Quantum computing
Quantum computing
Let’s rewind back to 1981…

IBM 5150 PC
16 kB memory
$1,565 ($5,000 today)

And physicists had a problem:
They couldn’t simulate **quantum systems** 😞
Suppose you have n electrons

Each electron can have a spin: \uparrow or \downarrow

So that’s 2^n possible spin configurations

Quantum Simulation Problem

Given: a starting configuration of the n electrons

Goal: what will the system look like after time T?

Best algorithm for this takes time 2^n!
“Nature isn’t classical, dammit, and if you want to make a simulation of Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem because it doesn’t look so easy.”

“Can you do it with a new kind of computer – a quantum computer? Now it turns out, as far as I can tell, that you can simulate this with a quantum system, with quantum computer elements. It’s not a Turing machine, but a machine of a different kind.”

Richard Feynman
1981 talk

1. Build a computer out of electrons
2. Make it programmable
3. Let the electrons simulate themselves
After this idea was introduced, people wondered: how powerful are quantum computers?

Sure, they can simulate quantum physics quickly. But what else?

5 algorithms: 1. Deutsch-Jozsa algorithm
 2. Bernstein-Vazirani algorithm
 3. Simon’s algorithm
 4. Shor’s algorithm
 5. Grover’s algorithm

I will tell you about these
Deutsch-Jozsa problem (1992)

Input: a function $f: \{0, 1\}^n \to \{0, 1\}$, either:

1. $f(x) = 0$ for all x
2. $f(x) = 1$ for all x
3. $f(x) = 0$ for half of x, 1 for other half

Goal: which case are we in?

Deterministic algorithms

Have to check $2^n - 1 + 1$ values of $f(x)$.

Quantum algorithm

Solves it in time $O(n)$!

(Why is this a little unsatisfying?)
Bernstein-Vazirani problem (1992)

Input: a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ s.t.

$$f(x) = x_2 + x_5 + \cdots + x_{n-1} \pmod 2$$

(some subset of the input)

Goal: which bits are in the sum?

Classical algorithm:

0. Look at $f(0, 0, 0, \ldots, 0)$

1. Look at $f(1, 0, 0, \ldots, 0)$

2. Look at $f(0, 1, 0, \ldots, 0)$

$n + 1$ looks at f

Quantum algorithm:

Only need to “quantum look” at f once!
Shor’s algorithm (1994)

Last class:
To factor an n-digit number, the best classical alg runs in time $O(e^{1.9 \cdot n^{1/3} \cdot \log(n)^{2/3}})$

Shor’s algorithm factors in $O(n^2)$ time on a quantum computer
(also solves discrete log)

With a quantum computer, we can break the RSA cryptosystem!

See: https://www.youtube.com/watch?v=6qD9XEiTpCE
Lecture 21:

Circuit-SAT is **NP-complete**
Best classical alg runs in $O(2^n)$ time

Grover’s algorithm solves **Circuit-SAT**
in $O(\sqrt{2^n}) = O(1.414^n)$ time
on a **quantum computer**

(actually solves many other problems
with a **square-root-speedup**)
Quantum speedups

Three types:

1. "Shor-type speedups"
 - **Pro:** Exponentially faster than classical!
 - **Con:** Only for certain problems (e.g. factoring)

2. "Grover-type speedups"
 - **Pro:** Works for many problems!
 - **Con:** Only polynomially faster than classical

3. "Physics simulation speedups"
 - **Pro:** Exponentially faster than classical!
 - **Con:** Only for certain problems (e.g. physics)
Quantum speedups

Q: What is behind these speed-ups?

Why do these outperform classical algorithms?

1. Deutsch-Jozsa algorithm
2. Bernstein-Vazirani algorithm
3. Simon’s algorithm
4. Shor’s algorithm
5. Grover’s algorithm

A: Quantum computers can do ridiculously fast Fourier transforms.

(Recall lecture 4: fast Fourier transform helps multiplying polynomials!)
BQP = the set of all problems efficiently solvable on a quantum computer

Quantum computers **not believed** to solve **NP**-complete problems efficiently!
Building quantum computers

Building quantum computers is really, really tough!

Key challenge: **Noise!** Even the smallest amount of noise completely **ruins** a quantum computation.

Solution: Error correction

[Diagram showing noisy qubits and a perfect, noise-free qubit]
2011: Factored $N = 21 = 3$ using two qubits

Today:

Google: 51 qubits
IBM: 65 qubits
Rigetti: 31 qubits
Intel: 49 qubits

(Noisy qubits. Need 10,000 for 1 clean qubit!)
2011: Factored $N = 21 = 3$ using two qubits

Today:

Hello quantum world! Google publishes landmark quantum supremacy claim

The company says that its quantum computer is the first to perform a calculation that would be practically impossible for a classical machine.

Elizabeth Gibney

Google

51 qubits
Now let’s see a quantum algorithm