermat's little theorem

If N is prime then $a^{N-1} \equiv 1 \pmod{N}$ for all $a \leq 31, \ldots, N-13$
Fermat Test \((N)\)

1. Pick \(a \in \{1, \ldots, N-1\}\) uniformly at random
2. If \(a^{N-1} \equiv 1 \pmod{N}\), output “prime”
 Otherwise, output “composite”

Fact: If \(N\) is prime, always outputs “prime”

\[
N = 12 = 3 \cdot 4 \\
\alpha = 2 \\
2^{11} \not\equiv 1 \pmod{12}
\]

\[
\alpha = 3 \\
3^{11} \not\equiv 1 \pmod{12}
\]

\[
\alpha = 5 \\
5^{11} \equiv 1 \pmod{12}
\]

\(N = p^2\), \(p\) large prime \(\Rightarrow\) only \(\frac{1}{p}\) of \(a\)'s are not coprime

Test only good if \(a^{N-1} \equiv 1 \pmod{N}\) for lots of coprime \(a\)
Carmichael numbers
Composite numbers \(N \) s.t.
\[a^{N-1} \equiv 1 \pmod{N} \]
for all \(a \) coprime to \(N \)
Pass the Fermat test for all coprime \(a \)
\(N = 561 = 3 \cdot 11 \cdot 17 \)
Let's pretend these don't exist for now...
Thm: Suppose N is composite and not Carmichael. Then $\Pr \left[\text{Fermat Test}(N) = \text{composite} \right] \geq \frac{1}{2}$

Pf: Not Carmichael \Rightarrow coprime b s.t. $b^{N-1} \neq 1 \pmod{N}$

Claim: Suppose a passes Fermat Test: $(a^{N-1} = 1 \pmod{N})$.
Then $a \cdot b \pmod{N}$ fails Fermat Test.

Pf: $(a \cdot b)^{N-1} = a^{N-1} \cdot b^{N-1} \pmod{N}$
$\equiv b^{N-1} \pmod{N}$
$\neq 1 \pmod{N}$
Need to check
\[a_i \cdot b \neq a_j \cdot b \pmod{N} \]

Fact: \(b \) is coprime

\[\Rightarrow \text{inverse } b^{-1} \pmod{N} \]

\[a_i \cdot b \neq a_j \cdot b \pmod{N} \]

\[b^{-1} \cdot b^{-1} \]

\[a_i \neq a_j \pmod{N} \]

So \[|\text{pass}| \leq |\text{fail}| \] \(\square \)
Pr\left[Fermat\; Test\; (N) = \text{composite}\right] \geq \frac{1}{2} \text{ (if } N \text{ is composite)}

Repeat \ k \ times \Rightarrow \text{ detect composite w/ prob } \geq 1 - \frac{1}{2^k}

Can be very confident!
Need to compute \(a^{N-1} \pmod{N} \)

Suppose \(N-1 = 2^n \)

\[
\begin{align*}
 a \cdot a & = a^2 \pmod{N} \\
 a^2 \cdot a^2 & = a^4 \pmod{N} \\
 a^4 \cdot a^4 & = a^8 \pmod{N} \\
 \vdots \\
 a^{2^{n-1}} \cdot a^{2^{n-1}} & = a^{2^n} \pmod{N}
\end{align*}
\]

(Con generalize to arbitrary \(N-1 \))
Can add another check to detect Carmichael numbers
This gives Miller–Rabin primality test (1976)
Since then, we've only had randomized alg's (no deterministic undergrads)

A deterministic alg for primality testing in $O(n^{12})$ time (later $O(n^6)$ time)

Miller 1976 “derandomization”
Try the Miller–Rabin test for all $a \leq O(n^{12})$
This will detect if N is prime or composite (assuming generalized Riemann hypothesis)
Primality: efficient randomized algorithm first, later efficient deterministic alg

Other problems: Only know efficient randomized alg
(Polynomial identity testing)

Two possible worlds: 1. Every efficient randomized alg has deterministic counterpart
2. Some problems only have efficient randomized algs

\[\text{P} \subset \text{BPP} \subset \text{efficient randomized} \]
Minimum cut

Unweighted, undirected graphs $G = (V, E)$

cut of size 1

cut of size 3
Idea: Max flow/min cut alg

Computes min s-t cut in time $O(n \cdot m)$

Which s,t to use? $\forall \ V_1 \in \mathcal{E}$

Set $s=1$, try all $t=2, \ldots, n$

$O(n^2 \cdot m)$ time
Karger’s algorithm (G)

for $i = 1, \ldots, n-2$ \hspace{1cm} (n = |V(G|) \\
1. pick a uniformly random edge e \\
2. contract e

return cut specified by the remaining two supervertices

Diagram:

1. $0 \rightarrow 0^2$
2. $3 \rightarrow 4$
3. Contract
4. $2 \rightarrow 3$
5. Contract
6. $1 \rightarrow 2 \rightarrow 3$
7. Contract
Intuition

Karger’s alg finds min cut if it never contracts. But way more edges on left will usually pick there!
Thm: Let \(C = (S, \bar{S}) \) be a min cut of size \(k \).
\[
\Pr\left[\text{Karger's alg outputs } C\right] \geq \frac{1}{\binom{n}{2}^2 n(n-1)} \]

Pf: Let \(G_i \) for graph cut beginning of \(i \)th iteration \((G_i = G)\)

Fact 1: Min-Cut in \(G_i \) \(\geq k \).
(any cut corresponds to cut in \(G \))

Fact 2: \# of vertices in \(G_i = n - (i-1) \)
\[
= n - it + 1
\]
Fact 3: degree of each vertex in $G_i \geq k$

Fact 4: \# of edges in G_i

$$= \frac{1}{2} \sum_{v \in G_i} d(v) \geq \frac{1}{2} \sum_{v \in G_i} k$$

$$= \frac{1}{2} k \cdot |G_0|$$

$$= \frac{1}{2} k \cdot (n-i+1)$$
Suppose at G_i, haven't contracted edge in C yet.

$$\Pr \left[\text{don't contract an edge in } C \right]$$

$$= 1 - \Pr \left[\text{contract an edge in } C \right]$$

$$\geq 1 - \frac{k}{3 \cdot k \cdot (n-i+1)} = 1 - \frac{2}{(n-i+1)}$$

$$\Pr \left[\text{never contract edge in } C \right]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{3}{n-2}\right) \cdots \left(1 - \frac{2}{3}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{2}\right)$$

$$= \frac{2}{n(n-1)}$$
Pr(succeeds) ≥ \frac{1}{\binom{n}{2}} \approx \frac{2}{n^2}

Succeed w/ constant prob: repeat \ n^2 \ times
 (or slightly more)

\# of min cuts ≤ \binom{n}{2}

Pr(output min cut) > \sum_{\text{min cut}} \frac{1}{\binom{n}{2}}