Today:
- Polynomial multiplication
- Fast Fourier Transform (FFT)
- Cross-correlation

Poly mult:
\[\text{Input: } A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{d-1} x^{d-1} \]
\[\text{Input: } B(x) = b_0 + b_1 x + \cdots + b_{d-1} x^{d-1} \]

Output: coefficients of
\[C(x) = c_0 + c_1 x + \cdots + c_{2d-2} x^{2d-2} \]

Define \(N = 2d-1 \)

\(\text{will treat } \frac{A,B,C}{\text{as having degree } \leq N} \)
\(\text{(can pad } A,B \text{ w/ 0 coeff.)} \)
Relationship b/w poly and int multiplication

Given int α, β, want $Y = \alpha \times \beta$

$\alpha = \alpha_{n-1} \alpha_{n-2} \ldots \alpha_0$ (α_i are digits 0-9)

$\beta = \beta_{n-1} \ldots \beta_0$

$A(x) = \alpha_0 + \alpha_1x + \ldots + \alpha_{n-1}x^{n-1}$ ($\alpha = A(10)$)

$B(x) = \beta_0 + \ldots + \beta_{n-1}x^{n-1}$ ($\beta = B(10)$)

Want $Y = \alpha \beta = (A \cdot B)(10)$
Algorithm 1: "Straightforward" also.

$$C(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_{n-1} x^{n-1}$$

- $c_0 = a_0 \cdot b_0$
- $c_1 = a_0 \cdot b_0 + a_1 \cdot b_0$

$$c_k = \sum_{j=0}^{k} a_j \cdot b_{k-j}$$

- Loop over $k = 0 \to n-1$
 - Compute c_k w/ a loop from $j = 0 \to k$

\Rightarrow Total time is $O(N^2)$

Also: computing each of $c_0 \ldots c_N$ requires $\geq \frac{N}{2} \cdot \frac{N}{2} = \frac{N^2}{4}$ flops

\Rightarrow total # flops $\geq \frac{N}{2} \cdot \frac{N}{4} = \frac{N^2}{8}$ flops

$\Rightarrow \Omega(N^2)$ flops $\Rightarrow \Theta(N^2)$ flops
\[A(x) = a_0 + a_1 x + a_2 x^2 + \cdots \]
\[B(x) = b_0 + b_1 x + b_2 x^2 + \cdots \]

\[A(x) = A_2(x) + x^{\frac{n}{2}} \cdot A_n(x) \]
\[B(x) = B_2(x) + x^{\frac{n}{2}} \cdot B_n(x) \]

Karatsuba trick \[\Rightarrow T(N) \leq 3T\left(\frac{N}{2}\right) + \Theta(N) \]
\[= \Theta\left(N^{\log_2 3} \right) \]
Polynomial Interpolation

A degree \(N \) polynomial is fully determined by its evaluations on \(N \) distinct points.

Rather than obtain the coefficients of \(C \) directly by

\[
C(x) = A(x) \cdot B(x)
\]

we will determine multipliers \(A \) and \(B \), we will determine

\[
C(x) = \frac{C(x_N)}{C(x_N-x)} - C(x_{N-1})\text{ for distict } x_i; C(x_0), C(x_N).
\]

will compute evaluation of \(A \) and \(B \) on \(N \) distinct

points each, multiply them, then "interpolate"

to get back coefficients of \(C \) from evals of \(C \).
Why does interpolation work?

\[
V c = y \implies c = V^{-1} y
\]

Such \(V \) is called "Vandermonde" matrix.

Fact: \(\det(V) = \prod_{i<j} (x_i - x_j) \)
Types:
1. Discrete Fourier Transform (DFT) is a matrix
2. Fast Fourier Transform (FFT) is an algorithm

\[W = \frac{e^{j2\pi k/N}}{N} \quad \text{complex number} \quad F_{ij} = (w^i)^j = w^{ij} \]

Complex recap
\[z = a + j\cdot b = r \cdot e^{j\theta} \]
\[r = \sqrt{a^2 + b^2} \]
\[\theta = \tan^{-1} \left(\frac{b}{a} \right) \]

\[e = \cos \theta + j \cdot \sin \theta \]
\(W \) (example, \(N = 8 \))

\[
w = e^{\frac{2\pi i}{N}} = e^{\frac{2\pi i}{8}} = e^{\frac{\pi i}{4}}
\]

will evaluate polynomial \(p(x) \) at points \((w, w^2, \ldots, w^{N-1}) \)

\[
F = DFT (\ast \text{Vandermonde matrix})
\]

\[
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & w & w^2 & \cdots & w^{N-1} \\
1 & w^2 & w^4 & \cdots & w^{2(N-1)} \\
1 & w^3 & w^6 & \cdots & w^{3(N-1)} \\
1 & w^4 & w^8 & \cdots & w^{4(N-1)}
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1 \\
w \\
w^2 \\
w^3 \\
w^4
\end{bmatrix}
\]
Fast Fourier Transform (FFT) (needs \(N\) is power of 2)

an algorithm for quickly computing \(P(0), P(\omega), \ldots, P(\omega^{N-1})\)

or some degree \(\leq N\) polynomial \(P\)

(\(\omega\) is a primitive \(N\)th root of unity)

\[
P(z) = p_0 + p_1 z + p_2 z^2 + \ldots + p_{N-1} z^{N-1}
\]

\[
= (p_0 + p_2 z^2 + p_4 z^4 + \ldots + p_{N-2} z^{N-2}) + z \cdot (p_1 + p_3 z^2 + p_5 z^4 + \ldots)
\]

the insight to eval \(\deg \leq N\) \(\omega^k\) on \(N\) roots of unity

\[
T(N) = 2T\left(\frac{N}{2}\right) + \Theta(N) = \Theta(N \log N)
\]
Poly mult algorithm

// given as input coeffs of A(x), B(x) coeff vector of A

1. use \text{FFT} to compute \(\hat{a} := F(a) \)

2. use \text{FFT} to compute \(\hat{b} := F(b) \)

3. for \(i = 0 \) to \(N-1 \): \(\hat{c}_i := \hat{a}_i \times \hat{b}_i \) (\(\hat{c} \) is eval of \(C \) on \(1, i, \ldots, i^N \))

4. \(c := F^{-1}\hat{c} \) requires one more \(FFT \) to get \(F^{-1}\hat{c} \)

5. return \(c \) (coeff vector of \(C = A \times B \))

Total: \(O(N \log N) \) time assuming can mult/add complex #s in \(O(1) \) time.
Claim 1: \(F^{-1} = \frac{1}{N} F \)

Proof:

\[
(F \cdot \left(\frac{1}{N} F \right))_{ij} = \begin{cases} 1, & \text{if } i=j \\ 0, & \text{otherwise} \end{cases}
\]

Claim 2: \(\overline{M_X} = M_{\overline{X}} \)

\[
F^{-1} \overline{z} = \frac{1}{N} \cdot \overline{F \overline{z}}
\]

Another application of FFT
Cross-correlation

Inputs: \(x = (x_0, x_1, \ldots, x_{n-1}) \)

\(y = (y_0, y_1, \ldots, y_{n-1}) \)

(two vectors, \(n \geq m \))

want all shifted dot products of \(x \) with \(y \)

want: \(x_0 y_0 + x_1 y_1 + \cdots + x_{m-1} y_{n-1} \)

\(x_0 y_1 + x_0 y_2 + \cdots + x_{m-1} y_n \)

\(\vdots \)

\(\sum_{i=0}^{n-m+1} x_{m+i-1} y_{n-1} \)
Can we rely on f to do cross-